(68)Ga-DOTA-Siglec-9 PET/CT imaging of peri-implant tissue responses and staphylococcal infections

Helena Ahtinen, Julia Kulkova, Laura Lindholm, Erkki Eerola, Antti J Hakanen, Niko Moritz, Mirva Söderström, Tiina Saanijoki, Sirpa Jalkanen, Anne Roivainen, Hannu T Aro, Helena Ahtinen, Julia Kulkova, Laura Lindholm, Erkki Eerola, Antti J Hakanen, Niko Moritz, Mirva Söderström, Tiina Saanijoki, Sirpa Jalkanen, Anne Roivainen, Hannu T Aro

Abstract

Background: Staphylococcus epidermidis (S. epidermidis) has emerged as one of the leading pathogens of biomaterial-related infections. Vascular adhesion protein-1 (VAP-1) is an inflammation-inducible endothelial molecule controlling extravasation of leukocytes. Sialic acid-binding immunoglobulin-like lectin 9 (Siglec-9) is a leukocyte ligand of VAP-1. We hypothesized that (68)Ga-labeled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-conjugated Siglec-9 motif containing peptide ((68)Ga-DOTA-Siglec-9) could detect inflammatory response due to S. epidermidis peri-implant infection by positron emission tomography (PET).

Methods: Thirty Sprague-Dawley rats were randomized into three groups. A sterile catheter was implanted into the medullary canal of the left tibia. In groups 1 and 2, the implantation was followed by peri-implant injection of S. epidermidis or Staphylococcus aureus (S. aureus) with adjunct injections of aqueous sodium morrhuate. In group 3, sterile saline was injected instead of bacteria and no aqueous sodium morrhuate was used. At 2 weeks after operation, (68)Ga-DOTA-Siglec-9 PET coupled with computed tomography (CT) was performed with the measurement of the standardized uptake value (SUV). The presence of the implant-related infection was verified by microbiological analysis, imaging with fluorescence microscope, and histology. The in vivo PET results were verified by ex vivo measurements by gamma counter.

Results: In group 3, the tibias with implanted sterile catheters showed an increased local uptake of (68)Ga-DOTA-Siglec-9 compared with the intact contralateral bones (SUVratio +29.5%). (68)Ga-DOTA-Siglec-9 PET detected inflammation induced by S. epidermidis and S. aureus catheter-related bone infections (SUVratio +58.1% and +41.7%, respectively). The tracer uptake was significantly higher in the S. epidermidis group than in group 3 without bacterial inoculation, but the difference between S. epidermidis and S. aureus groups was not statistically significant. The difference between the S. aureus group and group 3 was neither statistically significant.

Conclusion: PET/CT imaging with novel (68)Ga-DOTA-Siglec-9 tracer was able to detect inflammatory tissue response induced by catheter implantation and staphylococcal infections.

Keywords: 68Ga-DOTA-Siglec-9; Implant infection; Osteomyelitis; PET; S. aureus; S. epidermidis; VAP-1.

Figures

Figure 1
Figure 1
Schematic illustration of the operated tibia. (a) The bone was sliced into five sections for further characterization: (1) histological analysis (decalcified sections); (2) histological analysis (non-decalcified sections); (3) microbiological analysis; (4) ex vivo radioactivity measurement; (5) fluorescent microscopy of biofilm formation. (b) Quantification of the in vivo PET/CT data using two regions of interest (ROI).
Figure 2
Figure 2
Histological-analysis. (a)Staphylococcus epidermidis group, van Gieson stain. Inflammatory response is expressed as a sunburst type periosteal reaction (PR) and partial resorption of the cortex (C). Implant is denoted as ‘Impl’. (b)S. epidermidis group, hematoxylin and eosin stain. Increased number of polymorphonuclear leukocytes were observed in the medullary canal in the proximity of the implant (arrow). This layer is surrounded by granulation tissue; (c)Staphylococcus aureus group, van Gieson stain; Inflammatory response is expressed as a circumferential sunburst type periosteal reaction (PR) and an almost complete resorption of the cortex (C). (d)S. aureus group, hematoxylin and eosin stain. Polymorphonuclear leukocytes are seen in the proximity of the implant (arrow). (e) Sterile catheter implant group, van Gieson stain; Periosteal and cortical reactions are absent. Reactive bone formation (RB) is seen around the implant. (f) Sterile catheter implant group, hematoxylin and eosin stain. The implant is surrounded by fibrous capsule and reactive bone (RB).
Figure 3
Figure 3
Fluorescence microscope images of catheters. The catheter surfaces stained with BacLite Kit. Biofilm clusters composed of aggregates of viable coccoid bacterial cells, which were stained with SYTO® 9 (green color) and dead bacteria stained with PI (orange-red). (a)S. epidermidis; (b)S. aureus; (c) sterile catheter.
Figure 4
Figure 4
Representative sagittal and coronal PET/CT images. Representative sagittal and coronal PET/CT images with 68Ga-DOTA-Siglec-9 peptide of the rats with (a) catheter-related S. epidermidis infection of the right tibia, (b) catheter-related S. aureus infection of the right tibia, or (c) catheter implantation in the right tibia without bacterial inoculation. High focal uptake of radioactivity in the infected right tibia is observed (red arrows) compared with the contralateral intact left tibia (white arrows). Excess of radioactivity is excreted through the kidneys (two headed black arrow) to the urinary bladder (black arrow).
Figure 5
Figure 5
Comparison of the uptake of68Ga-DOTA-Siglec-9 in the three groups of animals. The three groups are as follows: S. epidermidis infection, S. aureus infection, and sterile catheter implant. The uptake is shown as the intra-animal SUVratio values of the proximal tibias measured in vivo (ROI1 in Figure 1) and ex vivo (section 4 in Figure 1). Box plots of are showing median, first and third quartiles, minimum and maximum values, and outliers. Comparison between the groups performed with ANOVA with Tukey's post hoc test.

References

    1. Zimmerli W, Trampuz A, Ochsner PE. Prosthetic-joint infections. N Engl J Med. 2004;351:1645–1654. doi: 10.1056/NEJMra040181.
    1. National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control. 2004;32:470–485. doi: 10.1016/j.ajic.2004.10.001.
    1. Queck SY, Otto M. In: Staphycoccus: Molecular Genetics. Lindsay JA, editor. Caister Academic Press, Norfolk; 2008. Staphylococcus epidermidis and other coagulase-negative staphylococci; pp. 227–254.
    1. Sadykov MR, Hartmann T, Mattes TA, Hiatt M, Jann NJ, Zhu Y, Ledala N, Landmann R, Herrmann M, Rohde H, Bischoff M, Somerville GA. CcpA coordinates central metabolism and biofilm formation in Staphylococcus epidermidis. Microbiology. 2011;157:3458–3468. doi: 10.1099/mic.0.051243-0.
    1. von Eiff C, Peters G, Heilmann C. Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect Dis. 2002;2:677–685. doi: 10.1016/S1473-3099(02)00438-3.
    1. Kwakman PH, te Velde AA, Vandenbroucke-Grauls CM, van Deventer SJ, Zaat SA. Treatment and prevention of Staphylococcus epidermidis experimental biomaterial-associated infection by bactericidal peptide 2. Antimicrob Agents Chemother. 2006;50:3977–3983. doi: 10.1128/AAC.00575-06.
    1. Trampuz A, Piper KE, Jacobson MJ, Hanssen AD, Unni KK, Osmon DR, Mandrekar JN, Cockerill FR, Steckelberg JM, Greenleaf JF, Patel R. Sonication of removed hip and knee prostheses for diagnosis of infection. N Engl J Med. 2007;357:654–663. doi: 10.1056/NEJMoa061588.
    1. Teterycz D, Ferry T, Lew D, Stern R, Assal M, Hoffmeyer P, Bernard L, Uçkay I. Outcome of orthopedic implant infections due to different staphylococci. Int J Infect Dis. 2010;14:e913–e918. doi: 10.1016/j.ijid.2010.05.014.
    1. Gemmel F, Van den Wyngaert H, Love C, Welling MM, Gemmel P, Palestro CJ. Prosthetic joint infections: radionuclide state-of-the-art imaging. Eur J Nucl Med Mol Imaging. 2012;39:892–909. doi: 10.1007/s00259-012-2062-7.
    1. Glaudemans AW, Galli F, Pacilio M, Signore A. Leukocyte and bacteria imaging in prosthetic joint infection. Eur Cell Mater. 2013;25:61–77.
    1. Della Valle C, Parvizi J, Bauer TW, DiCesare PE, Evans RP, Segreti J, Spangehl M, Watters WC 3rd, Keith M, Turkelson CM, Wies JL, Sluka P, Hitchcock K. American Academy of Orthopaedic Surgeons clinical practice guideline on: the diagnosis of periprosthetic joint infections of the hip and knee. J Bone Joint Surg Am. 2011;93:1355–1357. doi: 10.2106/JBJS.9314ebo.
    1. Stumpe KD, Nötzli HP, Zanetti M, Kamel EM, Hany TF, Görres GW, von Schulthess GK, Hodler J. FDG PET for differentiation of infection and aseptic loosening in total hip replacements: comparison with conventional radiography and three-phase bone scintigraphy. Radiology. 2004;231:333–341. doi: 10.1148/radiol.2312021596.
    1. Koort JK, Mäkinen TJ, Knuuti J, Jalava J, Aro HT. Comparative 18 F-FDG PET of experimental Staphylococcus aureus osteomyelitis and normal bone healing. J Nucl Med. 2004;45:1406–1411.
    1. Mäkinen TJ, Veiranto M, Knuuti J, Jalava J, Törmälä P, Aro HT. Efficacy of bioabsorbable antibiotic containing bone screw in the prevention of biomaterial-related infection due to Staphylococcus aureus. Bone. 2005;36:292–299. doi: 10.1016/j.bone.2004.11.009.
    1. Koort JK, Mäkinen TJ, Suokas E, Veiranto M, Jalava J, Knuuti J, Törmälä P, Aro HT. Efficacy of ciprofloxacin-releasing bioabsorbable osteoconductive bone defect filler for treatment of experimental osteomyelitis due to Staphylococcus aureus. Antimicrob Agents Chemother. 2005;49:1502–1508. doi: 10.1128/AAC.49.4.1502-1508.2005.
    1. Lankinen P, Lehtimäki K, Hakanen AJ, Roivainen A, Aro HT. A comparative 18 F-FDG PET/CT imaging of experimental Staphylococcus aureus osteomyelitis and Staphylococcus epidermidis foreign-body-associated infection in the rabbit tibia. EJNMMI Res. 2012;2:41. doi: 10.1186/2191-219X-2-41.
    1. Salmi M, Jalkanen S. A 90-kilodalton endothelial cell molecule mediating lymphocyte binding in humans. Science. 1992;257:1407–1409. doi: 10.1126/science.1529341.
    1. Jaakkola K, Nikula T, Holopainen R, Vähäsilta T, Matikainen MT, Laukkanen ML, Huupponen R, Halkola L, Nieminen L, Hiltunen J, Parviainen S, Clark MR, Knuuti J, Savunen T, Kääpä P, Voipio-Pulkki LM, Jalkanen S. In vivo detection of vascular adhesion protein-1 in experimental inflammation. Am J Pathol. 2000;157:463–471. doi: 10.1016/S0002-9440(10)64558-0.
    1. Salmi M, Jalkanen S. VAP-1: an adhesin and an enzyme. Trends Immunol. 2001;22:211–216. doi: 10.1016/S1471-4906(01)01870-1.
    1. Crocker PR, McMillan SJ, Richards HE. CD33-related siglecs as potential modulators of inflammatory responses. Ann N Y Acad Sci. 2012;1253:102–111. doi: 10.1111/j.1749-6632.2011.06449.x.
    1. Aalto K, Autio A, Kiss EA, Elima K, Nymalm Y, Veres TZ, Marttila-Ichihara F, Elovaara H, Saanijoki T, Crocker PR, Maksimow M, Bligt E, Salminen TA, Salmi M, Roivainen A, Jalkanen S. Siglec-9 is a novel leukocyte ligand for vascular adhesion protein-1 and can be used in PET imaging of inflammation and cancer. Blood. 2011;118:3725–3733. doi: 10.1182/blood-2010-09-311076.
    1. Merritt JH, Kadouri DE, O'Toole GA. Growing and analyzing static biofilms. Curr Protoc Microbiol. 2005;1:1B.1.
    1. Petty W, Spanier S, Shuster JJ, Silverthorne C. The influence of skeletal implants on incidence of infection. Experiments in a canine model. J Bone Joint Surg Am. 1985;67:1236–1244.
    1. Rantakokko-Jalava K, Nikkari S, Eerola E, Skurnik M, Meurman O, Ruuskanen O, Alanen A, Kotilainen E, Toivanen P, Kotilainen P. Direct amplification of rRNA genes in diagnosis of bacterial infections. J Clin Microbiol. 2000;38:32–39.
    1. Otto M. Staphylococcus epidermidis - the ‘accidental’ pathogen. Nat Rev Microbiol. 2009;7:555–567. doi: 10.1038/nrmicro2182.
    1. Lankinen P, Mäkinen TJ, Pöyhönen TA, Virsu P, Salomäki S, Hakanen AJ, Jalkanen S, Aro HT, Roivainen A. (68)Ga-DOTAVAP-P1 PET imaging capable of demonstrating the phase of inflammation in healing bones and the progress of infection in osteomyelitic bones. Eur J Nucl Med Mol Imaging. 2008;35:352–364. doi: 10.1007/s00259-007-0637-5.
    1. Ujula T, Salomäki S, Virsu P, Lankinen P, Mäkinen TJ, Autio A, Yegutkin GG, Knuuti J, Jalkanen S, Roivainen A. Synthesis, 68Ga labeling and preliminary evaluation of DOTA peptide binding vascular adhesion protein-1: a potential PET imaging agent for diagnosing osteomyelitis. Nucl Med Biol. 2009;36:631–641. doi: 10.1016/j.nucmedbio.2009.04.008.
    1. Autio A, Ujula T, Luoto P, Salomäki S, Jalkanen S, Roivainen A. PET imaging of inflammation and adenocarcinoma xenografts using vascular adhesion protein 1 targeting peptide (68)Ga-DOTAVAP-P1: comparison with (18)F-FDG. Eur J Nucl Med Mol Imaging. 2010;37:1918–1925. doi: 10.1007/s00259-010-1497-y.
    1. Autio A, Henttinen T, Sipilä HJ, Jalkanen S, Roivainen A. Mini-PEG spacering of VAP-1-targeting 68Ga-DOTAVAP-P1 peptide improves PET imaging of inflammation. EJNMMI Res. 2011;1:10. doi: 10.1186/2191-219X-1-10.
    1. Volk A, Crémieux AC, Belmatoug N, Vallois JM, Pocidalo JJ, Carbon C. Evaluation of a rabbit model for osteomyelitis by high field, high resolution imaging using the chemical-shift-specific-slice-selection technique. Magn Reson Imaging. 1994;12:1039–1046. doi: 10.1016/0730-725X(94)91235-O.
    1. Crémieux AC, Carbon C. Experimental models of bone and prosthetic joint infections. Clin Infect Dis. 1997;25:1295–1302. doi: 10.1086/516135.
    1. Hienz SA, Sakamoto H, Flock JI, Mörner AC, Reinholt FP, Heimdahl A, Nord CE. Development and characterization of a new model of hematogenous osteomyelitis in the rat. J Infect Dis. 1995;171:1230–1236. doi: 10.1093/infdis/171.5.1230.
    1. Gratz S, Rennen HJ, Boerman OC, Oyen WJ, Burma P, Corstens FH. (99 m)Tc-interleukin-8 for imaging acute osteomyelitis. J Nucl Med. 2001;42:1257–1264.
    1. Mäkinen TJ, Lankinen P, Pöyhönen T, Jalava J, Aro HT, Roivainen A. Comparison of 18 F-FDG and 68Ga PET imaging in the assessment of experimental osteomyelitis due to Staphylococcus aureus. Eur J Nucl Med Mol Imaging. 2005;32:1259–1268. doi: 10.1007/s00259-005-1841-9.
    1. An YH, Kang QK, Arciola CR. Animal models of osteomyelitis. Int J Artif Organs. 2006;29:407–420.
    1. Mayberry-Carson KJ, Tober-Meyer B, Smith JK, Lambe DW Jr, Costerton JW. Bacterial adherence and glycocalyx formation in osteomyelitis experimentally induced with Staphylococcus aureus. Infect Immun. 1984;43:825–833.
    1. Lambe DW Jr, Ferguson KP, Mayberry-Carson KJ, Tober-Meyer B, Costerton JW. Foreign-body-associated experimental osteomyelitis induced with Bacteroides fragilis and Staphylococcus epidermidis in rabbits. Clin Orthop Relat Res. 1991;266:285–294.
    1. An YH, Friedman RJ. Animal models of orthopedic implant infection. J Invest Surg. 1998;11:139–146. doi: 10.3109/08941939809032193.
    1. Alt V, Lips KS, Henkenbehrens C, Muhrer D, Oliveira Cavalcanti MC, Sommer U, Thormann U, Szalay G, Heiss C, Pavlidis T, Domann E, Schnettler R. A new animal model for implant-related infected non-unions after intramedullary fixation of the tibia in rats with fluorescent in situ hybridization of bacteria in bone infection. Bone. 2011;48:1146–1153. doi: 10.1016/j.bone.2011.01.018.
    1. Del Pozo JL, Rouse MS, Euba G, Kang CI, Mandrekar JN, Steckelberg JM, Patel R. The electricidal effect is active in an experimental model of Staphylococcus epidermidis chronic foreign body osteomyelitis. Antimicrob Agents Chemother. 2009;53:4064–4068. doi: 10.1128/AAC.00432-09.
    1. Sakaeda H. Experimental polymicrobial osteomyelitis produced by both aerobic and anaerobic opportunistic pathogens. Nihon Seikeigeka Gakkai Zasshi. 1988;62:791–802.
    1. Glaudemans AW, de Vries EF, Vermeulen LE, Slart RH, Dierckx RA, Signore A. A large retrospective single-centre study to define the best image acquisition protocols and interpretation criteria for white blood cell scintigraphy with 99mTc-HMPAO-labelled leucocytes in musculoskeletal infections. Eur J Nucl Med Mol Imaging. 2013;40:1760–1769. doi: 10.1007/s00259-013-2481-0.
    1. Signore A. About inflammation and infection. EJNMMI Res. 2013;3:8. doi: 10.1186/2191-219X-3-8.
    1. Lazzeri E, Israel O, Erba PA, Chakravartty R, Comin JM, Jamar F, Rouzet F, Glaudemans AW, Signore A. Comment on Aksoy et al.: FDG and FDG-labelled leucocyte PET/CT in the imaging of prosthetic joint infection. Eur J Nucl Med Mol Imaging. 2014;41:1811–1812. doi: 10.1007/s00259-014-2777-8.
    1. Love C, Marwin SE, Palestro CJ. Nuclear medicine and the infected joint replacement. Semin Nucl Med. 2009;39:66–78. doi: 10.1053/j.semnuclmed.2008.08.007.

Source: PubMed

3
購読する