A clinical series using intensive neurorehabilitation to promote functional motor and cognitive skills in three girls with CASK mutation

Stephanie C DeLuca, Dory A Wallace, Mary Rebekah Trucks, Konark Mukherjee, Stephanie C DeLuca, Dory A Wallace, Mary Rebekah Trucks, Konark Mukherjee

Abstract

Objectives: Children with microcephaly face lifelong psychomotor, cognitive, and communications skills disabilities. Etiology of microcephaly is heterogeneous but presentation often includes seizures, hypotonia, ataxia, stereotypic movements, attention deficits, excitability, cognitive delays, and poor communication skills. Molecular diagnostics have outpaced available interventions and most children receive generic physical, speech, and occupational therapies with little attention to the efficacy of such treatments. Mutations in the X-linked intellectual disability gene (XLID) CASK is one etiology associated with microcephaly which produces mental retardation and microcephaly with pontine and cerebellar hypoplasia (MICPCH; OMIM# 300749). We pilot-tested an intensive therapy in three girls with heterozygous mutation in the gene CASK and MICPCH. Child A = 54 months; Child B = 89 months; and Child C = 24 months received a targeted treatment to improve gross/fine motor skills, visual-motor coordination, social interaction, and communication. Treatment was 4 h each weekday for 10 treatment days. Operant training promoted/refined goal-directed activities. The Peabody Developmental Motor Scales 2 was administered pre- and post-treatment.

Results: Child A gained 14 developmental months; Child B gained 20 developmental months; and Child C gained 39 developmental months. This case series suggests that children with MICPCH are responsive to intensive therapy aimed at increasing functional skills/independence. Trial Registration ClinicalTrials.gov Registration Number: NCT03325946; Release Date: October 30, 2017.

Keywords: Intellectual disability; Microcephaly; Neuroplasticity; Neurorehabilitation.

Figures

Fig. 1
Fig. 1
PDMS raw score changes by subtest

References

    1. Faheem M, Naseer MI, Rasool M, Chaudhary AG, Kumosani TA, Ilyas AM, Saleh Jamal H. Molecular genetics of human primary microcephaly: an overview. BMC Med Genomics. 2000;8(Suppl):1.
    1. Woods CG, Parker A. Investigating microcephaly. Arch Dis Child. 2013;98(9):707–713. doi: 10.1136/archdischild-2012-302882.
    1. Ashwal S, Michelson D, Plawner L, Dobyns WB, Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society Practice parameter: evaluation of the child with microcephaly (an evidence-based review): report of the quality standards subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology. 2009;73(11):887–897. doi: 10.1212/WNL.0b013e3181b783f7.
    1. Centers for Disease Control and Prevention: Birth defects. Facts about microcephaly. 2016. .
    1. Lindhurst MJ, Biesecker LG. Amish Lethal Microcephaly. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJ, Stephens K, editors. GeneReviews. Seattle (WA): University of Washington: 1993. .
    1. Manalo V, Meezan W. Toward building a typology for the evaluation of services in family support programs. Child Welfare. 2000;79(4):405–429.
    1. Poulton CJ, Schot R, Kia SK, Jones M, Verheijen FW, Venselaar H, Mancini GMS. Microcephaly with simplified gyration, epilepsy, and infantile diabetes linked to inappropriate apoptosis of neural progenitors. Am J Hum Genet. 2011;89(2):265–276. doi: 10.1016/j.ajhg.2011.07.006.
    1. Seltzer LE, Paciorkowski AR. Genetic disorders associated with postnatal microcephaly. Am J Med Genet C Semin Med Genet. 2014;166C(2):140–155. doi: 10.1002/ajmg.c.31400.
    1. Opitz JM, Holt MC. Microcephaly: general considerations and aids to nosology. J Craniofac Genet Dev Biol. 1990;10(2):175–204.
    1. Burglen L, Chantot-Bastaraud S, Garel C, Milh M, Touraine R, Zanni G, Rodriguez D. Spectrum of pontocerebellar hypoplasia in 13 girls and boys with CASK mutations: confirmation of a recognizable phenotype and first description of a male mosaic patient. Orphanet J Rare Dis. 2012;7:18. doi: 10.1186/1750-1172-7-18.
    1. Alkuraya FS, Cai X, Emery C, Mochida GH, Al-Dosari MS, Felie JM, Walsh CA. Human mutations in NDE1 cause extreme microcephaly with lissencephaly [corrected] Am J Hum Genet. 2011;88(5):536–547. doi: 10.1016/j.ajhg.2011.04.003.
    1. Najm J, Horn D, Wimplinger I, Golden JA, Chizhikov VV, Sudi J, Kutsche K. Mutations of CASK cause an X-linked brain malformation phenotype with microcephaly and hypoplasia of the brainstem and cerebellum. Nat Genet. 2008;40(9):1065–1067. doi: 10.1038/ng.194.
    1. Jedele KB. The overlapping spectrum of rett and angelman syndromes: a clinical review. Semin Pediatr Neurol. 2007;14(3):108–117. doi: 10.1016/j.spen.2007.07.002.
    1. Moog U, Kutsche K, Kortüm F, Chilian B, Bierhals T, Apeshiotis N, Uyanik G. Phenotypic spectrum associated with CASK loss-of-function mutations. J Med Genet. 2011;48(11):741–751. doi: 10.1136/jmedgenet-2011-100218.
    1. Ellaway C, Buchholz T, Smith A, Leonard H, Christodoulou J. Rett syndrome: significant clinical overlap with Angelman syndrome but not with methylation status. J Child Neurol. 1998;13(9):448–451. doi: 10.1177/088307389801300907.
    1. Srivastava S, McMillan R, Willis J, Clark H, Chavan V, Liang C, Mukherjee K. X-linked intellectual disability gene CASK regulates postnatal brain growth in a non-cell autonomous manner. Acta Neuropathol Commun. 2016;4:30. doi: 10.1186/s40478-016-0295-6.
    1. Stott J, Charlesworth G, Scior K. Measures of readiness for cognitive behavioural therapy in people with intellectual disability: a systematic review. Res Dev Disabil. 2017;60:37–51. doi: 10.1016/j.ridd.2016.11.003.
    1. Miura K, Kishino T, Li E, Webber H, Dikkes P, Holmes GL, Wagstaff J. Neurobehavioral and electroencephalographic abnormalities in Ube3a maternal-deficient mice. Neurobiol Dis. 2002;9(2):149–159. doi: 10.1006/nbdi.2001.0463.
    1. Hao S, Tang B, Wu Z, Ure K, Sun Y, Tao H, Tang J. Forniceal deep brain stimulation rescues hippocampal memory in Rett syndrome mice. Nature. 2015;526(7573):430–434. doi: 10.1038/nature15694.
    1. Samaco RC, McGraw CM, Ward CS, Sun Y, Neul JL, Zoghbi HY. Female Mecp2(±) mice display robust behavioral deficits on two different genetic backgrounds providing a framework for pre-clinical studies. Hum Mol Genet. 2013;22(1):96–109. doi: 10.1093/hmg/dds406.
    1. Shibagaki M, Seo M, Asano T, Kiyono S. Environmental enrichment to alleviate maze performance deficits in rats with microcephaly induced by x-irradiation. Physiol Behav. 1981;27(5):797–802. doi: 10.1016/0031-9384(81)90045-7.
    1. Atasoy D, Schoch S, Ho A, Nadasy KA, Liu X, Zhang W, Mukherjee K, Südhof TC. Deletion of CASK in mice is lethal and impairs synaptic function. Proc Natl Acad Sci USA. 2007;104(7):2525–2530. doi: 10.1073/pnas.0611003104.
    1. Deluca SC, Echols K, Law CR, Ramey SL. Intensive pediatric constraint-induced therapy for children with cerebral palsy: randomized, controlled, crossover trial. J Child Neurol. 2006;21(11):931–938. doi: 10.1177/08830738060210110401.
    1. DeLuca S, Echols K, Ramey SL. ACQUIREc therapy: a training manual for effective application of pediatric constraint-induced movement therapy. Chapel Hill: Mindnurture; 2007.
    1. DeLuca SC, Echols K, Ramey SL, Taub E. Pediatric constraint-induced movement therapy for a young child with cerebral palsy: two episodes of care. Phys Ther. 2003;83(11):1003–1013.
    1. DeLuca SC, Ramey SL, Trucks MR, Wallace DA. Multiple treatments of pediatric constraint-induced movement therapy (pCIMT): a clinical cohort study. Am J Occup Ther. 2015;69:1–9. doi: 10.5014/ajot.2015.019323.
    1. Ramey SL, Coker-Bolt P, DeLuca SC, editors. Handbook of pediatric constraint-induced movement therapy (CIMT): a guide for occupational therapy and health care clinicians, researchers, and educators. Bethesda: AOTA Press; 2013.
    1. Taub E, Ramey SL, DeLuca S, Echols K. Efficacy of constraint-induced movement therapy for children with cerebral palsy with asymmetric motor impairment. Pediatrics. 2004;113(2):305–312. doi: 10.1542/peds.113.2.305.
    1. Folio R, Fewell R. Peabody developmental motor scales-2. 2. Austin: Pro-Ed; 2000.
    1. Russell DJ, Rosenbaum PL, Cadman DT, Gowland C, Hardy S, Jarvis S. The gross motor function measure: a means to evaluate the effects of physical therapy. Dev Med Child Neurol. 1989;31(3):341–352. doi: 10.1111/j.1469-8749.1989.tb04003.x.

Source: PubMed

3
購読する