Predicting Axial Impairment in Parkinson's Disease through a Single Inertial Sensor

Luigi Borzì, Ivan Mazzetta, Alessandro Zampogna, Antonio Suppa, Fernanda Irrera, Gabriella Olmo, Luigi Borzì, Ivan Mazzetta, Alessandro Zampogna, Antonio Suppa, Fernanda Irrera, Gabriella Olmo

Abstract

Background: Current telemedicine approaches lack standardised procedures for the remote assessment of axial impairment in Parkinson's disease (PD). Unobtrusive wearable sensors may be a feasible tool to provide clinicians with practical medical indices reflecting axial dysfunction in PD. This study aims to predict the postural instability/gait difficulty (PIGD) score in PD patients by monitoring gait through a single inertial measurement unit (IMU) and machine-learning algorithms.

Methods: Thirty-one PD patients underwent a 7-m timed-up-and-go test while monitored through an IMU placed on the thigh, both under (ON) and not under (OFF) dopaminergic therapy. After pre-processing procedures and feature selection, a support vector regression model was implemented to predict PIGD scores and to investigate the impact of L-Dopa and freezing of gait (FOG) on regression models.

Results: Specific time- and frequency-domain features correlated with PIGD scores. After optimizing the dimensionality reduction methods and the model parameters, regression algorithms demonstrated different performance in the PIGD prediction in patients OFF and ON therapy (r = 0.79 and 0.75 and RMSE = 0.19 and 0.20, respectively). Similarly, regression models showed different performances in the PIGD prediction, in patients with FOG, ON and OFF therapy (r = 0.71 and RMSE = 0.27; r = 0.83 and RMSE = 0.22, respectively) and in those without FOG, ON and OFF therapy (r = 0.85 and RMSE = 0.19; r = 0.79 and RMSE = 0.21, respectively).

Conclusions: Optimized support vector regression models have high feasibility in predicting PIGD scores in PD. L-Dopa and FOG affect regression model performances. Overall, a single inertial sensor may help to remotely assess axial motor impairment in PD patients.

Keywords: Levodopa; Parkinson’s disease; dimensionality reduction; feature extraction; freezing of gait (FOG); gait; machine learning; postural instability and gait difficulty score (PIGD); time up and go; wearable sensors.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Sketch of sensor position, together with an exploded view of the neMEMSI device.
Figure 2
Figure 2
Schematic of the Kalman filter, together with input and output. Raw gyroscope (a) and accelerometer (b) readings are input to the Kalman filter (c) to provide an estimate of orientation (d).
Figure 3
Figure 3
Absolute value of the CWT plotted as a function of time and frequency. Yellow zones represent the walking segments of the signal.
Figure 4
Figure 4
Orientation signal (blue) and walking bouts detected by the algorithm (orange).
Figure 5
Figure 5
Schematic of the analysis performed. The processing was performed for both pharmacological conditions, different populations, different sizes of the feature set, and different dimensionality reduction methods. ON: under dopaminergic therapy; OFF: not under dopaminergic therapy; FOG: patients with Parkinson’s disease and freezing of gait; FOG−: patients with Parkinson’s disease without freezing of gait; PCA: principal component analysis.
Figure 6
Figure 6
Correlation plot between the average principal harmonic height for the x-axis angular velocity (DH height 4) and PIGD score. Data and PIGD score refer to patients OFF (left) and ON (right) therapy. PIGD: postural instability and gait difficulty.
Figure 7
Figure 7
The effect of therapy on the regression model performances, in terms of correlation coefficient (left) and root mean square error (right). ON: under dopaminergic therapy; OFF: not under dopaminergic therapy.
Figure 8
Figure 8
Regression results for patients under different pharmacological condition. Data are plotted using a scatter plot and the regression line is reported as the best fit line. (a) Patients under dopaminergic therapy. (b) Patients not under dopaminergic therapy.
Figure 9
Figure 9
The effect of freezing of gait on the regression model performance, in terms of correlation coefficient (left) and root mean square error (right). Performance refers to patients under dopaminergic therapy. FOG+: patients with freezing of gait; FOG−: patients without freezing of gait.
Figure 10
Figure 10
The effect of freezing of gait on the regression model performance, in terms of correlation coefficient (left) and root mean square error (right). Performance refers to patients not under dopaminergic therapy. FOG+: patients with freezing of gait; FOG−: patients without freezing of gait.
Figure 11
Figure 11
Pearson correlation coefficient between features and PIGD score. DH ratio and DH frequency refer to the component θx; Min and vPeaks refer to the component ωx; RMSE and Range refer to the component αy.

References

    1. Armstrong M., Okun M. Diagnosis and Treatment of Parkinson Disease: A Review. JAMA. 2020;60:323–548. doi: 10.1001/jama.2019.22360.
    1. Boonstra T., van der Kooij H., Munneke M., Bloem B. Gait disorders and balance disturbances in Parkinson’s disease: Clinical update and pathophysiology. Curr. Opin. Neurol. 2008;21:461–471. doi: 10.1097/WCO.0b013e328305bdaf.
    1. Fasano A., Canning C., Hausdorff J., Lord S., Rochester L. Falls in Parkinson’s disease: A complex and evolving picture. Mov. Disord. 2017;32:1524–1536. doi: 10.1002/mds.27195.
    1. Goetz C.G., Poewe W., Rascol O., Sampaio C., Stebbins G.T., Counsell C., Giladi N., Holloway R.G., Moore C.G., Wenning G.K., et al. Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: Status and recommendations. Mov. Disord. 2004;19:1020–1028. doi: 10.1002/mds.20213.
    1. Van der Heeden J., Marinus J., Martinez-Martin P., Rodriguez-Blazquez C., Geraedts V., van Hilten J. Postural instability and gait are associated with severity and prognosis of Parkinson disease. Neurology. 2016;86:2243–2250. doi: 10.1212/WNL.0000000000002768.
    1. Horak F., Mancini M. Objective biomarkers of balance and gait for Parkinson’s disease using body-worn sensors. Mov. Disord. 2013;11:1544–1551. doi: 10.1002/mds.25684.
    1. Zampogna A., Mileti I., Martelli F., Paoloni M., Del Prete Z., Palermo E. Early balance impairment in Parkinson’s Disease: Evidence from Robot-assisted axial rotations. Clin. Neurophysiol. 2021;132:2422–2430. doi: 10.1016/j.clinph.2021.06.023.
    1. Suppa A., Kita A., Leodori G., Zampogna A., Nicolini E., Lorenzi P., Rao R., Irrera F. L-DOPA and freezing of gait in Parkinson’s disease: Objective assessment through a wearable wireless system. Front. Neurol. 2017;8:406. doi: 10.3389/fneur.2017.00406.
    1. Zampogna A., Mileti I., Palermo E., Celletti C., Paoloni M., Manoni A. Fifteen Years of Wireless Sensors for Balance Assessment in Neurological Disorders. Sensors. 2020;20:3247. doi: 10.3390/s20113247.
    1. Di Biase L., Di Santo A., Caminiti M., De Liso A., Shah S., Ricci L., Vincenzo D.L. Gait Analysis in Parkinson’s Disease: An Overview of the Most Accurate Markers for Diagnosis and Symptoms Monitoring. Sensors. 2020;20:3529. doi: 10.3390/s20123529.
    1. Borzì L., Fornara S., Amato F., Olmo G., Artusi C.A., Lopiano L. Smartphone-based evaluation of postural stability in Parkinson’s disease patients during quiet stance. Electronics. 2020;9:919. doi: 10.3390/electronics9060919.
    1. Emmanouil A., Rousanoglou E., Georgaki A., Boudolos K. Concurrent Validity of Inertially Sensed Measures during Voluntary Body Sway in Silence and while Exposed to a Rhythmic Acoustic Stimulus: A Pilot Study. Digit. Biomark. 2021;5:65–73. doi: 10.1159/000514325.
    1. Weiss A., Herman T., Mirelman A., Shiratzky S.S., Giladi N., Barnes L.L., Bennett D.A., Buchman A.S., Hausdorff J.M. The transition between turning and sitting in patients with Parkinson’s disease: A wearable device detects an unexpected sequence of events. Gait Posture. 2019;67:224–229. doi: 10.1016/j.gaitpost.2018.10.018.
    1. Atrsaei A., Paraschiv-Ionescu A., Krief H., Henchoz Y., Santos-Eggimann B., Büla C., Aminian K. Instrumented 5-Time Sit-To-Stand Test: Parameters Predicting Serious Falls beyond the Duration of the Test. Gerontology. 2021:1–14. doi: 10.1159/000518389.
    1. Castiglia S.F., Tatarelli A., Trabassi D., De Icco R., Grillo V., Ranavolo A., Varrecchia T., Magnifica F., Di Lenola D., Coppola G., et al. Ability of a set of trunk inertial indexes of gait to identify gait instability and recurrent fallers in parkinson’s disease. Sensors. 2021;21:3449. doi: 10.3390/s21103449.
    1. Bizovska L., Svoboda Z., Janura M., Bisi M.C., Vuillerme N. Local dynamic stability during gait for predicting falls in elderly people: A one-year prospective study. PLoS ONE. 2018;13:e0197091. doi: 10.1371/journal.pone.0197091.
    1. Mazzetta I., Zampogna A., Suppa A., Gumiero A., Pessione M., Irrera F. Wearable sensors system for an improved analysis of freezing of gait in Parkinson’s disease using electromyography and inertial signals. Sensors. 2019;19:948. doi: 10.3390/s19040948.
    1. Mitchell T., Conradsson D., Paquette C. Gait and trunk kinematics during prolonged turning in Parkinson’s disease with freezing of gait. Park. Relat. Disord. 2019;64:188–193. doi: 10.1016/j.parkreldis.2019.04.011.
    1. Borzì L., Varrecchia M., Olmo G., Artusi C.A., Fabbri M., Rizzone M.G., Romagnolo A., Zibetti M., Lopiano L. A new index to assess turning quality and postural stability in patients with Parkinson ’ s disease. Biomed. Signal Process. Control. 2020;62:1–7. doi: 10.1016/j.bspc.2020.102059.
    1. Zhan A., Mohan S., Tarolli C., Schneider R.B., Adams J.L., Sharma S., Elson M.J., Spear K.L., Glidden A.M., Little M.A., et al. Using Smartphones and Machine Learning to Quantify Parkinson Disease Severity: The Mobile Parkinson Disease Score. JAMA Neurol. 2018;75:876–880. doi: 10.1001/jamaneurol.2018.0809.
    1. Landolfi A., Ricciardi C., Donisi L., Cesarelli G., Troisi J., Vitale C., Barone P., Amboni M. Machine Learning Approaches in Parkinson’s Disease. Curr. Med. Chem. 2021;28:6548–6568. doi: 10.2174/0929867328999210111211420.
    1. Rodríguez-Molinero A., Samà A., Pérez-López C., Rodríguez-Martín D., Alcaine S., Mestre B., Quispe P., Giuliani B., Vainstein G., Browne P., et al. Analysis of correlation between an accelerometer-Based algorithm for Detecting Parkinsonian gait and UPDRS subscales. Front. Neurol. 2017;8:1–6. doi: 10.3389/fneur.2017.00431.
    1. Safarpour D., Dale M.L., Shah V.V., Talman L., Carlson-Kuhta P., Horak F.B., Mancini M. Surrogates for rigidity and PIGD MDS-UPDRS subscores using wearable sensors. Gait Posture. 2021;91:186–191. doi: 10.1016/j.gaitpost.2021.10.029.
    1. Kubota K., Chen J., Little M.A. Machine learning for large-scale wearable sensor data in Parkinson’s disease: Concepts, promises, pitfalls, and futures. Mov. Disord. 2016;9:1314–1326. doi: 10.1002/mds.26693.
    1. Rajkomar A., Dean J., Kohane I. Machine Learning in Medicine. New Engl. J. Med. 2019;380:1347–1358. doi: 10.1056/NEJMra1814259.
    1. Tomlinson C.L., Stowe R., Patel S., Rick C., Gray R., Clarke C.E. Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov. Disord. 2010;25:2649–2653. doi: 10.1002/mds.23429.
    1. Comotti D., Galizzi M., Vitali A. neMEMSi: One step forward in wireless attitude and heading reference systems; Proceedings of the 2014 International Symposium on Inertial Sensors and Systems (ISISS); Laguna Beach, CA, USA. 25–26 February 2014; pp. 1–4.
    1. Vargas-Valencia L.S., Elías A., Frizera Neto A., Rocón E. Body to sensor calibration procedure for lower limb joint angle estimation applied to imu-based gait analysis; Proceedings of the XXIV Brazilian Congress on Biomedical Engineering (CBEB 2014); Uberlandia, Brazil. 13–17 October 2014; [(accessed on 16 November 2021)]. pp. 777–780. Available online: .
    1. Sijobert B., Benoussaad M., Denys J., Pissard-Gibollet R., Geny C., Coste C.A. Implementation and validation of a stride length estimation algorithm, using a single basic inertial sensor on healthy subjects and patients suffering from Parkinson’s disease. Health. 2015;7:704–714. doi: 10.4236/health.2015.76084.
    1. Roetenberg D., Luinge H.J., Baten C.T., Veltink P.H. Compensation of magnetic disturbances improves inertial and magnetic sensing of human body segment orientation. IEEE Trans. Neural Syst. Rehabil. Eng. 2005;13:395–405. doi: 10.1109/TNSRE.2005.847353.
    1. Caruso M., Sabatini A.M., Laidig D., Seel T., Knaflitz M., Croce U.D., Cereatti A. Analysis of the Accuracy of Ten Algorithms for Orientation Estimation Using Inertial and Magnetic Sensing under Optimal Conditions: One Size Does Not Fit All. Sensors. 2021;21:2543. doi: 10.3390/s21072543.
    1. Barralon P., Vuillerme N., Noury N. Walk Detection With a Kinematic Sensor: Frequency and Wavelet Comparison; Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society; New York, NY, USA. 30 August–3 September 2006; pp. 1711–1714.
    1. Pham Minh H., Elshehabi M., Haertner L., Del Din S., Srulijes K., Heger T., Synofzik M., Hobert M.A., Faber G.S., Hansen C., et al. Validation of a Step Detection Algorithm during Straight Walking and Turning in Patients with Parkinson’s Disease and Older Adults Using an Inertial Measurement Unit at the Lower Back. Front. Neurol. 2017;8:457. doi: 10.3389/fneur.2017.00457.
    1. Huijben B. The effect of walking speed on quality of gait in older adults Gait & Posture The e ff ect of walking speed on quality of gait in older adults. Gait Posture. 2018;65:112–116. doi: 10.1016/j.gaitpost.2018.07.004.
    1. Bouça-Machado R., Jalles C., Guerreiro D., Pona-Ferreira F., Branco D., Guerreiro T., Matias R., Ferreira J.J. Gait Kinematic Parameters in Parkinson’s Disease: A Systematic Review. J. Park. Dis. 2020;10:843–853. doi: 10.3233/JPD-201969.
    1. Abhayasinghe N., Murray I. Human gait phase recognition based on thigh movement computed using IMUs; Proceedings of the IEEE ISSNIP 2014—2014 IEEE 9th International Conference on Intelligent Sensors, Sensor Networks and Information Processing; Singapore. 21–24 April 2014;
    1. Smola A., Schölkopf B. A tutorial on support vector regression. JAMA. 2004;14:199–222. doi: 10.1023/B:STCO.0000035301.49549.88.
    1. Mangasarian O., Musicant D. Robust linear and support vector regression. IEEE Trans. Pattern Anal. Mach. Intell. 2000;22:950–955. doi: 10.1109/34.877518.
    1. Terashi H., Taguchi T., Ueta Y., Yoshihiko O., Hiroshi M., Hitoshi A. Analysis of non-invasive gait recording under free-living conditions in patients with Parkinson’s disease: Relationship with global cognitive function and motor abnormalities. BMC Neurol. 2020;161 doi: 10.1186/s12883-020-01729-w.
    1. Wu Z., Zhong M., Jiang X., Shen B., Zhu J., Pan Y., Dong J., Yan J., Xu P., Zhang W., et al. Can Quantitative Gait Analysis Be Used to Guide Treatment of Patients with Different Subtypes of Parkinson’s Disease? Neuropsychiatr. Dis. Treat. 2020;9:2335–2341. doi: 10.2147/NDT.S266585.
    1. Borzì L., Mazzetta I., Zampogna A., Suppa A., Olmo G., Irrera F. Prediction of freezing of gait in parkinson’s disease using wearables and machine learning. Sensors. 2021;21:614. doi: 10.3390/s21020614.
    1. Curtze C., Nutt J., Carlson-Kuhta P., Mancini M., Horak F. Levodopa Is a Double-Edged Sword for Balance and Gait in People With Parkinson’s Disease. Mov. Disord. 2015;30:1361–1370. doi: 10.1002/mds.26269.
    1. De Kam D., Nonnekes J., Oude Nijhuis L., Geurts A.C.H., Bloem B.R., Weerdesteyn V. Dopaminergic medication does not improve stepping responses following backward and forward balance perturbations in patients with Parkinson’s disease. J. Neurol. 2014;261:2330–2337. doi: 10.1007/s00415-014-7496-3.
    1. Di Giulio I., St George R., Kalliolia E., Peters A., Limousin P., Day B. Maintaining balance against force perturbations: Impaired mechanisms unresponsive to levodopa in Parkinson’s disease. J. Neurophysiol. 2016;116:493–502. doi: 10.1152/jn.00996.2015.
    1. Barbe M., Amarell M., Snijders A., Florin E., Quatuor E., Schönau E., Fink G., Bloem B., Timmermann L. Gait and upper limb variability in Parkinson’s disease patients with and without freezing of gait. J. Neurol. 2014;261:330–342. doi: 10.1007/s00415-013-7199-1.
    1. Plotnik M., Giladi N., Balash Y., Peretz C., Hausdorff J. Is freezing of gait in Parkinson’s disease related to asymmetric motor function? Ann. Neurol. 2005;57:656–663. doi: 10.1002/ana.20452.
    1. Lorenzi P., Rao R., Romano G., Kita A., Serpa M., Filesi F., Parisi R., Supp A., Bologn M., Berardelli A., et al. Smart Sensing Systems for the Detection of Human Motion Disorders. Procedia Eng. 2015;120:324–327. doi: 10.1016/j.proeng.2015.08.626.
    1. Montesinos L., Castaldo R., Pecchia L. Wearable inertial sensors for fall risk assessment and prediction in older adults: A systematic review and meta-analysis. IEEE Trans. Neural Syst. Rehabil. Eng. 2018;26:573–582. doi: 10.1109/TNSRE.2017.2771383.
    1. Brognara L., Palumbo P., Grimm B., Palmerini L. Assessing Gait in Parkinson’s Disease Using Wearable Motion Sensors: A Systematic Review. Diseases. 2019;7:18. doi: 10.3390/diseases7010018.
    1. Zanardi A.P.J., da Silva E.S., Costa R.R., Passos-Monteiro E., dos Santos I.O., Kruel L.F.M., Peyré-Tartaruga L.A. Gait parameters of Parkinson’s disease compared with healthy controls: A systematic review and meta-analysis. Sci. Rep. 2021;11:752. doi: 10.1038/s41598-020-80768-2.
    1. Del Din S., Kirk C., Yarnall A.J., Rochester L., Hausdorff J.M. Body-Worn Sensors for Remote Monitoring of Parkinson’s Disease Motor Symptoms: Vision, State of the Art, and Challenges Ahead. J. Park. Dis. 2021;11:35–47. doi: 10.3233/JPD-202471.

Source: PubMed

3
購読する