Effects of docosahexaenoic supplementation and in vitro vitamin C on the oxidative and inflammatory neutrophil response to activation

Xavier Capó, Miquel Martorell, Antoni Sureda, Josep Antoni Tur, Antoni Pons, Xavier Capó, Miquel Martorell, Antoni Sureda, Josep Antoni Tur, Antoni Pons

Abstract

We studied the effects of diet supplementation with docosahexaenoic (DHA) and in vitro vitamin C (VitC) at physiological concentrations on oxidative and inflammatory neutrophil response to phorbol myristate acetate (PMA). Fifteen male footballers ingested a beverage enriched with DHA or a placebo for 8 weeks in a randomized double-blind study. Neutrophils were isolated from blood samples collected in basal conditions at the end of nutritional intervention. Neutrophils were cultured for 2 hours at 37°C in (a) control media, (b) media with PMA, and (c) media with PMA + VitC. PMA induces neutrophil degranulation with increased extracellular myeloperoxidase and catalase activities, nitric oxide production, expression of the inflammatory genes cyclooxygenase-2, nuclear factor κβ, interleukin 8 and tumor necrosis factor α, and interleukin 6 production. DHA diet supplementation boosts the exit of CAT from neutrophils but moderates the degranulation of myeloperoxidase granules induced by PMA. VitC facilitates azurophilic degranulation of neutrophils and increases gene expression of myeloperoxidase induced by PMA. VitC and DHA diet supplementation prevent PMA effects on inflammatory gene expression, although together they do not produce additional effects. DHA diet supplementation enhances antioxidant defences and anti-inflammatory neutrophil response to in vitro PMA activation. VitC facilitates neutrophil degranulation but prevents an inflammatory response to PMA.

Figures

Figure 1
Figure 1
Effects of in vitro PMA activation, vitamin C, and DHA diet supplementation on total CAT and MPO enzyme activities and on their distribution in the extracellular compartment of neutrophils. Statistical analysis: two-way ANOVA, p < 0.05. S: significant effect of DHA dietary supplementation; A: significant effect of PMA activation; S × A: significant interaction between DHA dietary supplementation and PMA activation effects. indicates differences between placebo and experimental groups; # indicates difference with respect to the control group; $ indicates differences between PMA and PMA + VitC group. When interaction S × A exists between supplementation and activation factors, different lowercase letters reveal significant differences. Results are the mean ± SEM.
Figure 2
Figure 2
Effects of PMA activation, in vitro vitamin C, and DHA diet supplementation on the percentage of extracellular NOx and the total NOx production. Statistical analysis: two-way ANOVA, p < 0.05. S: DHA diet supplementation effect; A: PMA activation effect; S × A: interaction between supplementation and activation effects. # indicates difference with respect to the control group; $ indicates differences between PMA and PMA + VitC group. When interaction S × A exists between supplementation and activation factors, different lowercase letters reveal significant differences. Results are the mean ± SEM.
Figure 3
Figure 3
Effects of PMA activation, in vitro vitamin C, and DHA diet supplementation on IL6 and TNFα production rate. Statistical analysis: two-way ANOVA, p < 0.05. S: DHA diet supplementation effect; A: PMA activation effect; S × A: interaction between supplementation and activation effects. When interaction S × A exists between supplementation and activation factors, different lowercase letters reveal significant differences. Results are the mean ± SEM.

References

    1. Geering B., Stoeckle C., Conus S., Simon H.-U. Living and dying for inflammation: neutrophils, eosinophils, basophils. Trends in Immunology. 2013;34(8):398–409. doi: 10.1016/j.it.2013.04.002.
    1. Borregaard N. Neutrophils, from Marrow to Microbes. Immunity. 2010;33(5):657–670. doi: 10.1016/j.immuni.2010.11.011.
    1. Verhoef J., Verhage E. A. E., Visser M. R. A decade of experience with selective decontamination of the digestive tract as prophylaxis for infections in patients in the intensive care unit: what have we learned? Clinical Infectious Diseases. 1993;17(6):1047–1054. doi: 10.1093/clinids/17.6.1047.
    1. Tauler P., Aguiló A., Gimeno I., et al. Differential response of lymphocytes and neutrophils to high intensity physical activity and to vitamin C diet supplementation. Free Radical Research. 2003;37(9):931–938. doi: 10.1080/1071576031000150454.
    1. Shinkai S., Shore S., Shek P. N., Shephard R. J. Acute exercise and immune function. Relationship between lymphocyte activity and changes in subset counts. International Journal of Sports Medicine. 1992;13(6):452–461. doi: 10.1055/s-2007-1021297.
    1. Tauler P., Aguiló A., Cases N., et al. Acute phase immune response to exercise coexists with decreased neutrophil antioxidant enzyme defences. Free Radical Research. 2002;36(10):1101–1107. doi: 10.1080/1071576021000028334.
    1. Sureda A., Ferrer M. D., Tauler P., et al. Intense physical activity enhances neutrophil antioxidant enzyme gene expression. Immunocytochemistry evidence for catalase secretion. Free Radical Research. 2007;41(8):874–883. doi: 10.1080/10715760701416459.
    1. Ferrer M. D., Sureda A., Mestre A., Tur J. A., Pons A. The double edge of reactive oxygen species as damaging and signaling molecules in HL60 cell culture. Cellular Physiology and Biochemistry. 2010;25(2-3):241–252. doi: 10.1159/000276558.
    1. Washko P. W., Wang Y., Levine M. Ascorbic acid recycling in human neutrophils. Journal of Biological Chemistry. 1993;268(21):15531–15535.
    1. Sureda A., Batle J. M., Tauler P., et al. Neutrophil tolerance to oxidative stress induced by hypoxia/reoxygeneration. Free Radical Research. 2004;38(9):1003–1009. doi: 10.1080/10715760400000984.
    1. Leibovitz B., Siegel B. V. Ascorbic acid, neutrophil function, and the immune response. International Journal for Vitamin and Nutrition Research. 1978;48(2):159–164.
    1. Härtel C., Strunk T., Bucsky P., Schultz C. Effects of vitamin C on intracytoplasmic cytokine production in human whole blood monocytes and lymphocytes. Cytokine. 2004;27(4-5):101–106. doi: 10.1016/j.cyto.2004.02.004.
    1. Bowie A. G., O'Neill L. A. J. Vitamin C inhibits NF-κB activation by TNF via the activation of p38 mitogen-activated protein kinase. The Journal of Immunology. 2000;165(12):7180–7188. doi: 10.4049/jimmunol.165.12.7180.
    1. Uauy-Dagach R., Mena P., Hoffman D. R. Essential fatty acid metabolism and requirements for LBW infants. Acta Paediatrica Supplement. 1994;83(405):78–85.
    1. Holden N. S., Squires P. E., Kaur M., Bland R., Jones C. E., Newton R. Phorbol ester-stimulated NF-κB-dependent transcription: roles for isoforms of novel protein kinase C. Cellular Signalling. 2008;20(7):1338–1348. doi: 10.1016/j.cellsig.2008.03.001.
    1. Das K. C., White C. W. Activation of NF-kappaB by antineoplastic agents. Role of protein kinase C. Journal of Biological Chemistry. 1997;272(23):14914–14920. doi: 10.1074/jbc.272.23.14914.
    1. Wilson L., Szabo C., Salzman A. L. Protein kinase C-dependent activation of NF-κB in enterocytes is independent of IκB degradation. Gastroenterology. 1999;117(1):106–114. doi: 10.1016/S0016-5085(99)70556-1.
    1. Niwa Y., Ozaki Y., Kanoh T., Akamatsu H., Kurisaka M. Role of cytokines, tyrosine kinase, and protein kinase C on production of superoxide and induction of scavenging enzymes in human leukocytes. Clinical Immunology and Immunopathology. 1996;79(3):303–313. doi: 10.1006/clin.1996.0083.
    1. Giembycz M. A., Lindsay M. A. Pharmacology of the eosinophil. Pharmacological Reviews. 1999;51(2):213–339.
    1. Karlsson A., Nixon J. B., McPhail L. C. Phorbol myristate acetate induces neutrophil NADPH-oxidase activity by two separate signal transduction pathways: dependent or independent of phosphatidylinositol 3-kinase. Journal of Leukocyte Biology. 2000;67(3):396–404.
    1. Yamada M., Suzuki K., Kudo S., et al. Effect of exhaustive exercise on human neutrophils in athletes. Luminescence. 2000;15(1):15–20. doi: 10.1002/(sici)1522-7243(200001/02)15:160;15::aid-bio57062;;2-o.
    1. Gilroy D. W., Lawrence T., Perretti M., Rossi A. G. Inflammatory resolution: new opportunities for drug discovery. Nature Reviews Drug Discovery. 2004;3(5):401–416. doi: 10.1038/nrd1383.
    1. Mortensen R. F., Zhong W. Regulation of phagocytic leukocyte activities by C-reactive protein. Journal of Leukocyte Biology. 2000;67(4):495–500.
    1. Jackson M. J., Papa S., Bolaños J., et al. Antioxidants, reactive oxygen and nitrogen species, gene induction and mitochondrial function. Molecular Aspects of Medicine. 2002;23(1–3):209–285. doi: 10.1016/s0098-2997(02)00018-3.
    1. Sureda A., Tauler P., Aguiló A., et al. Relation between oxidative stress markers and antioxidant endogenous defences during exhaustive exercise. Free Radical Research. 2005;39(12):1317–1324. doi: 10.1080/10715760500177500.
    1. Sethi S., Dikshit M. Modulation of polymorphonuclear leukocytes function by nitric oxide. Thrombosis Research. 2000;100(3):223–247. doi: 10.1016/s0049-3848(00)00320-0.
    1. Knight J. A. Review: free radicals, antioxidants, and the immune system. Annals of Clinical and Laboratory Science. 2000;30(2):145–158.
    1. Lima-Garcia J. F., Dutra R. C., da Silva K. A. B. S., Motta E. M., Campos M. M., Calixto J. B. The precursor of resolvin D series and aspirin-triggered resolvin D1 display anti-hyperalgesic properties in adjuvant-induced arthritis in rats. British Journal of Pharmacology. 2011;164(2):278–293. doi: 10.1111/j.1476-5381.2011.01345.x.
    1. Evans T. J., Buttery L. D. K., Carpenter A., Springall D. R., Polak J. M., Cohen J. Cytokine-treated human neutrophils contain inducible nitric oxide synthase that produces nitration of ingested bacteria. Proceedings of the National Academy of Sciences of the United States of America. 1996;93(18):9553–9558. doi: 10.1073/pnas.93.18.9553.
    1. King C. C., Jefferson M. M., Thomas E. L. Secretion and inactivation of myeloperoxidase by isolated neutrophils. Journal of Leukocyte Biology. 1997;61(3):293–302.
    1. Paschoal V. A., Vinolo M. A. R., Crisma A. R., Magdalon J., Curi R. Eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid differentially modulate rat neutrophil function in vitro. Lipids. 2013;48(2):93–103. doi: 10.1007/s11745-012-3726-6.
    1. Pisani L. F., Lecchi C., Invernizzi G., Sartorelli P., Savoini G., Ceciliani F. In vitro modulatory effect of ω-3 polyunsaturated fatty acid (EPA and DHA) on phagocytosis and ROS production of goat neutrophils. Veterinary Immunology and Immunopathology. 2009;131(1-2):79–85. doi: 10.1016/j.vetimm.2009.03.018.
    1. Healy D. A., Wallace F. A., Miles E. A., Calder P. C., Newsholme P. Effect of low-to-moderate amounts of dietary fish oil on neutrophil lipid composition and function. Lipids. 2000;35(7):763–768. doi: 10.1007/s11745-000-0583-1.
    1. Quattrucci S., Napolitano M., Valentini S. B., Giuliani A., Bravo E. Neutrophil generation of inflammatory precursors is not modulated by docosahexaenoic acid. Inflammation Research. 2009;58(10):677–685. doi: 10.1007/s00011-009-0035-5.
    1. Martorell M., Capó X., Sureda A., Tur J. A., Pons A. Effects of docosahexaenoic acid diet supplementation, training, and acute exercise on oxidative balance in neutrophils. Applied Physiology, Nutrition and Metabolism. 2014;39(4):446–457. doi: 10.1139/apnm-2013-0331.
    1. Capó X., Martorell M., Sureda A., Llompart I., Tur J. A., Pons A. Diet supplementation with DHA-enriched food in football players during training season enhances the mitochondrial antioxidant capabilities in blood mononuclear cells. European Journal of Nutrition. 2014 doi: 10.1007/s00394-014-0683-2.
    1. Leger L., Boucher R. An indirect continuous running multistage field test: the Universite de Montreal track test. Canadian Journal of Applied Sport Sciences. 1980;5(2):77–84.
    1. Folch J., Lees M., Sloane Stanley G. H. A simple method for the isolation and purification of total lipides from animal tissues. The Journal of Biological Chemistry. 1957;226(1):497–509.
    1. Bøyum A. Separation of white blood cells. Nature. 1964;204(4960):793–794. doi: 10.1038/204793a0.
    1. Capeillère-Blandin C. Oxidation of guaiacol by myeloperoxidase: a two-electron-oxidized guaiacol transient species as a mediator of NADPH oxidation. Biochemical Journal. 1998;336(2):395–404.
    1. Aebi H. Catalase in vitro. Methods in Enzymology. 1984;105:121–126. doi: 10.1016/s0076-6879(84)05016-3.
    1. Castegnaro M., Massey R. C., Walters C. L. The collaborative evaluation of a procedure for the determination of N-nitroso compounds as a group. Food Additives & Contaminants. 1987;4(1):37–43. doi: 10.1080/02652038709373612.
    1. Braman R. S., Hendrix S. A. Nanogram nitrite and nitrate determination in environmental and biological materials by vanadium(III) reduction with chemiluminescence detection. Analytical Chemistry. 1989;61(24):2715–2718. doi: 10.1021/ac00199a007.
    1. Welch R. W., Wang Y., Crossman A., Jr., Park J. B., Kirk K. L., Levine M. Accumulation of vitamin C (ascorbate) and its oxidized metabolite dehydroascorbic acid occurs by separate mechanisms. Journal of Biological Chemistry. 1995;270(21):12584–12592. doi: 10.1074/jbc.270.21.12584.
    1. Schmidt S., Stahl F., Mutz K.-O., Scheper T., Hahn A., Schuchardt J. P. Different gene expression profiles in normo- and dyslipidemic men after fish oil supplementation: results from a randomized controlled trial. Lipids in Health and Disease. 2012;11, article 105 doi: 10.1186/1476-511x-11-105.
    1. Barceló-Coblijn G., Murphy E. J., Othman R., Moghadasian M. H., Kashour T., Friel J. K. Flaxseed oil and fish-oil capsule consumption alters human red blood cell n-3 fatty acid composition: a multiple-dosing trial comparing 2 sources of n-3 fatty acid. The American Journal of Clinical Nutrition. 2008;88(3):801–809.
    1. Giannì M. L., Roggero P., Baudry C., et al. The influence of a formula supplemented with dairy lipids and plant oils on the erythrocyte membrane omega-3 fatty acid profile in healthy full-term infants: a double-blind randomized controlled trial. BMC Pediatrics. 2012;12, article 164 doi: 10.1186/1471-2431-12-164.
    1. Shilina N. M., Komarova O. N., Medvedev F. A., Dubrovskaya M. I., Kon M. I. Accumulation of eicosapentaenoic acid in membranes of erythrocytes and leukocytes during alterative-exudative and allergic inflammation. Bulletin of Experimental Biology and Medicine. 2010;149(5):583–586. doi: 10.1007/s10517-010-0998-9.
    1. Toft A. D., Thorn M., Ostrowski K., et al. N-3 polyunsaturated fatty acids do not affect cytokine response to strenuous exercise. Journal of Applied Physiology. 2000;89(6):2401–2406.
    1. Endres S., Ghorbani R., Kelley V. E., et al. The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells. The New England Journal of Medicine. 1989;320(5):265–271. doi: 10.1056/nejm198902023200501.
    1. Lee T. H., Hoover R. L., Williams J. D., et al. Effect of dietary enrichment with eicosapentaenoic and docosahexaenoic acids on in vitro neutrophil and monocyte leukotriene generation and neutrophil function. The New England Journal of Medicine. 1985;312(19):1217–1224. doi: 10.1056/nejm198505093121903.
    1. Herbst E. A., Paglialunga S., Gerling C., et al. Omega-3 supplementation alters mitochondrial membrane composition and respiration kinetics in human skeletal muscle. The Journal of Physiology. 2014;592(6):1341–1352. doi: 10.1113/jphysiol.2013.267336.
    1. Borregaard N., Cowland J. B. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood. 1997;89(10):3503–3521.
    1. Poulos A., Robinson B. S., Ferrante A., Harvey D. P., Hardy S. J., Murray A. W. Effect of 22-32 carbon n-3 polyunsaturated fatty acids on superoxide production in human neutrophils: synergism of docosahexaenoic acid with f-met-leu-phe and phorbol ester. Immunology. 1991;73(1):102–108.
    1. Reihmane D., Jurka A., Tretjakovs P. The relationship between maximal exercise-induced increases in serum IL-6, MPO and MMP-9 concentrations. Scandinavian Journal of Immunology. 2012;76(2):188–192. doi: 10.1111/j.1365-3083.2012.02720.x.
    1. Vina J., Borras C., Gomez-Cabrera M.-C., Orr W. C. Part of the series: from dietary antioxidants to regulators in cellular signalling and gene expression. Role of reactive oxygen species and (phyto)oestrogens in the modulation of adaptive response to stress. Free Radical Research. 2006;40(2):111–119. doi: 10.1080/10715760500405778.
    1. Moncada S., Palmer R. M. J., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacological Reviews. 1991;43(2):109–142.
    1. Pahl H. L. Activators and target genes of Rel/NF-κB transcription factors. Oncogene. 1999;18(49):6853–6866. doi: 10.1038/sj.onc.1203239.
    1. Ferrer M. D., Sureda A., Tauler P., Palacín C., Tur J. A., Pons A. Impaired lymphocyte mitochondrial antioxidant defences in variegate porphyria are accompanied by more inducible reactive oxygen species production and DNA damage. British Journal of Haematology. 2010;149(5):759–767. doi: 10.1111/j.1365-2141.2010.08149.x.
    1. Calder P. C. n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. American Journal of Clinical Nutrition. 2006;83(6):1505s–1519s.
    1. Capó X., Martorell M., Llompart I., Sureda A., Tur J. A., Pons A. Docosahexanoic acid diet supplementation attenuates the peripheral mononuclear cell inflammatory response to exercise following LPS activation. Cytokine. 2014;69(2):155–164. doi: 10.1016/j.cyto.2014.05.026.
    1. Adkins Y., Kelley D. S. Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids. Journal of Nutritional Biochemistry. 2010;21(9):781–792. doi: 10.1016/j.jnutbio.2009.12.004.
    1. Chen C.-C., Sun Y.-T., Chen J.-J., Chang Y.-J. Tumor necrosis factor-αinduced cyclooxygenase-2 expression via sequential activation of ceramide-dependent mitogen-activated protein kinases, and lκb kinase 1/2 in human alveolar epithelial cells. Molecular Pharmacology. 2001;59(3):493–500.
    1. Yao J., Mackman N., Edgington T. S., Fan S.-T. Lipopolysaccharide induction of the tumor necrosis factor-α promoter in human monocytic cells: regulation by Egr-1, c-Jun, and NF-κB transcription factors. The Journal of Biological Chemistry. 1997;272(28):17795–17801. doi: 10.1074/jbc.272.28.17795.

Source: PubMed

3
購読する