Influence of Age and Individual Differences on Mouthfeel Perception of Whey Protein-Fortified Products: A Review

Victoria Norton, Stella Lignou, Lisa Methven, Victoria Norton, Stella Lignou, Lisa Methven

Abstract

Protein needs are considered to increase with age, with protein consumption being associated with many positive outcomes. Protein-fortified products are often used to improve nutritional status and prevent age-related muscle mass loss in older adults. Accordingly, older adults are commonly provided with products fortified with whey protein; however, such products can cause mouthdrying, limiting consumption and product enjoyment. Currently, the extent to which age and individual differences (e.g., saliva, oral health, food oral processing) influence the perception of whey protein-derived mouthdrying is relatively unclear. Previous research in this area has mainly focused on investigating mouthdrying, without taking into account individual differences that could influence this perception within the target population. Therefore, the main focus of this review is to provide an overview of the relevant individual differences likely to influence mouthfeel perception (specifically mouthdrying) from whey protein-fortified products, thereby enabling the future design of such products to incorporate better the needs of older adults and improve their nutritional status. This review concludes that age and individual differences are likely to influence mouthdrying sensations from whey protein-fortified products. Future research should focus more on the target population and individual differences to maximise the benefits from whey protein fortification.

Keywords: individual differences; mouthdrying; older adults; protein-fortified products; whey protein.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Commonly used strategies to improve nutritional intake in older adults at risk of malnutrition (adapted from [12]).
Figure 2
Figure 2
Overview of whey protein typical percentage composition [76] (minor components of whey protein are bovine serum albumin (BSA), immunoglobulins, lactoferrin and lactoperoxidase).
Figure 3
Figure 3
Proposed mucoadhesion mechanism of neutral pH whey protein beverages (WPB) [89,128,134,136,138,144,147].
Figure 4
Figure 4
Saliva flow contribution from salivary glands [191].

References

    1. United Nations. [(accessed on 18 November 2020)];2019 Available online: .
    1. Office for National Statistics. [(accessed on 2 January 2019)];2018 Available online: .
    1. World Health Organisation (WHO) [(accessed on 4 January 2019)];2015 Available online:
    1. World Health Organisation (WHO) Decade of Healthy Ageing 2020–2030. [(accessed on 20 April 2020)];2020 Available online: .
    1. Pout V. Older adults. In: Gandy J., editor. Manual of Dietetic Practice. 5th ed. Wiley-Blackwell; Hoboken, NJ, USA: 2014. pp. 92–103.
    1. Ahmed T., Haboubi N. Assessment and management of nutrition in older people and its importance to health. Clin. Interv. Aging. 2010;5:207–216.
    1. Bauer J., Biolo G., Cederholm T., Cesari M., Cruz-Jentoft A.J., Morley J.E., Philips S., Sieber C., Stehle P., Teta D., et al. Evidence based recommendation for optimal dietary protein intake in older people: A position paper from the PROT-AGE study group. JAMA. 2013;14:542–559. doi: 10.1016/j.jamda.2013.05.021.
    1. Deutz N.E.P., Bauer J.M., Barazzoni R., Biolo G., Boirie Y., Bosy-Westphal A., Cederholm T., Cruz-Jentoft A. Protein intake and exercise for optimal muscle function with ageing: Recommendations from the ESPEN Expert Group. Clin. Nutr. 2014;33:929–936. doi: 10.1016/j.clnu.2014.04.007.
    1. Department of Health. [(accessed on 3 January 2019)];1992 Available online: .
    1. Dorrington N., Fallaize R., Hobbs D.A., Weech M., Lovegrove J.A. A review of nutritional requirements of adults aged ≥ 65 years in the UK. J. Nutr. 2020;150:2245–2256. doi: 10.1093/jn/nxaa153.
    1. Armarya S., Singh K., Sabharwal M. Changes during ageing and their association with malnutrition. J. Clin. Gerontol. Geriatr. 2015;6:78–84. doi: 10.1016/j.jcgg.2015.05.003.
    1. BDA. [(accessed on 10 January 2019)];2017 Available online: .
    1. BAPEN. [(accessed on 10 January 2019)];2018 Available online: .
    1. Hickson M. Malnutrition and ageing. Postgrad. Med. J. 2006;82:2–8. doi: 10.1136/pgmj.2005.037564.
    1. Elia M. Defining, recognizing and reporting malnutrition. Int. J. Low Extrem. Wonds. 2017;16:230–237. doi: 10.1177/1534734617733902.
    1. Maleta K. Undernutrition. Malawi. Med. J. 2006;18:189–205.
    1. Leiji-Halfwerk S., Verwijs M.H., van Houdt S., Borkent J.W., Guaitoli P.R., Pelgrim T., Heymans M.W., Power L., Visser M., Corish C.A., et al. Prevalence of protein energy malnutrition risk in European older adults in community, residential and hospital settings, according to 22 malnutrition screening tools validated for use in adults > 65 years. A systematic review and meta analysis. Maturitas. 2019;126:80–89. doi: 10.1016/j.maturitas.2019.05.006.
    1. Todorovic V., Russell C., Elia M. The MUST Explanatory Booklet. [(accessed on 2 January 2019)];2003 Available online: .
    1. National Institute for Health and Care Excellence. [(accessed on 8 January 2019)];2017 Available online: .
    1. Fielding R.A., Vellas B., Evans W.J., Bhasin S., Morley J.E., Newman A.B., Van Kan G.A., Andrieu S., Bauer J., Breuille D., et al. Sarcopenia: An undiagnosed condition in older adults. Current consensus definition: Prevalence, etiology and consequences. J. Am. Med. Dir. Assoc. 2011;12:249–256. doi: 10.1016/j.jamda.2011.01.003.
    1. von Haehling S., Morley J.E., Anker S.D. An overview of sarcopenia: Facts and numbers on prevalence and clinical impact. J. Cachex. Sarcopenia Muscle. 2010;1:129–133. doi: 10.1007/s13539-010-0014-2.
    1. Stevenson E., Brunstrom J., Johnstone A., Green M., Williams L., Corfe B. Protein for Life Team. [(accessed on 20 July 2019)];2019 Available online: .
    1. Wilson D., Jackson T., Sapey E., Lord J.M. Frailty and sarcopenia: The potential role of an aged immune system. Ageing Res. Rev. 2017;36:1–10. doi: 10.1016/j.arr.2017.01.006.
    1. Morley J.E., Vellas B., van Kan G.A., Anker S.D., Bauer J.M., Bernabei R., Cesari M., Chumlea W.C., Doehner W., Evans J., et al. Frailty Consensus: A call to action. J. Am. Med. Dir. Assoc. 2013;14:392–397. doi: 10.1016/j.jamda.2013.03.022.
    1. Schiffman S., Graham B. Taste and smell perception affect appetite and immunity in the elderly. Eur. J. Clin. Nutr. 2000;54:54–63. doi: 10.1038/sj.ejcn.1601026.
    1. Morley J. Workshop: Anorexia during disease—From research to clinical practice anorexia, sarcopenia and ageing. Nutrition. 2001;17:660–663. doi: 10.1016/S0899-9007(01)00574-3.
    1. Malafarina V., Uriz-Otano F., Gil-Guerrero L., Iniesta R. The anorexia of ageing: Physiopathology, prevalence, associated comorbidity and mortality. A systematic review. Maturitas. 2013;74:293–302. doi: 10.1016/j.maturitas.2013.01.016.
    1. Vandenberghe-Descamps M., Sulmont-Rosse C., Septier C., Feron G., Laboure H. Using food comfortability to compare foods sensory characteristics expectations of elderly people with or without oral health problems. J. Texture Stud. 2017;48:280–287. doi: 10.1111/jtxs.12250.
    1. Gura K., Ciccone R. Drugs and appetite. An overview of appetite stimulants in the paediatric patient. ICAN Infant Child Adolesc. Nutr. 2010;2:358–369. doi: 10.1177/1941406410387925.
    1. Nieuwenhuizen W.F., Weenen H., Rigby P., Hetherington M.M. Older adults and patients in need of nutritional support: Review of current treatment options and factors influencing nutritional intake. Clin. Nutr. 2010;29:160–169. doi: 10.1016/j.clnu.2009.09.003.
    1. Stull A.J., Apolzan J.W., Thalacker-Mercer A.E., Iglay H., Campbell W.W. Liquid and solid meal replacement products differentially affect postprandial appetite and food intake in older adults. J. Am. Diet. Assoc. 2008;108:1226–1230. doi: 10.1016/j.jada.2008.04.014.
    1. Chambers L. Food texture and the satiety cascade. Nutr. Bull. 2016;41:277–282. doi: 10.1111/nbu.12221.
    1. Giezenaar C., Chapman I., Luscombe-Marsh N., Feinle-Bisset C., Horowitz M., Soenen S. Ageing is associated with decreases in appetite and energy intake—A meta analysis in healthy adults. Nutrients. 2016;8:28. doi: 10.3390/nu8010028.
    1. Razak P.A., Richard K.M.J., Thankachan R.P., Hafiz K.A.A., Kumar K.N., Sameer K.M. Geriatric oral health: A review article. J. Int. Oral Health. 2014;6:110–116.
    1. Rathee M., Hooda A. Nutritional status in denture wearers: A review. Int. J. Nutr. Wellness. 2009;10:1–5.
    1. Watson S., McGowan L., McCrum L.A., Cardwell C.R., McGuinness B., Moore C., Woodside J.V., McKenna G. The impact of dental status on perceived ability to eat certain foods and nutrient intake in older adults: Cross-sectional analysis of the UK National Diet and Nutrient survey 2008–2014. Int. J. Behav. Nutr. Phys. Act. 2019;16:1–13. doi: 10.1186/s12966-019-0803-8.
    1. Kremer S., Bult J.H.F., Mojet J., Kroeze J.H.A. Food perception with age and its relationship to pleasantness. Chem. Senses. 2007;32:591–602. doi: 10.1093/chemse/bjm028.
    1. Methven L., Jimenez-Pranteda M.L., Lawlor J. Sensory and consumer science methods used with older adults: A review of current methods and recommendations for the future. Food Qual. Pref. 2016;48:333–344. doi: 10.1016/j.foodqual.2015.07.001.
    1. Imoscopi A., Inelmen E.M., Sergi G., Miotto F., Manzato E. Taste loss in the elderly: Epidemiology, causes and consequences. Aging Clin. Exp. Res. 2012;24:570–579.
    1. Solemadal K., Sandvik L., Willumsen T., Mowe M., Hummel T. The impact of oral health on taste ability in acutely hospitalized elderly. PLoS ONE. 2012;7:e36557. doi: 10.1371/journal.pone.0036557.
    1. Moody A., Mindell J., Faulding S. Health Survey for England 2016. [(accessed on 7 January 2019)];2017 Available online: .
    1. Ciancio S.G. Medications impact on oral health. J. Am. Dent. Assoc. 2004;135:1440–1448. doi: 10.14219/jada.archive.2004.0055.
    1. Stratton R., Smith T., Gabe S. Managing Malnutrition to Improve Lives and Save Money. [(accessed on 3 January 2019)];2018 Available online: .
    1. Hoffman J.R., Falvo M.J. Protein—Which is best? J. Sci. Med. 2004;3:118–130.
    1. Pires M.A., Pastrana L.M., Fucinos P., Abreu C.S., Oliveira S.M. Sensorial Perception of Astringency: Oral Mechanisms and Current Analysis Methods. Foods. 2020;9:1124. doi: 10.3390/foods9081124.
    1. Carter B.G., Foegeding E.A., Drake M.A. Invited review: Astringency in whey protein beverages. J. Dairy. Sci. 2020;103:5793–5804. doi: 10.3168/jds.2020-18303.
    1. Department of Health. [(accessed on 4 January 2019)];1991 Available online: .
    1. Stevenson E.J., Watson A.W., Brunstrom J.M., Corfe B.M., Green M.A., Johnstone A.M., Williams E.A. Protein for life: Towards a focused dietary framework for healthy ageing. Nutr. Bull. 2018;43:97–102. doi: 10.1111/nbu.12312.
    1. PENG. [(accessed on 10 January 2019)];2011 Available online: .
    1. Veldhorst M., Smeets A., Soenen S., Hochstenbach-Waelen A., Hursel R., Diepvens K., Lejeune M., Luscombe-Marsh N., Westerterp-Plantenga M. Protein-induced satiety: Effects and mechanism of different proteins. Physiol. Behav. 2008;94:300–307. doi: 10.1016/j.physbeh.2008.01.003.
    1. Giezenaar C., Trahair L.G., Rigda R., Hutchison A.T., Feinle-Bisset C., Luscombe-Marsh N.D., Hausken T., Jones K.L. Lesser suppression of energy intake by orally ingested whey protein in healthy older men compared with young controls. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015;309:845–854. doi: 10.1152/ajpregu.00213.2015.
    1. Giezenaar C., Trahair L.G., Luscombe-Marsh N.D., Hausken T., Standfield S., Jones K.L., Lange K., Horowitz M., Chapman I., Soenen S. Effects of randomized whey-protein loads on energy intake, appetite, gastric emptying, and plasma gut hormone concentrations in older men and women. Am. J. Clin. Nutr. 2017;106:865–877. doi: 10.3945/ajcn.117.154377.
    1. BAPEN. [(accessed on 8 January 2019)];2016 Available online: .
    1. Wang Z., Chang S., Li Y., Kong L., Wu D., Qin L., Yu C., Wu C., Du M. Effects of ball milling treatment on physiochemical properties and digestibility of Pacific oyster (Crassostrea gigas) protein powder. Food Sci. Nutr. 2018;6:1582–1590. doi: 10.1002/fsn3.705.
    1. Croissant A.E., Kang E.J., Campbell R.E., Bastian E., Drake M.A. The effect of bleaching agent on the flavour of liquid whey and whey protein concentrate. J. Dairy Sci. 2009;92:5917–5927. doi: 10.3168/jds.2009-2535.
    1. Evans J., Zulewska J., Newbold M., Drake M.A., Barbano D.M. Comparison of composition and sensory properties of 80% whey protein and milk serum protein concentrates. J. Dairy Sci. 2010;93:1824–1843. doi: 10.3168/jds.2009-2723.
    1. Mills S.R., Wilcox C.R., Ibrahim K., Roberts H.C. Can fortified foods and snacks increase the energy and protein intake of hospitalised older patients? A systematic review. J. Hum. Nutr. Diet. 2018;31:379–389. doi: 10.1111/jhn.12529.
    1. Morilla-Herrera J.C., Martin-Santos F.J., Caro-Bautista J., Saucedo-Figueredo C., Garcia-Mayor S., Morales-Asencio J.M. Effectiveness of food based fortification in older people a systematic review and meta-analysis. J. Nutr. Health Aging. 2016;20:178–184. doi: 10.1007/s12603-015-0591-z.
    1. Cawood A.L., Elia M., Stratton R.J. Systematic review and meta analysis of the effects of high protein oral nutritional supplements. Ageing Res. Rev. 2012;11:278–296. doi: 10.1016/j.arr.2011.12.008.
    1. Parsons E.L., Stratton R.J., Cawood A.L., Smith T.R., Elia M. Oral nutritional supplements in a randomised trial are more effective than dietary advice at improving quality of life in malnourished care home residents. Clin. Nutr. 2017;36:134–142. doi: 10.1016/j.clnu.2016.01.002.
    1. Bauer J.M., Verlaan S., Bautmans I., Brandt K., Donini L.M., Maggio M., McMurdo M.E.T., Mets T., Seal C., Wijers S.L., et al. Effects of a vitamin D and leucine-enriched whey protein nutritional supplement on measures of sarcopenia in older adults, the PROVIDE study: A randomised, double blind, placebo controlled trial. J. Am. Med. Dir. Assoc. 2015;16:740–747. doi: 10.1016/j.jamda.2015.05.021.
    1. Munk T., Beck A.M., Holst M., Rosenbom E., Rasmussen H.H., Nielsen M.A., Thomsen T. Positive effect of protein supplementation hospital food on protein intake in patients at nutritional risk: A randomised controlled trial. J. Hum. Nutr. Diet. 2014;27:122–132. doi: 10.1111/jhn.12210.
    1. Appleton K.M., Smith E. A role for identification in the gradual decline in the pleasantness of flavours with age. J. Gerontol. Psychol. Sci. 2015;71:987–994. doi: 10.1093/geronb/gbv031.
    1. Beelen J., de Roos N.M., de Groot L.C.P.G.M. Protein enrichment of familiar foods as an innovative strategy to increase protein intake in institutionalized elderly. J. Nutr. Health Aging. 2017;21:173–179. doi: 10.1007/s12603-016-0733-y.
    1. Beelen J., de Roos N.M., de Groot L.C.P.G.M. A 12 week intervention with protein enriched foods and drinks improved protein intake but not physical performance of older patients during the first 6 months after hospital release: A randomised controlled trial. Br. J. Nutr. 2017;117:1541–1549. doi: 10.1017/S0007114517001477.
    1. Devries M.C., Sithamparapillai A., Brimble K.S., Banfield L., Morton R.W., Philips S.M. Changes in kidney function do not differ between healthy adults consuming higher compared with lower or normal protein diets: A systematic review and meta analysis. J. Nutr. 2018;148:1760–1775. doi: 10.1093/jn/nxy197.
    1. Mitchell S.M., McKenzie E.J., Mitchell C.J., Milan A.M., Zeng N., D’Souza R.F., Ramzan F., Sharma P., Rettedal E., Knowles S.O., et al. A period of 10 weeks of increased protein consumption does not alter faecal microbiota or volatile metabolites in healthy older men: A randomised controlled trial. J. Nutr. Sci. 2020;9:1–3. doi: 10.1017/jns.2020.15.
    1. Stratton R.J., Elia M. A review of reviews: A new look at the evidence for oral nutritional supplements in clinical practice. Clin. Nutr. Supp. 2007;2:5–23. doi: 10.1016/j.clnu.2007.04.004.
    1. Parker A.M., Watson R.R. Lactose Intolerance. In: Watson R.R., Collier R.J., Preedy V.R., editors. Nutrients in Dairy and Their Implications on Health and Disease. Academic Press; New York, NY, USA: 2017. pp. 205–211.
    1. Anema S.G. The whey proteins in milk: Thermal denaturation, physical interactions, and effects on the functional properties of milk. In: Boland M., Singh H., Thompson, editors. Milk Proteins: From Expression to Food. 2nd ed. Academic Press; New York, NY, USA: 2014. pp. 270–311.
    1. O’Mahony J.A., Fox P.F. Milk: An overview. In: Boland M., Singh H., Thompson, editors. Milk Proteins: From Expression to Food. 2nd ed. Academic Press; New York, NY, USA: 2014. pp. 20–61.
    1. Madureira A.R., Pereira C.I., Gomes A.M.P., Pintado M.E., Malcata F.X. Bovine whey proteins—Overview on their main biological properties. Food Res. Int. 2007;40:1197–1211. doi: 10.1016/j.foodres.2007.07.005.
    1. Bansal N., Bhandari B. Functional Milk Proteins: Production and Utilization-Whey Based Ingredients. In: McSweeney P.L.H., O’Mahony J.A., editors. Advanced Dairy Chemistry. Volume 1B: Proteins: Applied Aspects. 4th ed. Springer; New York, NY, USA: 2016. pp. 67–99.
    1. Frankowski K.M., Miracle R.E., Drake M.A. The role of sodium in the salty taste of permeate. J. Dairy Sci. 2014;97:5356–5370. doi: 10.3168/jds.2014-8057.
    1. Etzel M.R. Manufacture and use of dairy protein fractions. J. Nutr. 2004;134:996S–1002S. doi: 10.1093/jn/134.4.996S.
    1. Smithers G.W. Whey and whey proteins—from ‘gutter-to-gold’. Int. Dairy J. 2008;18:695–704. doi: 10.1016/j.idairyj.2008.03.008.
    1. Dangin M., Guillet C., Garcia-Rodenas C., Gachon P., Bouteloup-Demange C., Reiffers-Magnani K., Fauquant J., Ballevre O., Beaufrere B. The rate of protein digestion affects protein gain differently during ageing in humans. J. Physiol. 2003;549:635–644. doi: 10.1113/jphysiol.2002.036897.
    1. Sahathevan S., Se C.H., Ng S.H., Khor B.H., Chinna K., Goh B.L., Gafor H.A., Bavanandan S., Ahmad G., Karupaiah T. Clinical efficacy and feasibility of whey protein isolates supplementation in malnourished peritoneal dialysis patients: A multicentre, parallel, open-label randomised controlled trial. Clin. Nutr. ESPEN. 2018;25:68–77. doi: 10.1016/j.clnesp.2018.04.002.
    1. Pennings B., Boirie Y., Senden J.M., Gijsen A.P., Kuipers H., van Loon L.J. Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men. Am. J. Clin. Nutr. 2011;93:997–1005. doi: 10.3945/ajcn.110.008102.
    1. Solak B.B., Akin N. Health benefits of whey protein: A review. J. Food Sci. Eng. 2012;2:129–137.
    1. Gosney M. Are we wasting our money on food supplements in elder care wards? J. Adv. Nurs. 2003;43:275–280. doi: 10.1046/j.1365-2648.2003.02710.x.
    1. Hubbard G.P., Elia M., Holdoway A., Stratton R.J. A systematic review of compliance to oral nutritional supplements. Clin. Nutr. 2012;31:293–312. doi: 10.1016/j.clnu.2011.11.020.
    1. Childs J.L., Drake M.A. Consumer perception of astringency in clear acidic whey protein beverages. J. Food Sci. 2010;75:513–521. doi: 10.1111/j.1750-3841.2010.01834.x.
    1. Kennedy O., Law C., Methven L., Mottram D., Gosney M. Investigating age related changes in taste and affects on sensory perceptions of oral nutritional supplements. Age Ageing. 2010;39:733–738. doi: 10.1093/ageing/afq104.
    1. Methven L., Rahelu K., Economou N., Kinneavy L., Ladbrooke-Davis L., Kennedy O.B., Mottram D.S., Gosney M.A. The effect of consumption volume of profile and liking of oral nutritional supplements of varied sweetness: Sequential profiling and boredom tests. Food Qual. Prefer. 2010;21:948–955. doi: 10.1016/j.foodqual.2010.04.009.
    1. Bull S.P., Hong Y., Khutoryanskiy V.V., Parker J.K., Faka M., Methven L. Whey protein mouth drying influenced by thermal denaturation. Food Qual. Prefer. 2017;56:233–240. doi: 10.1016/j.foodqual.2016.03.008.
    1. Thomas A., van der Stelt A.J., Prokop J., Lawlor J.B., Schlich P. Alternating temporal dominance of sensations and liking scales during the intake of a full portion of an oral nutritional supplement. Food Qual. Prefer. 2016;53:159–167. doi: 10.1016/j.foodqual.2016.06.008.
    1. Thomas A., van der Stelt A.J., Schlich P., Lawlor J.B. Temporal drivers of liking for oral nutritional supplements for older adults throughout the day with monitoring of hunger and thirst status. Food Qual. Prefer. 2018;70:40–48. doi: 10.1016/j.foodqual.2017.05.001.
    1. Norton V., Lignou S., Bull S.P., Gosney M.A., Methven L. An investigation of the influence of age and saliva flow on the oral retention of whey protein and its potential effect on the perception and acceptance of whey protein beverages. Nutrients. 2020;12:2506. doi: 10.3390/nu12092506.
    1. Norton V., Lignou S., Bull S.P., Gosney M.A., Methven L. Consistent effects of whey protein fortification on consumer perception and liking of solid food matrices (cakes and biscuits) regardless of age and saliva flow. Foods. 2020;9:1328. doi: 10.3390/foods9091328.
    1. Oltman A.E., Lopetcharat K., Bastian E., Drake M.A. Identifying key attributes for protein beverages. J. Food Sci. 2015;80:S1383–S1390. doi: 10.1111/1750-3841.12877.
    1. Zhang M.T., Jo Y., Lopetcharat K., Drake M.A. Comparison of a central location test versus a home usage test for consumer perception of ready-to-mix protein beverages. J. Dairy Sci. 2020;103:3107–3124. doi: 10.3168/jds.2019-17260.
    1. Wendin K., Hoglund E., Andersson M., Rothenberg E. Protein enriched foods and healthy ageing: Effects of protein fortification on muffin characteristics. Agro Food Ind. Hi-Tech. 2017;28:16–18.
    1. Song X., Perez-Cueto F.J.A., Bredie W.L. Sensory-driven development of protein-enriched rye bread and cream cheese for the nutritional demands of older adults. Nutrients. 2018;10:1006. doi: 10.3390/nu10081006.
    1. Whetstine M.E., Croissant A.E., Drake M.A. Characterization of dried whey protein concentrate and isolate flavour. J. Dairy Sci. 2005;88:3826–3839. doi: 10.3168/jds.S0022-0302(05)73068-X.
    1. Karagul-Yuceer Y., Drake M.A., Cadwallader K.R. Aroma-active components of liquid cheddar whey. J. Food Chem. Toxicol. 2003;68:1215–1219. doi: 10.1111/j.1365-2621.2003.tb09627.x.
    1. Wright J.M., Whetstine M.E.C., Miracle R.E., Drake M.A. Characterization of a cabbage off flavour in whey protein isolate. J. Food Sci. 2006;71:86–90. doi: 10.1111/j.1365-2621.2006.tb08887.x.
    1. Russell T.A., Drake M.A., Gerard P.D. Sensory properties of whey and soy proteins. J. Food Sci. 2006;71:S447–S455. doi: 10.1111/j.1750-3841.2006.00055.x.
    1. Tsikritzi R., Wang J., Collins V.J., Allen V.J., Mavrommatis Y., Moynihan P.J., Gosney M.A., Kennedy O.B., Methven L. The effect of nutrient fortification of sauces on product stability, sensory properties, and subsequent liking by older adults. J. Food Sci. 2015;80:1100–1110. doi: 10.1111/1750-3841.12850.
    1. Tsikritzi R., Moynihan P.J., Gosney M.A., Allen V.J., Methven L. The effect of macro- and micro-nutrient fortification of biscuits on their sensory properties and on hedonic liking of older people. J. Sci. Food Agric. 2014;94:2040–2048. doi: 10.1002/jsfa.6522.
    1. Vandenberghe-Descamps M., Laboure H., Prot A., Septier C., Tournier C., Feron G., Sulmont-Rosse C. Salivary flow decreases in healthy elderly people independently of dental status and drug intake. J. Texture Stud. 2016;47:353–360. doi: 10.1111/jtxs.12191.
    1. Thomson W.M. Dry mouth and older people. Aust. Dent. J. 2015;60:54–63. doi: 10.1111/adj.12284.
    1. Guinard J.X., Mazzucchelli R. The sensory perception of texture and mouthfeel. Trends Food Sci. Technol. 1996;7:213–219. doi: 10.1016/0924-2244(96)10025-X.
    1. Szczesniak A.S. Texture is a sensory property. Food Qual. Prefer. 2002;13:215–225. doi: 10.1016/S0950-3293(01)00039-8.
    1. Szczesniak A.S., Kahn E.L. Consumer awareness of and attitudes to food texture I: Adults. J. Texture Stud. 1971;2:280–295. doi: 10.1111/j.1745-4603.1971.tb01005.x.
    1. Lemieux L., Simard R.E. Astringency, a textural defect in dairy products. Lait. 1994;74:217–240. doi: 10.1051/lait:1994319.
    1. ASTM E253–20. [(accessed on 1 July 2020)]; Available online: .
    1. Green B.G. Oral astringency: A tactile component of flavor. Acta Psychol. 1993;84:119–125. doi: 10.1016/0001-6918(93)90078-6.
    1. Breslin P.A.S., Gilmore M.M., Beauchamp G.K., Green B.G. Psychophysical evidence that oral astringency is a tactile sensation. Chem. Senses. 1993;18:405–417. doi: 10.1093/chemse/18.4.405.
    1. Gibbins H.L., Carpenter G.H. Alternative mechanisms of astringency—what is the role of saliva? J. Texture Stud. 2013;44:364–375. doi: 10.1111/jtxs.12022.
    1. Bajec M.R., Pickering G.J. Astringency: Mechanisms and perception. Crit. Rev. Food Sci. Nutr. 2008;48:858–875. doi: 10.1080/10408390701724223.
    1. Damodaran S., Arora A. Off flavour precursors in soy protein isolate and novel strategies for their removal. Annu. Rev. Food Sci. Technol. 2013;4:327–346. doi: 10.1146/annurev-food-030212-182650.
    1. Cosson A., Souchon I., Richard J., Descamps N., Saint-Eve A. Using Multiple Sensory Profiling Methods to Gain Insight into Temporal Perceptions of Pea Protein-Based Formulated Foods. Foods. 2020;9:969. doi: 10.3390/foods9080969.
    1. Jobstl E., O’Connell J., Fairclough P.A., Williamson M.P. Molecular model for astringency produced by polyphenol/protein interactions. Biomacromolecules. 2004;5:942–949. doi: 10.1021/bm0345110.
    1. Lyman B.J., Green B.G. Oral astringency: Effects of repeated exposure and interactions with sweeteners. Chem. Senses. 1990;15:151–164. doi: 10.1093/chemse/15.2.151.
    1. Thorngate J.H., Noble A.C. Sensory evaluation of bitterness and astringency of 3R(-)-Epicatechin and 3S(+)-Catechin. J. Sci. Food Agric. 1995;67:531–535. doi: 10.1002/jsfa.2740670416.
    1. Linne B., Simons C.T. Quantification of oral roughness perception and comparison with mechanism of astringency perception. Chem. Senses. 2017;42:525–536. doi: 10.1093/chemse/bjx029.
    1. Bajec M.R., Pickering G.J. Thermal taste, PROP responsiveness, and perception of oral sensations. Physiol. Behav. 2008;95:581–590. doi: 10.1016/j.physbeh.2008.08.009.
    1. Dinnella C., Recchia A., Tuorila H., Monteleone E. Individual astringency responsiveness affects the acceptance of phenol-rich foods. Appetite. 2011;56:633–642. doi: 10.1016/j.appet.2011.02.017.
    1. Fleming E.E., Ziegler G.R., Hayes J.E. Salivary protein levels as a predictor of perceived astringency in model systems and solid foods. Physiol. Behav. 2016;163:56–63. doi: 10.1016/j.physbeh.2016.04.043.
    1. Schöbel N., Radtke D., Kyereme J., Wollmann N., Cichy A., Obst K., Kallweit K., Olaf Kletke O., Minovi A., Dazert S., et al. Astringency Is a Trigeminal Sensation That Involves the Activation of G Protein–Coupled Signaling by Phenolic Compounds. Chem. Senses. 2014;39:471–487. doi: 10.1093/chemse/bju014.
    1. Withers C.A., Lewis M.J., Gosney M.A., Methven L. Potential sources of mouth drying in beverages fortified with dairy proteins: A comparison of casein- and whey-rich ingredients. J. Dairy Sci. 2014;97:1233–1247. doi: 10.3168/jds.2013-7273.
    1. Kelly M., Vardhanabhuti B., Luck P., Drake M.A., Osborne J., Foegeding E.A. Role of protein concentration and protein–saliva interactions in the astringency of whey proteins at low pH. J. Dairy Sci. 2010;93:1900–1909. doi: 10.3168/jds.2009-2853.
    1. Beecher J.W., Drake M.A., Luck P.J., Foegeding E.A. Factors regulating astringency of whey protein beverages. J. Dairy Sci. 2008;91:2553–2560. doi: 10.3168/jds.2008-1083.
    1. Vardhanabhuti B., Kelly M.A., Luck P.J., Drake M.A., Foegeding E.A. Roles of charge interactions on astringency of whey proteins at low pH. J. Dairy Sci. 2010;93:1890–1899. doi: 10.3168/jds.2009-2780.
    1. Ye A., Streicher C., Singh H. Interactions between whey proteins and salivary proteins as related to astringency of whey protein beverages at low pH. J. Dairy Sci. 2011;94:5842–5850. doi: 10.3168/jds.2011-4566.
    1. Andrewes P., Kelly M., Vardhanabhuti B., Foegeding E.A. Dynamic modelling of whey protein-saliva interactions in the mouth and relation to astringency in acidic beverages. Int. Dairy J. 2011;21:523–530. doi: 10.1016/j.idairyj.2011.02.011.
    1. Vardhanabhuti B., Cox P.W., Norton I.T., Foegeding E.A. Lubricating properties of human whole saliva as affected by beta-lactoglobulin. Food Hydrocoll. 2011;25:1499–1506. doi: 10.1016/j.foodhyd.2011.02.021.
    1. Wang G., Liu N., Guo M. Use of whey protein as a natural polymer for tissue adhesive: Preliminary formulation and evaluation in vitro. Polymers. 2018;10:843. doi: 10.3390/polym10080843.
    1. Hsein H., Garrait G., Beyssac E., Hoffart V. Whey protein mucoadhesive properties for oral drug delivery: Mucin whey protein interaction and mucoadhesive bond strength. Coll. Surf. B. 2015;136:799–808. doi: 10.1016/j.colsurfb.2015.10.016.
    1. Withers C.A., Cook M.T., Methven L., Gosney M.A., Khutoryanskiy V.V. Investigation of milk proteins binding to the oral mucosa. Food Funct. 2013;4:1668–1674. doi: 10.1039/c3fo60291e.
    1. Wijayanti H.B., Bansal N., Deeth H.C. Stability of whey proteins during thermal processing: A review. Compr. Rev. Food Sci. Food Saf. 2014;13:1235–1251. doi: 10.1111/1541-4337.12105.
    1. Josephson R.V., Thomas E.L., Morr C.V., Coulter S.T. Relation of heat-induced changes in protein-salt constituents to astringency in milk systems. J. Dairy Sci. 1967;50:1376–1383. doi: 10.3168/jds.S0022-0302(67)87638-0.
    1. Bull S.P., Khutoryanskiy V.V., Parker J.K., Faka M., Methven L. Oral retention of whey protein: Measurement and mechanisms. Food Chem. 2020 submitted for publication.
    1. Çelebioğlu H.Y., Lee S., Chronakis I.S. Interactions of salivary mucins and saliva with food proteins: A review. Crit. Rev. Food Sci. Nutr. 2020;60:64–83. doi: 10.1080/10408398.2018.1512950.
    1. Cook S.L., Woods S., Methven L., Parker J.K., Khutoryanskiy V.V. Mucoadhesive polysaccharides modulate sodium retention, release and taste perception. Food Chem. 2018;240:482–489. doi: 10.1016/j.foodchem.2017.07.134.
    1. Lucas P.W., Prinz J.F., Agrawal K.R., Bruce I.C. Food texture and its effect on ingestion, mastication and swallowing. J. Texture Stud. 2004;35:159–170. doi: 10.1111/j.1745-4603.2004.tb00831.x.
    1. Cook S.L., Bull S.P., Methven L., Parker J.K., Khutoryanskiy V.V. Mucoadhesion: A food perspective. Food Hydrocoll. 2017;72:281–296. doi: 10.1016/j.foodhyd.2017.05.043.
    1. Sano H., Egashira T., Kinekawa Y., Kitabatake N. Astringency of bovine milk whey protein. J. Dairy Sci. 2005;88:2312–2317. doi: 10.3168/jds.S0022-0302(05)72909-X.
    1. Ye A., Zheng T., Ye J.Z., Singh H. Potential role of the binding of whey proteins to human buccal cells on the perception of astringency in whey proteins beverages. Physiol. Behav. 2012;106:645–650. doi: 10.1016/j.physbeh.2012.04.026.
    1. Wang T., Tan S.Y., Mutilangi W., Plans M., Rodriguez-Saona L. Application of infrared portable sensor technology for predicting perceived astringency of acidic whey protein beverages. J. Dairy Sci. 2016;99:9461–9470. doi: 10.3168/jds.2016-11411.
    1. Lee C.A., Vickers Z.M. The astringency of whey protein beverages is caused by their acidity. Int. Dairy J. 2008;18:1153–1156. doi: 10.1016/j.idairyj.2008.06.010.
    1. Withers C., Gosney M.A., Methven L. Perception of thickness, mouth coating and mouth drying of dairy beverages by younger and older volunteers. J. Sens. Stud. 2013;28:230–237. doi: 10.1111/joss.12039.
    1. Smart J.D. The basics and underlying mechanisms of mucoadhesion. Adv. Drug Deliv. Rev. 2005;57:1556–1568. doi: 10.1016/j.addr.2005.07.001.
    1. Andrews G.P., Laverty T.P., Jones D.S. Mucoadhesive polymeric platforms for controlled drug delivery. Eur. J. Pharm. Biopharm. 2009;71:505–518. doi: 10.1016/j.ejpb.2008.09.028.
    1. Carvalho F.C., Bruschi M.L., Evangelista R.C., Gremiao M.P.D. Mucoadhesive drug delivery systems. Braz. J. Pharm. Sci. 2010;46:1–17. doi: 10.1590/S1984-82502010000100002.
    1. Khutoryanskiy V.V. Advances in mucoadhesion and mucoadhesive polymers. Macromol. Biosci. 2011;11:748–764. doi: 10.1002/mabi.201000388.
    1. Bassi da Silva J., Ferreira S.B.S., Reis A.V., Cook M.T., Bruschi M.L. Assessing mucoadhesion in polymer gels: The effect of method type and instrument variables. Polymers. 2018;10:254. doi: 10.3390/polym10030254.
    1. Bernkop-Schnurch A. Thiomers: A new generation of mucoadhesive polymers. Adv. Drug Deliv. Rev. 2005;57:1569–1582. doi: 10.1016/j.addr.2005.07.002.
    1. Tortora G.J., Nielsen M.T. Principles of Human Anatomy. 11th ed. John Wiley & Sons, Inc; Hoboken, NJ, USA: 2009.
    1. Wickremaratchi M.M., Llewelyn J.G. Effects of ageing on touch. Postgrad. Med. J. 2006;82:301–304. doi: 10.1136/pgmj.2005.039651.
    1. Methven L., Allen V., Withers C., Gosney M.A. Ageing and Taste. Proc. Nutr. Soc. 2012;71:556–565. doi: 10.1017/S0029665112000742.
    1. Doty R.L., Kamath V. The influence of age on olfaction: A review. Front Psychol. 2014;5:1–20. doi: 10.3389/fpsyg.2014.00020.
    1. Schiffman S.S., Zervakis J. Taste and smell perception in the elderly: Effect of medications and disease. Adv. Food Nutr. Res. 2002;44:248–345.
    1. Kremer S., Mojet J., Kroeze J.H.A. Perception of texture and flavor in soups by elderly and young subjects. J. Texture Stud. 2005;36:255–272. doi: 10.1111/j.1745-4603.2005.00015.x.
    1. Kremer S., Mojet J., Kroeze J.H.A. Differences in perception of sweet and savoury waffles between elderly and young subjects. Food Qual. Prefer. 2007;38:106–116. doi: 10.1016/j.foodqual.2005.08.007.
    1. Hutchings S.C., Foster K.D., Grigor J.M.V., Bronlund J.E., Morgenstern M.P. Temporal dominance of sensations: A comparison between younger and older subjects for the perception of food texture. Food Qual. Prefer. 2014;31:106–115. doi: 10.1016/j.foodqual.2013.08.007.
    1. Forde C.G., Delahunty C.M. Understanding the role cross-modal sensory interactions play in food acceptability in younger and older consumers. Food Qual. Prefer. 2004;15:715–727. doi: 10.1016/j.foodqual.2003.12.008.
    1. Engelen L. Oral processing: Implications for consumer choice and preference. In: Ares G., Varela P., editors. Methods in Consumer Research, Volume 1: New Approaches to Classic Methods. Woodhead Publishing; Cambridge, UK: 2018. pp. 401–421.
    1. Engelen L., Van Der Bilt A. Oral physiology and texture perception of semisolids. J. Texture Stud. 2008;39:83–113. doi: 10.1111/j.1745-4603.2007.00132.x.
    1. Laureati M., Sandvik P., Almli V.L., Sandell A.M., Zeinstra G.G., Methven L., Wallner M., Jilani H., Alfaro B., Proserpio C. Individual differences in texture preferences among European children: Development and validation of child food texture preference questionnaire (CFTPQ) Food Qual. Prefer. 2020;80:103828. doi: 10.1016/j.foodqual.2019.103828.
    1. Ketal E.V., Aguayo-Mendoza M.G., de Wijk R.A., de Graaf C., Piqueras-Fiszman B., Stieger M. Age, gender, ethnicity and eating capability influence oral processing behaviour of liquid, semi-solid and solid foods differently. Food Res. Int. 2019;119:143–151. doi: 10.1016/j.foodres.2019.01.048.
    1. Ketal E.V., de Wijk R.A., de Graaf C., Stieger M. Relating oral physiology and anatomy of consumers varying in age, gender and ethnicity to food oral processing behavior. Physiol. Behav. 2020;215:112766. doi: 10.1016/j.physbeh.2019.112766.
    1. van den Heuvel E., Newbury A., Appleton K.M. The psychology of nutrition with advancing age: Focus on food neophobia. Nutrients. 2019;11:151. doi: 10.3390/nu11010151.
    1. Jeltema M., Beckley J., Vahalik J. Model for understanding consumer textural food choice. Food Sci. Nutr. 2015;3:202–212. doi: 10.1002/fsn3.205.
    1. Jeltema M., Beckley J., Vahalik J. Food texture assessment and preference based on mouth behavior. Food Qual. Prefer. 2016;52:160–171. doi: 10.1016/j.foodqual.2016.04.010.
    1. Pereira L.J. Oral cavity. In: Chen J., Engelen L., editors. Food Oral Processing: Fundamentals of Eating and Sensory Perception. 1st ed. Wiley-Blackwell; Hoboken, NJ, USA: 2012. pp. 139–156.
    1. Hand A.R., Frank M.E. Fundamentals of Oral Histology and Physiology. Wiley Blackwell; Hoboken, NJ, USA: 2014.
    1. Engelen L. Oral Receptors. In: Chen J., Engelen L., editors. Food Oral Processing: Fundamentals of Eating and Sensory Perception. 1st ed. Wiley-Blackwell; Hoboken, NJ, USA: 2012. pp. 15–45.
    1. Chen J. Food oral processing—A review. Food Hydrocoll. 2009;23:1–25. doi: 10.1016/j.foodhyd.2007.11.013.
    1. Stokes J.R., Boehm M.W., Baier S.K. Oral processing, texture and mouthfeel: From rheology to tribology and beyond. Curr. Opin. Colloid Interface Sci. 2013;18:349–359. doi: 10.1016/j.cocis.2013.04.010.
    1. de Wijk R.A., Prinz J.F. Mechanisms underlying the role of friction in oral texture. J. Texture Stud. 2006;37:413–427. doi: 10.1111/j.1745-4603.2006.00060.x.
    1. Krop E.M., Hetherington M.M., Miquel S., Sarkar A. The influence of oral lubrication on food intake: A proof-of-concept study. Food Qual. Prefe.r. 2019;74:118–124. doi: 10.1016/j.foodqual.2019.01.016.
    1. Mioche L., Bourdiol P., Monier S., Martin J.F., Cormier D. Changes in jaw muscles activity with age: Effects on food bolus properties. Physiol. Behav. 2004;82:621–627. doi: 10.1016/j.physbeh.2004.05.012.
    1. Crow H.C., Ship J.A. Tongue strength and endurance in different aged individuals. J. Gerontol. Med. Sci. 1996;51:M247–M250. doi: 10.1093/gerona/51A.5.M247.
    1. Health and Social Care Information Centre. [(accessed on 12 January 2019)];2011 Available online: .
    1. Ikebe K., Matsuda K., Kagawa R., Enoki K., Yoshida M., Maeda Y., Nokubi T. Association of masticatory performance with age, gender, number of teeth, occlusal force and salivary flow in Japanease older adults: Is ageing a risk factor for masticatory dysfunction? Arch. Oral Biol. 2011;56:991–996. doi: 10.1016/j.archoralbio.2011.03.019.
    1. Steele J.G., Ayatollahi S.M.T., Walls A.W.G., Murray J.J. Clinical factors related to reported satisfaction with oral function amongst dentate older adults in England. Community Dent. Oral Epidemiol. 1997;25:143–149. doi: 10.1111/j.1600-0528.1997.tb00912.x.
    1. Wilson A., Jeltema M., Morgenstern M.P., Motoi L., Kim E., Hedderley D. Comparison of physical chewing measures to consumer typed mouthbehaviour. J. Texture Stud. 2018;49:262–273. doi: 10.1111/jtxs.12328.
    1. Mioche L., Bourdiol P., Peyron M. Influence of age on mastication: Effects on eating behaviour. Nutr. Res. Rev. 2004;17:43–54. doi: 10.1079/NRR200375.
    1. Shinkawa T., Hayashida N., Mori K., Washio K., Hashiguchi K., Taira Y., Morishita M., Takamura N. Poor chewing ability is associated with lower mucosal moisture in elderly individuals. Tohoku J. Exp. Med. 2009;219:263–267. doi: 10.1620/tjem.219.263.
    1. Carpenter G.H. The secretion, components, and properties of saliva. Annu. Rev. Food Sci. Technol. 2013;4:267–276. doi: 10.1146/annurev-food-030212-182700.
    1. de Almeida P., Gregio A.M., Machado M.A., de Lima A.A., Azevedo L.R. Saliva composition and functions: A comprehensive review. J. Contemp. Dent. Prac. 2008;9:72–80.
    1. Humphrey S.P., Williamson R.T. A review of saliva: Normal composition, flow, and function. J. Prosthet. Dent. 2001;85:162–169. doi: 10.1067/mpr.2001.113778.
    1. Gupta A., Epstein J.B., Sroussi H. Hyposalivation in elderly patients. J. Can. Dent. Assoc. 2006;72:841–846.
    1. May A.J., Chatzeli L., Proctor G.B., Tucker A.S. Salivary gland dysplasia in Fgf10 heterozygous mouse model of xerostomia. Curr. Mol. Med. 2015;15:674–682. doi: 10.2174/1566524015666150831141307.
    1. Marton K., Madlena M., Banoczy J., Varga G., Fejerdy P., Sreebny L.M., Nagy G. Unstimulated whole saliva flow rate in relation to sicca symptoms in Hungary. Oral Dis. 2008;14:472–477. doi: 10.1111/j.1601-0825.2007.01404.x.
    1. Munoz-Gonzalez C., Vandenberghe-Descamps M., Feron G., Canon F., Laboure H., Sulmont-Rosse C. Association between salivary hypofunction and food consumption in the elderlies. A systematic literature review. J. Nutr. Health Aging. 2018;22:407–419. doi: 10.1007/s12603-017-0960-x.
    1. Xu F., Laguna L., Sarkar A. Ageing-related changes in quantity and quality of saliva: Where do we stand in our understanding? J. Texture Stud. 2019;50:27–35. doi: 10.1111/jtxs.12356.
    1. Affoo R.H., Foley N., Garrick R., Siqueira W.L., Martin R.E. Meta-analysis of salivary flow rates in young and older adults. J. Am. Geriatr. Soc. 2015;63:2142–2151. doi: 10.1111/jgs.13652.
    1. Whelton H. Introduction: The anatomy and physiology of salivary glands. In: Edgar M., Dawes C., O’Mullane D., editors. Saliva and Oral Health: An Essential Overview for the Health Professional. 4th ed. Stephen Hancocks Limited; Oxford, UK: 2012. pp. 1–36.
    1. Lee S.K., Lee S.W., Chung S.C., Kim Y.K., Kho H.S. Analysis of residual saliva and minor salivary gland secretions in patients with dry mouth. Arch. Oral Biol. 2002;47:637–641. doi: 10.1016/S0003-9969(02)00053-5.
    1. Turner M.D., Ship J.A. Dry mouth and its effects on the oral health of elderly people. J. Am. Dent. Assoc. 2007;138:15–20. doi: 10.14219/jada.archive.2007.0358.
    1. Chaudhury N.M.A., Shirlaw P., Pramanik R., Carpenter G.H., Proctor G.B. Changes in saliva rheological properties and mucin glycosylation in dry mouth. J. Dent. Res. 2015;94:1660–1667. doi: 10.1177/0022034515609070.
    1. Nagler R.M., Hershkovich O. Relationships between age, drugs, oral sensorial complaints and salivary profile. Arch. Oral Biol. 2005;50:7–16. doi: 10.1016/j.archoralbio.2004.07.012.
    1. Mosca A.C., Chen J. Food-saliva interactions: Mechanisms and implications. Trends Food Sci. Technol. 2017;66:125–134. doi: 10.1016/j.tifs.2017.06.005.
    1. Munoz-Gonzalez C., Feron G., Canon F. Main effects of human saliva on flavour perception and the potential contribution to food consumption. Proc. Nutr. Soc. 2018;77:423–431. doi: 10.1017/S0029665118000113.
    1. Chen J. Bolus formation and swallowing. In: Chen J., Engelen L., editors. Food Oral Processing: Fundamentals of Eating and Sensory Perception. 1st ed. Wiley-Blackwell; Hoboken, NJ, USA: 2012. pp. 139–156.
    1. Feron G. Unstimulated saliva: Background noise in taste molecules. J. Texture Stud. 2019;50:6–18. doi: 10.1111/jtxs.12369.
    1. Vijay A., Inui T., Dodds M., Proctor G., Carpenter G. Factors that influence the extensional rheological property of saliva. PLoS ONE. 2015;10:e0135792. doi: 10.1371/journal.pone.0135792.
    1. Pushpass R.A.G., Daly B., Kelly C., Proctor G., Carpenter G.H. Altered salivary flow, protein composition, and rheology following taste and TRP stimulation in older adults. Front. Physiol. 2019;10:1–11. doi: 10.3389/fphys.2019.00652.
    1. Munoz-Gonzalez C., Brule M., Feron G., Canon F. Does interindividual variability of saliva affect the release and metabolization of aroma compounds ex vivo? The particular case of elderly suffering or not from hyposalivation. J. Texture Stud. 2019;50:36–44. doi: 10.1111/jtxs.12382.

Source: PubMed

3
購読する