Brain-Derived Neurotrophic Factor, Depression, and Physical Activity: Making the Neuroplastic Connection

Cristy Phillips, Cristy Phillips

Abstract

Brain-derived neurotrophic factor (BDNF) is a neurotrophin that is vital to the survival, growth, and maintenance of neurons in key brain circuits involved in emotional and cognitive function. Convergent evidence indicates that neuroplastic mechanisms involving BDNF are deleteriously altered in major depressive disorder (MDD) and animal models of stress. Herein, clinical and preclinical evidence provided that stress-induced depressive pathology contributes to altered BDNF level and function in persons with MDD and, thereby, disruptions in neuroplasticity at the regional and circuit level. Conversely, effective therapeutics that mitigate depressive-related symptoms (e.g., antidepressants and physical activity) optimize BDNF in key brain regions, promote neuronal health and recovery of function in MDD-related circuits, and enhance pharmacotherapeutic response. A greater knowledge of the interrelationship between BDNF, depression, therapeutic mechanisms of action, and neuroplasticity is important as it necessarily precedes the derivation and deployment of more efficacious treatments.

Figures

Figure 1
Figure 1
Endogenous and exogenous factors modulate BDNF levels to effectuate changes in the hippocampus and mood. Environmental stress—along with biological, genetic, and pharmacological factors—modulates BDNF levels and synaptic plasticity in various regions of the brain, including the hippocampus. Decrements in BDNF levels can confer vulnerability for hippocampal dysfunction and loss of emotional regulation. Conversely, antidepressant administration and voluntary PA optimize BDNF levels in the hippocampus and mitigate mood symptoms.

References

    1. World Health Organization. Depression: let’s talk. Mental Disorders Fact Sheet Online. 2017.
    1. Abel J. L., Rissman E. F. Running-induced epigenetic and gene expression changes in the adolescent brain. International Journal of Developmental Neuroscience. 2013;31(6):382–390. doi: 10.1016/j.ijdevneu.2012.11.002.
    1. Ferrari A. J., Charlson F. J., Norman R. E., et al. The epidemiological modelling of major depressive disorder: application for the Global Burden of Disease Study 2010. PLoS One. 2013;8(7, article e69637) doi: 10.1371/journal.pone.0069637.
    1. Association AP. Diagnostic and Statistical Manual of Mental Disorders. Washington, DC: 2013.
    1. Greenberg P. E. The Growing Economic Burden of Depression in the U.S. Scientific America. 2015 doi: 10.1038/sj.npp.1301574. webpage, accessed on April 12, 2017.
    1. Kulkarni S., Dhir A., Akula K. K. Potentials of curcumin as an antidepressant. Scientific World Journal. 2009;9:1233–1241. doi: 10.1100/tsw.2009.137.
    1. Price J. L., Drevets W. C. Neural circuits underlying the pathophysiology of mood disorders. Trends in Cognitive Sciences. 2012;16(1):61–71. doi: 10.1016/j.tics.2011.12.011.
    1. Masdeu J. C. Neuroimaging in psychiatric disorders. Neurotherapeutics. 2011;8(1):93–102. doi: 10.1007/s13311-010-0006-0.
    1. Kito S., Hasegawa T., Koga Y. Cerebral blood flow ratio of the dorsolateral prefrontal cortex to the ventromedial prefrontal cortex as a potential predictor of treatment response to transcranial magnetic stimulation in depression. Brain Stimulation. 2012;5(4):547–553. doi: 10.1016/j.brs.2011.09.004.
    1. Willeumier K., Taylor D. V., Amen D. G. Decreased cerebral blood flow in the limbic and prefrontal cortex using SPECT imaging in a cohort of completed suicides. Translational Psychiatry. 2011;1, article e28 doi: 10.1038/tp.2011.28.
    1. Nagafusa Y., Okamoto N., Sakamoto K., et al. Assessment of cerebral blood flow findings using 99mTc-ECD single-photon emission computed tomography in patients diagnosed with major depressive disorder. Journal of Affective Disorders. 2012;140(3):296–299. doi: 10.1016/j.jad.2012.03.026.
    1. Drevets W. C., Savitz J., Trimble M. The subgenual anterior cingulate cortex in mood disorders. CNS Spectrums. 2008;13(8):663–681.
    1. Kendler K. S., Gatz M., Gardner C. O., Pedersen N. L. A Swedish national twin study of lifetime major depression. The American Journal of Psychiatry. 2006;163(1):109–114. doi: 10.1176/appi.ajp.163.1.109.
    1. Weaver I. C., Cervoni N., Champagne F. A., et al. Epigenetic programming by maternal behavior. Nature Neuroscience. 2004;7(8):847–854. doi: 10.1038/nn1276.
    1. Massart R., Mongeau R., Lanfumey L. Beyond the monoaminergic hypothesis: neuroplasticity and epigenetic changes in a transgenic mouse model of depression. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences. 2012;367(1601):2485–2494. doi: 10.1098/rstb.2012.0212.
    1. Hirschfeld R. M. History and evolution of the monoamine hypothesis of depression. The Journal of Clinical Psychiatry. 2000;61(Supplement 6):4–6.
    1. Delgado P. L. Depression: the case for a monoamine deficiency. The Journal of Clinical Psychiatry. 2000;61(Supplement 6):7–11.
    1. Ghasemi M., Phillips C., Trillo L., De Miguel Z., Das D., Salehi A. The role of NMDA receptors in the pathophysiology and treatment of mood disorders. Neuroscience and Biobehavioral Reviews. 2014;47:336–358. doi: 10.1016/j.neubiorev.2014.08.017.
    1. Duman R. S., Monteggia L. M. A neurotrophic model for stress-related mood disorders. Biological Psychiatry. 2006;59(12):1116–1127. doi: 10.1016/j.biopsych.2006.02.013.
    1. Huang E. J., Reichardt L. F. Trk receptors: roles in neuronal signal transduction. Annual Review of Biochemistry. 2003;72:609–642. doi: 10.1146/annurev.biochem.72.121801.161629.
    1. Autry A. E., Monteggia L. M. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacological Reviews. 2012;64(2):238–258. doi: 10.1124/pr.111.005108.
    1. Rial D., Lemos C., Pinheiro H., et al. Depression as a glial-based synaptic dysfunction. Frontiers in Cellular Neuroscience. 2015;9:p. 521. doi: 10.3389/fncel.2015.00521.
    1. Russo-Neustadt A., Beard R. C., Cotman C. W. Exercise, antidepressant medications, and enhanced brain derived neurotrophic factor expression. Neuropsychopharmacology. 1999;21(5):679–682. doi: 10.1016/S0893-133X(99)00059-7.
    1. Krishnan V., Nestler E. J. The molecular neurobiology of depression. Nature. 2008;455(7215):894–902. doi: 10.1038/nature07455.
    1. Duman R. S. Pathophysiology of depression and innovative treatments: remodeling glutamatergic synaptic connections. Dialogues in Clinical Neuroscience. 2014;16(1):11–27.
    1. Teixeira A. L., Barbosa I. G., Diniz B. S., Kummer A. Circulating levels of brain-derived neurotrophic factor: correlation with mood, cognition and motor function. Biomarkers in Medicine. 2010;4(6):871–887. doi: 10.2217/bmm.10.111.
    1. Duman R. S. Pathophysiology of depression: the concept of synaptic plasticity. European Psychiatry. 2002;17(Supplement 3):306–310.
    1. Cowansage K. K., LeDoux J. E., Monfils M. H. Brain-derived neurotrophic factor: a dynamic gatekeeper of neural plasticity. Current Molecular Pharmacology. 2010;3(1):12–29.
    1. Ahlskog J. E., Geda Y. E., Graff-Radford N. R., Petersen R. C. Physical exercise as a preventive or disease-modifying treatment of dementia and brain aging. Mayo Clinic Proceedings. 2011;86(9):876–884. doi: 10.4065/mcp.2011.0252.
    1. Giralt A., Friedman H. C., Caneda-Ferrón B., et al. BDNF regulation under GFAP promoter provides engineered astrocytes as a new approach for long-term protection in Huntington’s disease. Gene Therapy. 2010;17(10):1294–1308. doi: 10.1038/gt.2010.71.
    1. Rudge J. S., Pasnikowski E. M., Holst P., Lindsay R. M. Changes in neurotrophic factor expression and receptor activation following exposure of hippocampal neuron/astrocyte cocultures to kainic acid. The Journal of Neuroscience. 1995;15(10):6856–6867.
    1. Prickaerts J., De Vry J., Boere J., et al. Differential BDNF responses of triple versus dual reuptake inhibition in neuronal and astrocytoma cells as well as in rat hippocampus and prefrontal cortex. Journal of Molecular Neuroscience. 2012;48(1):167–175. doi: 10.1007/s12031-012-9802-9.
    1. Marosi K., Mattson M. P. BDNF mediates adaptive brain and body responses to energetic challenges. Trends in Endocrinology and Metabolism. 2014;25(2):89–98. doi: 10.1016/j.tem.2013.10.006.
    1. Salehi A., Delcroix J. D., Belichenko P. V., et al. Increased app expression in a mouse model of Down’s syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron. 2006;51(1):29–42. doi: 10.1016/j.neuron.2006.05.022.
    1. Schmidt H. D., Duman R. S. The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior. Behavioural Pharmacology. 2007;18(5-6):391–418. doi: 10.1097/FBP.0b013e3282ee2aa8.
    1. Salehi A., Delcroix J. D., Mobley W. C. Traffic at the intersection of neurotrophic factor signaling and neurodegeneration. Trends in Neurosciences. 2003;26(2):73–80. doi: 10.1016/S0166-2236(02)00038-3.
    1. Mufson E. J., Kroin J. S., Sendera T. J., Sobreviela T. Distribution and retrograde transport of trophic factors in the central nervous system: functional implications for the treatment of neurodegenerative diseases. Progress in Neurobiology. 1999;57(4):451–484.
    1. Cunha C., Brambilla R., Thomas K. L. A simple role for BDNF in learning and memory? Frontiers in Molecular Neuroscience. 2010;3:p. 1. doi: 10.3389/neuro.02.001.2010.
    1. Steward O., Schuman E. M. Protein synthesis at synaptic sites on dendrites. Annual Review of Neuroscience. 2001;24:299–325. doi: 10.1146/annurev.neuro.24.1.299.
    1. Steward O., Worley P. F. A cellular mechanism for targeting newly synthesized mRNAs to synaptic sites on dendrites. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(13):7062–7068. doi: 10.1073/pnas.131146398.
    1. Liu Q. R., Walther D., Drgon T., et al. Human brain derived neurotrophic factor (BDNF) genes, splicing patterns, and assessments of associations with substance abuse and Parkinson’s disease. American Journal of Medical Genetics Part B, Neuropsychiatric Genetics. 2005;134B(1):93–103. doi: 10.1002/ajmg.b.30109.
    1. Seidah N. G., Benjannet S., Pareek S., Chretien M., Murphy R. A. Cellular processing of the neurotrophin precursors of NT3 and BDNF by the mammalian proprotein convertases. FEBS Letters. 1996;379(3):247–250.
    1. Wetsel W. C., Rodriguiz R. M., Guillemot J., et al. Disruption of the expression of the proprotein convertase PC7 reduces BDNF production and affects learning and memory in mice. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(43):17362–17367. doi: 10.1073/pnas.1314698110.
    1. Deinhardt K., Chao M. V. Shaping neurons: long and short range effects of mature and proBDNF signalling upon neuronal structure. Neuropharmacology. 2014;76(Part C):603–609. doi: 10.1016/j.neuropharm.2013.04.054.
    1. Aicardi G., Argilli E., Cappello S., et al. Induction of long-term potentiation and depression is reflected by corresponding changes in secretion of endogenous brain-derived neurotrophic factor. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(44):15788–15792. doi: 10.1073/pnas.0406960101.
    1. Lever I. J., Bradbury E. J., Cunningham J. R., et al. Brain-derived neurotrophic factor is released in the dorsal horn by distinctive patterns of afferent fiber stimulation. The Journal of Neuroscience. 2001;21(12):4469–4477.
    1. Bergami M., Santi S., Formaggio E., et al. Uptake and recycling of pro-BDNF for transmitter-induced secretion by cortical astrocytes. The Journal of Cell Biology. 2008;183(2):213–221. doi: 10.1083/jcb.200806137.
    1. Villanueva R. Neurobiology of major depressive disorder. Neural Plasticity. 2013;2013:7. doi: 10.1155/2013/873278.873278
    1. Curtis R., Adryan K. M., Stark J. L., et al. Differential role of the low affinity neurotrophin receptor (p75) in retrograde axonal transport of the neurotrophins. Neuron. 1995;14(6):1201–1211.
    1. Zagrebelsky M., Holz A., Dechant G., Barde Y. A., Bonhoeffer T., Korte M. The p75 neurotrophin receptor negatively modulates dendrite complexity and spine density in hippocampal neurons. The Journal of Neuroscience. 2005;25(43):9989–9999. doi: 10.1523/JNEUROSCI.2492-05.2005.
    1. Woo N. H., Teng H. K., Siao C. J., et al. Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nature Neuroscience. 2005;8(8):1069–1077. doi: 10.1038/nn1510.
    1. Teng H. K., Teng K. K., Lee R., et al. ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. The Journal of Neuroscience. 2005;25(22):5455–5463. doi: 10.1523/JNEUROSCI.5123-04.2005.
    1. Deinhardt K., Kim T., Spellman D. S., et al. Neuronal growth cone retraction relies on proneurotrophin receptor signaling through Rac. Science Signaling. 2011;4(202, article ra82) doi: 10.1126/scisignal.2002060.
    1. Messaoudi E., Ying S. W., Kanhema T., Croll S. D., Bramham C. R. Brain-derived neurotrophic factor triggers transcription-dependent, late phase long-term potentiation in vivo. The Journal of Neuroscience. 2002;22(17):7453–7461.
    1. Lu Y., Christian K., Lu B. BDNF: a key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiology of Learning and Memory. 2008;89(3):312–323. doi: 10.1016/j.nlm.2007.08.018.
    1. Kang H., Schuman E. M. A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science. 1996;273(5280):1402–1406.
    1. Lee R., Kermani P., Teng K. K., Hempstead B. L. Regulation of cell survival by secreted proneurotrophins. Science. 2001;294(5548):1945–1948. doi: 10.1126/science.1065057.
    1. Lu B., Pang P. T., Woo N. H. The yin and yang of neurotrophin action. Nature Reviews Neuroscience. 2005;6(8):603–614. doi: 10.1038/nrn1726.
    1. Lee B. H., Kim Y. K. The roles of BDNF in the pathophysiology of major depression and in antidepressant treatment. Psychiatry Investigation. 2010;7(4):231–235. doi: 10.4306/pi.2010.7.4.231.
    1. Lee B. H., Kim H., Park S. H., Kim Y. K. Decreased plasma BDNF level in depressive patients. Journal of Affective Disorders. 2007;101(1–3):239–244. doi: 10.1016/j.jad.2006.11.005.
    1. Yoshida T., Ishikawa M., Niitsu T., et al. Decreased serum levels of mature brain-derived neurotrophic factor (BDNF), but not its precursor proBDNF, in patients with major depressive disorder. PLoS One. 2012;7(8, article e42676) doi: 10.1371/journal.pone.0042676.
    1. Kim Y. K., Lee H. P., Won S. D., et al. Low plasma BDNF is associated with suicidal behavior in major depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry. 2007;31(1):78–85. doi: 10.1016/j.pnpbp.2006.06.024.
    1. Birkenhager T. K., Geldermans S., Van den Broek W. W., van Beveren N., Fekkes D. Serum brain-derived neurotrophic factor level in relation to illness severity and episode duration in patients with major depression. Journal of Psychiatric Research. 2012;46(3):285–289. doi: 10.1016/j.jpsychires.2011.12.006.
    1. Duman R. S. Neuronal damage and protection in the pathophysiology and treatment of psychiatric illness: stress and depression. Dialogues in Clinical Neuroscience. 2009;11(3):239–255.
    1. Molendijk M. L., Spinhoven P., Polak M., Bus B. A., Penninx B. W., Elzinga B. M. Serum BDNF concentrations as peripheral manifestations of depression: evidence from a systematic review and meta-analyses on 179 associations (N=9484) Molecular Psychiatry. 2014;19(7):791–800. doi: 10.1038/mp.2013.105.
    1. Matrisciano F., Bonaccorso S., Ricciardi A., et al. Changes in BDNF serum levels in patients with major depression disorder (MDD) after 6 months treatment with sertraline, escitalopram, or venlafaxine. Journal of Psychiatric Research. 2009;43(3):247–254. doi: 10.1016/j.jpsychires.2008.03.014.
    1. Brunoni A. R., Baeken C., Machado-Vieira R., Gattaz W. F., Vanderhasselt M. A. BDNF blood levels after electroconvulsive therapy in patients with mood disorders: a systematic review and meta-analysis. The World Journal of Biological Psychiatry. 2014;15(5):411–418. doi: 10.3109/15622975.2014.892633.
    1. Engesser-Cesar C., Anderson A. J., Cotman C. W. Wheel running and fluoxetine antidepressant treatment have differential effects in the hippocampus and the spinal cord. Neuroscience. 2007;144(3):1033–1044. doi: 10.1016/j.neuroscience.2006.10.016.
    1. Steffens D. C., Byrum C. E., McQuoid D. R., et al. Hippocampal volume in geriatric depression. Biological Psychiatry. 2000;48(4):301–309.
    1. Dunham J. S., Deakin J. F., Miyajima F., Payton A., Toro C. T. Expression of hippocampal brain-derived neurotrophic factor and its receptors in Stanley consortium brains. Journal of Psychiatric Research. 2009;43(14):1175–1184. doi: 10.1016/j.jpsychires.2009.03.008.
    1. Dwivedi Y., Rizavi H. S., Zhang H., et al. Neurotrophin receptor activation and expression in human postmortem brain: effect of suicide. Biological Psychiatry. 2009;65(4):319–328. doi: 10.1016/j.biopsych.2008.08.035.
    1. Thompson Ray M., Weickert C. S., Wyatt E., Webster M. J. Decreased BDNF, trkB-TK+ and GAD67 mRNA expression in the hippocampus of individuals with schizophrenia and mood disorders. Journal of Psychiatry & Neuroscience. 2011;36(3):195–203. doi: 10.1503/jpn.100048.
    1. Dwivedi Y., Rizavi H. S., Conley R. R., Roberts R. C., Tamminga C. A., Pandey G. N. Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Archives of General Psychiatry. 2003;60(8):804–815. doi: 10.1001/archpsyc.60.8.804.
    1. Dwivedi Y., Rizavi H. S., Zhang H., Roberts R. C., Conley R. R., Pandey G. N. Aberrant extracellular signal-regulated kinase (ERK)1/2 signalling in suicide brain: role of ERK kinase 1 (MEK1) The International Journal of Neuropsychopharmacology. 2009;12(10):1337–1354. doi: 10.1017/S1461145709990575.
    1. Dwivedi Y., Rizavi H. S., Conley R. R., Pandey G. N. ERK MAP kinase signaling in post-mortem brain of suicide subjects: differential regulation of upstream Raf kinases Raf-1 and B-Raf. Molecular Psychiatry. 2006;11(1):86–98. doi: 10.1017/S1461145709990575.
    1. Dowlatshahi D., MacQueen G. M., Wang J. F., Young L. T. Increased temporal cortex CREB concentrations and antidepressant treatment in major depression. Lancet. 1998;352(9142):1754–1755. doi: 10.1016/S0140-6736(05)79827-5.
    1. Duclot F., Kabbaj M. Epigenetic mechanisms underlying the role of brain-derived neurotrophic factor in depression and response to antidepressants. The Journal of Experimental Biology. 2015;218(Part 1):21–31. doi: 10.1242/jeb.107086.
    1. Deveci A., Aydemir O., Taskin O., Taneli F., Esen-Danaci A. Serum BDNF levels in suicide attempters related to psychosocial stressors: a comparative study with depression. Neuropsychobiology. 2007;56(2-3):93–97. doi: 10.1159/000111539.
    1. Verhagen M., van der Meij A., van Deurzen P. A., et al. Meta-analysis of the BDNF Val66Met polymorphism in major depressive disorder: effects of gender and ethnicity. Molecular Psychiatry. 2010;15(3):260–271. doi: 10.1038/mp.2008.109.
    1. Legge R. M., Sendi S., Cole J. H., et al. Modulatory effects of brain-derived neurotrophic factor Val66Met polymorphism on prefrontal regions in major depressive disorder. The British Journal of Psychiatry. 2015;206(5):379–384. doi: 10.1192/bjp.bp.113.143529.
    1. Shimizu E., Hashimoto K., Iyo M. Ethnic difference of the BDNF 196G/A (val66met) polymorphism frequencies: the possibility to explain ethnic mental traits. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics. 2004;126B(1):122–123. doi: 10.1002/ajmg.b.20118.
    1. Chen Z. Y., Patel P. D., Sant G., et al. Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. The Journal of Neuroscience. 2004;24(18):4401–4411. doi: 10.1523/JNEUROSCI.0348-04.2004.
    1. Egan M. F., Kojima M., Callicott J. H., et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003;112(2):257–269.
    1. Bueller J. A., Aftab M., Sen S., Gomez-Hassan D., Burmeister M., Zubieta J. K. BDNF Val66Met allele is associated with reduced hippocampal volume in healthy subjects. Biological Psychiatry. 2006;59(9):812–815. doi: 10.1016/j.biopsych.2005.09.022.
    1. Szeszko P. R., Lipsky R., Mentschel C., et al. Brain-derived neurotrophic factor val66met polymorphism and volume of the hippocampal formation. Molecular Psychiatry. 2005;10(7):631–636. doi: 10.1038/sj.mp.4001656.
    1. Pezawas L., Verchinski B. A., Mattay V. S., et al. The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. The Journal of Neuroscience. 2004;24(45):10099–10102. doi: 10.1523/JNEUROSCI.2680-04.2004.
    1. Cardoner N., Soria V., Gratacòs M., et al. Val66Met BDNF genotypes in melancholic depression: effects on brain structure and treatment outcome. Depression and Anxiety. 2013;30(3):225–233. doi: 10.1002/da.22025.
    1. Hosang G. M., Shiles C., Tansey K. E., McGuffin P., Uher R. Interaction between stress and the BDNF Val66Met polymorphism in depression: a systematic review and meta-analysis. BMC Medicine. 2014;12:p. 7. doi: 10.1186/1741-7015-12-7.
    1. Gerritsen L., Tendolkar I., Franke B., et al. BDNF Val66Met genotype modulates the effect of childhood adversity on subgenual anterior cingulate cortex volume in healthy subjects. Molecular Psychiatry. 2012;17(6):597–603. doi: 10.1038/mp.2011.51.
    1. Gatt J. M., Nemeroff C. B., Dobson-Stone C., et al. Interactions between BDNF Val66Met polymorphism and early life stress predict brain and arousal pathways to syndromal depression and anxiety. Molecular Psychiatry. 2009;14(7):681–695. doi: 10.1038/mp.2008.143.
    1. Pei Y., Smith A. K., Wang Y., et al. The brain-derived neurotrophic-factor (BDNF) val66met polymorphism is associated with geriatric depression: a meta-analysis. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics. 2012;159B(5):560–566. doi: 10.1002/ajmg.b.32062.
    1. Yan T., Wang L., Kuang W., et al. Brain-derived neurotrophic factor Val66Met polymorphism association with antidepressant efficacy: a systematic review and meta-analysis. Asia Pacific Psychiatry. 2014;6(3):241–251. doi: 10.1111/appy.12148.
    1. Hariri A. R., Goldberg T. E., Mattay V. S., et al. Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. The Journal of Neuroscience. 2003;23(17):6690–6694.
    1. Huang Z. J., Kirkwood A., Pizzorusso T., et al. BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell. 1999;98(6):739–755.
    1. Figurov A., Pozzo-Miller L. D., Olafsson P., Wang T., Lu B. Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature. 1996;381(6584):706–709. doi: 10.1038/381706a0.
    1. Baquet Z. C., Gorski J. A., Jones K. R. Early striatal dendrite deficits followed by neuron loss with advanced age in the absence of anterograde cortical brain-derived neurotrophic factor. The Journal of Neuroscience. 2004;24(17):4250–4258. doi: 10.1523/JNEUROSCI.3920-03.2004.
    1. Gorski J. A., Zeiler S. R., Tamowski S., Jones K. R. Brain-derived neurotrophic factor is required for the maintenance of cortical dendrites. The Journal of Neuroscience. 2003;23(17):6856–6865.
    1. Grover L. M., Teyler T. J. Two components of long-term potentiation induced by different patterns of afferent activation. Nature. 1990;347(6292):477–479. doi: 10.1038/347477a0.
    1. Collingridge G. L., Bliss T. V. Memories of NMDA receptors and LTP. Trends in Neurosciences. 1995;18(2):54–56.
    1. Nagerl U. V., Eberhorn N., Cambridge S. B., Bonhoeffer T. Bidirectional activity-dependent morphological plasticity in hippocampal neurons. Neuron. 2004;44(5):759–767. doi: 10.1016/j.neuron.2004.11.016.
    1. Heise C., Gardoni F., Culotta L., di Luca M., Verpelli C., Sala C. Elongation factor-2 phosphorylation in dendrites and the regulation of dendritic mRNA translation in neurons. Frontiers in Cellular Neuroscience. 2014;8:p. 35. doi: 10.3389/fncel.2014.00035.
    1. Dawood T., Anderson J., Barton D., et al. Reduced overflow of BDNF from the brain is linked with suicide risk in depressive illness. Molecular Psychiatry. 2007;12(11):981–983. doi: 10.1038/sj.mp.4002059.
    1. Zhao G., Zhang C., Chen J., et al. Ratio of mBDNF to proBDNF for differential diagnosis of major depressive disorder and bipolar depression. Molecular Neurobiology. 2016;54(7) doi: 10.1007/s12035-016-0098-6.
    1. Polyakova M., Stuke K., Schuemberg K., Mueller K., Schoenknecht P., Schroeter M. L. BDNF as a biomarker for successful treatment of mood disorders: a systematic & quantitative meta-analysis. Journal of Affective Disorders. 2015;174:432–440. doi: 10.1016/j.jad.2014.11.044.
    1. Lipsky R. H., Marini A. M. Brain-derived neurotrophic factor in neuronal survival and behavior-related plasticity. Annals of the New York Academy of Sciences. 2007;1122:130–143. doi: 10.1196/annals.1403.009.
    1. Laje G., Lally N., Mathews D., et al. Brain-derived neurotrophic factor Val66Met polymorphism and antidepressant efficacy of ketamine in depressed patients. Biological Psychiatry. 2012;72(11):e27–e28. doi: 10.1016/j.biopsych.2012.05.031.
    1. Holsboer F. The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology. 2000;23(5):477–501. doi: 10.1016/S0893-133X(00)00159-7.
    1. Willner P., Belzung C. Treatment-resistant depression: are animal models of depression fit for purpose? Psychopharmacology. 2015;232(19):3473–3495. doi: 10.1007/s00213-015-4034-7.
    1. Czeh B., Fuchs E., Wiborg O., Simon M. Animal models of major depression and their clinical implications. Progress in Neuro-Psychopharmacology & Biological Psychiatry. 2016;64:293–310. doi: 10.1016/j.pnpbp.2015.04.004.
    1. Harro J. Animal models of depression vulnerability. Current Topics in Behavioral Neurosciences. 2013;14:29–54. doi: 10.1007/7854_2012_221.
    1. Overstreet D. H. Modeling depression in animal models. Methods in Molecular Biology. 2012;829:125–144. doi: 10.1007/978-1-61779-458-2_7.
    1. Abelaira H. M., Reus G. Z., Quevedo J. Animal models as tools to study the pathophysiology of depression. Revista Brasileira de Psiquiatria. 2013;35(Supplement 2):S112–S120. doi: 10.1590/1516-4446-2013-1098.
    1. O'Leary O. F., Cryan J. F. Towards translational rodent models of depression. Cell and Tissue Research. 2013;354(1):141–153. doi: 10.1007/s00441-013-1587-9.
    1. Patten A. R., Yau S. Y., Fontaine C. J., Meconi A., Wortman R. C., Christie B. R. The benefits of exercise on structural and functional plasticity in the rodent hippocampus of different disease models. Brain Plasticity. 2015;1(1):97–127.
    1. Zhang R., Peng Z., Wang H., et al. Gastrodin ameliorates depressive-like behaviors and up-regulates the expression of BDNF in the hippocampus and hippocampal-derived astrocyte of rats. Neurochemical Research. 2014;39(1):172–179. doi: 10.1007/s11064-013-1203-0.
    1. Russo-Neustadt A., Ha T., Ramirez R., Kesslak J. P. Physical activity-antidepressant treatment combination: impact on brain-derived neurotrophic factor and behavior in an animal model. Behavioural Brain Research. 2001;120(1):87–95.
    1. Hoshaw B. A., Malberg J. E., Lucki I. Central administration of IGF-I and BDNF leads to long-lasting antidepressant-like effects. Brain Research. 2005;1037(1-2):204–208. doi: 10.1016/j.brainres.2005.01.007.
    1. Siuciak J. A., Lewis D. R., Wiegand S. J., Lindsay R. M. Antidepressant-like effect of brain-derived neurotrophic factor (BDNF) Pharmacology, Biochemistry, and Behavior. 1997;56(1):131–137. doi: 10.1016/S0091-3057(96)00169-4.
    1. Coppell A. L., Pei Q., Zetterstrom T. S. Bi-phasic change in BDNF gene expression following antidepressant drug treatment. Neuropharmacology. 2003;44(7):903–910.
    1. Calabrese F., Molteni R., Gabriel C., Mocaer E., Racagni G., Riva M. A. Modulation of neuroplastic molecules in selected brain regions after chronic administration of the novel antidepressant agomelatine. Psychopharmacology. 2011;215(2):267–275. doi: 10.1007/s00213-010-2129-8.
    1. Duman R. S., Heninger G. R., Nestler E. J. A molecular and cellular theory of depression. Archives of General Psychiatry. 1997;54(7):597–606.
    1. Monteggia L. M., Luikart B., Barrot M., et al. Brain-derived neurotrophic factor conditional knockouts show gender differences in depression-related behaviors. Biological Psychiatry. 2007;61(2):187–197. doi: 10.1016/j.biopsych.2006.03.021.
    1. Schmidt H. D., Duman R. S. Peripheral BDNF produces antidepressant-like effects in cellular and behavioral models. Neuropsychopharmacology. 2010;35(12):2378–2391. doi: 10.1038/npp.2010.114.
    1. Koponen E., Rantamaki T., Voikar V., Saarelainen T., MacDonald E., Castren E. Enhanced BDNF signaling is associated with an antidepressant-like behavioral response and changes in brain monoamines. Cellular and Molecular Neurobiology. 2005;25(6):973–980. doi: 10.1007/s10571-005-8468-z.
    1. Govindarajan A., Rao B. S., Nair D., et al. Transgenic brain-derived neurotrophic factor expression causes both anxiogenic and antidepressant effects. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(35):13208–13213. doi: 10.1073/pnas.0605180103.
    1. Choy K. H., de Visser Y., Nichols N. R., van den Buuse M. Combined neonatal stress and young-adult glucocorticoid stimulation in rats reduce BDNF expression in hippocampus: effects on learning and memory. Hippocampus. 2008;18(7):655–667. doi: 10.1002/hipo.20425.
    1. Nottebohm F. Why are some neurons replaced in adult brain? The Journal of Neuroscience. 2002;22(3):624–628.
    1. Sairanen M., Lucas G., Ernfors P., Castren M., Castren E. Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus. The Journal of Neuroscience. 2005;25(5):1089–1094. doi: 10.1523/JNEUROSCI.3741-04.2005.
    1. Phillips C., Baktir M. A., Das D., Lin B., Salehi A. The link between physical activity and cognitive dysfunction in Alzheimer disease. Physical Therapy. 2015;95(7):1046–1060. doi: 10.2522/ptj.20140212.
    1. Phillips C., Baktir M. A., Srivatsan M., Salehi A. Neuroprotective effects of physical activity on the brain: a closer look at trophic factor signaling. Frontiers in Cellular Neuroscience. 2014;8:p. 170. doi: 10.3389/fncel.2014.00170.
    1. Christian K. M., Song H., Ming G. L. Functions and dysfunctions of adult hippocampal neurogenesis. Annual Review of Neuroscience. 2014;37:243–262. doi: 10.1146/annurev-neuro-071013-014134.
    1. Schmidt-Hieber C., Jonas P., Bischofberger J. Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature. 2004;429(6988):184–187. doi: 10.1038/nature02553.
    1. Yuan T. F., Paes F., Arias-Carrion O., Ferreira Rocha N. B., de Sa Filho A. S., Machado S. Neural mechanisms of exercise: anti-depression, neurogenesis, and serotonin signaling. CNS & Neurological Disorders Drug Targets. 2015;14(10):1307–1311.
    1. Caviedes A., Lafourcade C., Soto C., Wyneken U. BDNF/NF-kB signaling in the neurobiology of depression. Current Pharmaceutical Design. 2017
    1. Bergami M., Rimondini R., Santi S., Blum R., Gotz M., Canossa M. Deletion of TrkB in adult progenitors alters newborn neuron integration into hippocampal circuits and increases anxiety-like behavior. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(40):15570–15575. doi: 10.1073/pnas.0803702105.
    1. Redila V. A., Christie B. R. Exercise-induced changes in dendritic structure and complexity in the adult hippocampal dentate gyrus. Neuroscience. 2006;137(4):1299–1307. doi: 10.1016/j.neuroscience.2005.10.050.
    1. Eadie B. D., Redila V. A., Christie B. R. Voluntary exercise alters the cytoarchitecture of the adult dentate gyrus by increasing cellular proliferation, dendritic complexity, and spine density. The Journal of Comparative Neurology. 2005;486(1):39–47. doi: 10.1002/cne.20493.
    1. Stranahan A. M., Khalil D., Gould E. Running induces widespread structural alterations in the hippocampus and entorhinal cortex. Hippocampus. 2007;17(11):1017–1022. doi: 10.1002/hipo.20348.
    1. Adachi M., Barrot M., Autry A. E., Theobald D., Monteggia L. M. Selective loss of brain-derived neurotrophic factor in the dentate gyrus attenuates antidepressant efficacy. Biological Psychiatry. 2008;63(7):642–649. doi: 10.1016/j.biopsych.2007.09.019.
    1. Eisch A. J., Bolaños C. A., de Wit J., et al. Brain-derived neurotrophic factor in the ventral midbrain-nucleus accumbens pathway: a role in depression. Biological Psychiatry. 2003;54(10):994–1005.
    1. Berton O., McClung C. A., Dileone R. J., et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science. 2006;311(5762):864–868. doi: 10.1126/science.1120972.
    1. Guillin O., Diaz J., Carroll P., Griffon N., Schwartz J. C., Sokoloff P. BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization. Nature. 2001;411(6833):86–89. doi: 10.1038/35075076.
    1. Grimm J. W., Lu L., Hayashi T., Hope B. T., Su T. P., Shaham Y. Time-dependent increases in brain-derived neurotrophic factor protein levels within the mesolimbic dopamine system after withdrawal from cocaine: implications for incubation of cocaine craving. The Journal of Neuroscience. 2003;23(3):742–747.
    1. Goggi J., Pullar I. A., Carney S. L., Bradford H. F. Signalling pathways involved in the short-term potentiation of dopamine release by BDNF. Brain Research. 2003;968(1):156–161.
    1. Cordeira J. W., Frank L., Sena-Esteves M., Pothos E. N., Rios M. Brain-derived neurotrophic factor regulates hedonic feeding by acting on the mesolimbic dopamine system. The Journal of Neuroscience. 2010;30(7):2533–2541. doi: 10.1523/JNEUROSCI.5768-09.2010.
    1. Maekawa F., Fujiwara K., Toriya M., et al. Brain-derived neurotrophic factor in VMH as the causal factor for and therapeutic tool to treat visceral adiposity and hyperleptinemia in type 2 diabetic Goto-Kakizaki rats. Front Synaptic Neuroscience. 2013;5:p. 7. doi: 10.3389/fnsyn.2013.00007.
    1. Homan P., Grob S., Milos G., et al. The role of BDNF, leptin, and catecholamines in reward learning in bulimia nervosa. The International Journal of Neuropsychopharmacology. 2014;18(5) doi: 10.1093/ijnp/pyu092.
    1. Duman C. H., Schlesinger L., Kodama M., Russell D. S., Duman R. S. A role for MAP kinase signaling in behavioral models of depression and antidepressant treatment. Biological Psychiatry. 2007;61(5):661–670. doi: 10.1016/j.biopsych.2006.05.047.
    1. Marsden W. N. Synaptic plasticity in depression: molecular, cellular and functional correlates. Progress in Neuro-Psychopharmacology & Biological Psychiatry. 2013;43:168–184. doi: 10.1016/j.pnpbp.2012.12.012.
    1. Lu B., Nagappan G., Lu Y. BDNF and synaptic plasticity, cognitive function, and dysfunction. Handbook of Experimental Pharmacology. 2014;220:223–250. doi: 10.1007/978-3-642-45106-5_9.
    1. Thoenen H. Neurotrophins and activity-dependent plasticity. Progress in Brain Research. 2000;128:183–191. doi: 10.1016/S0079-6123(00)28016-3.
    1. Schneider T. M., Beynon C., Sartorius A., Unterberg A. W., Kiening K. L. Deep brain stimulation of the lateral habenular complex in treatment-resistant depression: traps and pitfalls of trajectory choice. Neurosurgery. 2013;72(Supplement 2 Operative):ons184–ons193. doi: 10.1227/NEU.0b013e318277a5aa. discussion ons193.
    1. Dobrossy M. D., Furlanetti L. L., Coenen V. A. Electrical stimulation of the medial forebrain bundle in pre-clinical studies of psychiatric disorders. Neuroscience and Biobehavioral Reviews. 2015;49:32–42. doi: 10.1016/j.neubiorev.2014.11.018.
    1. Berlim M. T., McGirr A., Van den Eynde F., Fleck M. P., Giacobbe P. Effectiveness and acceptability of deep brain stimulation (DBS) of the subgenual cingulate cortex for treatment-resistant depression: a systematic review and exploratory meta-analysis. Journal of Affective Disorders. 2014;159:31–38. doi: 10.1016/j.jad.2014.02.016.
    1. Sartorius A., Henn F. A. Deep brain stimulation of the lateral habenula in treatment resistant major depression. Medical Hypotheses. 2007;69(6):1305–1308. doi: 10.1016/j.mehy.2007.03.021.
    1. Siegle G. J., Steinhauer S. R., Thase M. E., Stenger V. A., Carter C. S. Can’t shake that feeling: event-related fMRI assessment of sustained amygdala activity in response to emotional information in depressed individuals. Biological Psychiatry. 2002;51(9):693–707.
    1. Cotter D., Mackay D., Chana G., Beasley C., Landau S., Everall I. P. Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cerebral Cortex. 2002;12(4):386–394.
    1. Cotter D., Mackay D., Landau S., Kerwin R., Everall I. Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Archives of General Psychiatry. 2001;58(6):545–553.
    1. Campbell S., MacQueen G. An update on regional brain volume differences associated with mood disorders. Current Opinion in Psychiatry. 2006;19(1):25–33. doi: 10.1097/01.yco.0000194371.47685.f2.
    1. Rajkowska G. Histopathology of the prefrontal cortex in major depression: what does it tell us about dysfunctional monoaminergic circuits? Progress in Brain Research. 2000;126:397–412. doi: 10.1016/S0079-6123(00)26026-3.
    1. Lui S., Wu Q., Qiu L., et al. Resting-state functional connectivity in treatment-resistant depression. The American Journal of Psychiatry. 2011;168(6):642–648. doi: 10.1176/appi.ajp.2010.10101419.
    1. Quan M. N., Zhang N., Wang Y. Y., Zhang T., Yang Z. Possible antidepressant effects and mechanisms of memantine in behaviors and synaptic plasticity of a depression rat model. Neuroscience. 2011;182:88–97. doi: 10.1016/j.neuroscience.2011.03.026.
    1. Hamilton J. P., Gotlib I. H. Neural substrates of increased memory sensitivity for negative stimuli in major depression. Biological Psychiatry. 2008;63(12):1155–1162. doi: 10.1016/j.biopsych.2007.12.015.
    1. Fales C. L., Barch D. M., Rundle M. M., et al. Altered emotional interference processing in affective and cognitive-control brain circuitry in major depression. Biological Psychiatry. 2008;63(4):377–384. doi: 10.1016/j.biopsych.2007.06.012.
    1. Drevets W. C., Price J. L., Simpson J. R., Jr, et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature. 1997;386(6627):824–827. doi: 10.1038/386824a0.
    1. MacQueen G. M., Campbell S., McEwen B. S., et al. Course of illness, hippocampal function, and hippocampal volume in major depression. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(3):1387–1392. doi: 10.1073/pnas.0337481100.
    1. Sheline Y. I., Barch D. M., Donnelly J. M., Ollinger J. M., Snyder A. Z., Mintun M. A. Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study. Biological Psychiatry. 2001;50(9):651–658.
    1. Mah L., Zarate C. A., Jr, Singh J., et al. Regional cerebral glucose metabolic abnormalities in bipolar II depression. Biological Psychiatry. 2007;61(6):765–775. doi: 10.1016/j.biopsych.2006.06.009.
    1. Norbury R., Selvaraj S., Taylor M. J., Harmer C., Cowen P. J. Increased neural response to fear in patients recovered from depression: a 3T functional magnetic resonance imaging study. Psychological Medicine. 2010;40(3):425–432. doi: 10.1017/S0033291709990596.
    1. Neumeister A., Nugent A. C., Waldeck T., et al. Neural and behavioral responses to tryptophan depletion in unmedicated patients with remitted major depressive disorder and controls. Archives of General Psychiatry. 2004;61(8):765–773. doi: 10.1001/archpsyc.61.8.765.
    1. Disner S. G., Beevers C. G., Haigh E. A., Beck A. T. Neural mechanisms of the cognitive model of depression. Nature Reviews. Neuroscience. 2011;12(8):467–477. doi: 10.1038/nrn3027.
    1. Drevets W. C. Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Current Opinion in Neurobiology. 2001;11(2):240–249.
    1. Phillips C. Physical activity modulates common neuroplasticity substrates in depressive and bipolar disorder. Neural Plasticity. 2017;2017:37. doi: 10.1155/2017/7014146.7014146
    1. Goldstein B. I., Young L. T. Toward clinically applicable biomarkers in bipolar disorder: focus on BDNF, inflammatory markers, and endothelial function. Current Psychiatry Reports. 2013;15(12):p. 425. doi: 10.1007/s11920-013-0425-9.
    1. Castren E. Is mood chemistry? Nature Reviews Neuroscience. 2005;6(3):241–246. doi: 10.1038/nrn1629.
    1. Campbell S., Marriott M., Nahmias C., MacQueen G. M. Lower hippocampal volume in patients suffering from depression: a meta-analysis. The American Journal of Psychiatry. 2004;161(4):598–607. doi: 10.1176/appi.ajp.161.4.598.
    1. Savitz J., Drevets W. C. Bipolar and major depressive disorder: neuroimaging the developmental-degenerative divide. Neuroscience and Biobehavioral Reviews. 2009;33(5):699–771. doi: 10.1016/j.neubiorev.2009.01.004.
    1. Czeh B., Lucassen P. J. What causes the hippocampal volume decrease in depression? Are neurogenesis, glial changes and apoptosis implicated? European Archives of Psychiatry and Clinical Neuroscience. 2007;257(5):250–260. doi: 10.1007/s00406-007-0728-0.
    1. Bennett M. R. The prefrontal-limbic network in depression: a core pathology of synapse regression. Progress in Neurobiology. 2011;93(4):457–467. doi: 10.1016/j.pneurobio.2011.01.001.
    1. Bliss T. V., Collingridge G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993;361(6407):31–39. doi: 10.1038/361031a0.
    1. Nagappan G., Zaitsev E., Senatorov V. V., Jr., Yang J., Hempstead B. L., Lu B. Control of extracellular cleavage of proBDNF by high frequency neuronal activity. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(4):1267–1272. doi: 10.1073/pnas.0807322106.
    1. Bear M. F., Abraham W. C. Long-term depression in hippocampus. Annual Review of Neuroscience. 1996;19:437–462. doi: 10.1146/annurev.ne.19.030196.002253.
    1. Turrigiano G. G., Leslie K. R., Desai N. S., Rutherford L. C., Nelson S. B. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature. 1998;391(6670):892–896. doi: 10.1038/36103.
    1. Simonetti A., Sani G., Dacquino C., et al. Hippocampal subfield volumes in short- and long-term lithium-treated patients with bipolar I disorder. Bipolar Disorders. 2016;18(4):352–362. doi: 10.1111/bdi.12394.
    1. Malykhin N. V., Carter R., Seres P., Coupland N. J. Structural changes in the hippocampus in major depressive disorder: contributions of disease and treatment. Journal of Psychiatry & Neuroscience. 2010;35(5):337–343. doi: 10.1503/jpn.100002.
    1. Otten M., Meeter M. Hippocampal structure and function in individuals with bipolar disorder: a systematic review. Journal of Affective Disorders. 2015;174:113–125. doi: 10.1016/j.jad.2014.11.001.
    1. Frodl T., Jäger M., Smajstrlova I., et al. Effect of hippocampal and amygdala volumes on clinical outcomes in major depression: a 3-year prospective magnetic resonance imaging study. Journal of Psychiatry & Neuroscience. 2008;33(5):423–430.
    1. O'Leary O. F., Wu X., Castren E. Chronic fluoxetine treatment increases expression of synaptic proteins in the hippocampus of the ovariectomized rat: role of BDNF signalling. Psychoneuroendocrinology. 2009;34(3):367–381. doi: 10.1016/j.psyneuen.2008.09.015.
    1. Hajszan T., Szigeti-Buck K., Sallam N. L., et al. Effects of estradiol on learned helplessness and associated remodeling of hippocampal spine synapses in female rats. Biological Psychiatry. 2010;67(2):168–174. doi: 10.1016/j.biopsych.2009.08.017.
    1. Chen F., Madsen T. M., Wegener G., Nyengaard J. R. Repeated electroconvulsive seizures increase the total number of synapses in adult male rat hippocampus. European Neuropsychopharmacology. 2009;19(5):329–338. doi: 10.1016/j.euroneuro.2008.12.007.
    1. Sairanen M., O'Leary O. F., Knuuttila J. E., Castren E. Chronic antidepressant treatment selectively increases expression of plasticity-related proteins in the hippocampus and medial prefrontal cortex of the rat. Neuroscience. 2007;144(1):368–374. doi: 10.1016/j.neuroscience.2006.08.069.
    1. Airan R. D., Meltzer L. A., Roy M., Gong Y., Chen H., Deisseroth K. High-speed imaging reveals neurophysiological links to behavior in an animal model of depression. Science. 2007;317(5839):819–823. doi: 10.1126/science.1144400.
    1. Rantamäki T., Hendolin P., Kankaanpää A., et al. Pharmacologically diverse antidepressants rapidly activate brain-derived neurotrophic factor receptor TrkB and induce phospholipase-Cgamma signaling pathways in mouse brain. Neuropsychopharmacology. 2007;32(10):2152–2162. doi: 10.1038/sj.npp.1301345.
    1. Saarelainen T., Hendolin P., Lucas G., et al. Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. The Journal of Neuroscience. 2003;23(1):349–357.
    1. Wyneken U., Sandoval M., Sandoval S., et al. Clinically relevant doses of fluoxetine and reboxetine induce changes in the TrkB content of central excitatory synapses. Neuropsychopharmacology. 2006;31(11):2415–2423. doi: 10.1038/sj.npp.1301052.
    1. Maya Vetencourt J. F., Sale A., Viegi A., et al. The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science. 2008;320(5874):385–388. doi: 10.1126/science.1150516.
    1. Castren E., Rantamaki T. The role of BDNF and its receptors in depression and antidepressant drug action: reactivation of developmental plasticity. Developmental Neurobiology. 2010;70(5):289–297. doi: 10.1002/dneu.20758.
    1. Kobayashi K., Ikeda Y., Sakai A., et al. Reversal of hippocampal neuronal maturation by serotonergic antidepressants. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(18):8434–8439. doi: 10.1073/pnas.0912690107.
    1. Karpova N. N., Pickenhagen A., Lindholm J., et al. Fear erasure in mice requires synergy between antidepressant drugs and extinction training. Science. 2011;334(6063):1731–1734. doi: 10.1126/science.1214592.
    1. Chollet F., Tardy J., Albucher J. F., et al. Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial. Lancet Neurology. 2011;10(2):123–130. doi: 10.1016/S1474-4422(10)70314-8.
    1. Castren E., Hen R. Neuronal plasticity and antidepressant actions. Trends in Neurosciences. 2013;36(5):259–267. doi: 10.1016/j.tins.2012.12.010.
    1. Tan Y. L., Zhou D. F., Cao L. Y., Zou Y. Z., Zhang X. Y. Decreased BDNF in serum of patients with chronic schizophrenia on long-term treatment with antipsychotics. Neuroscience Letters. 2005;382(1-2):27–32. doi: 10.1016/j.neulet.2005.02.054.
    1. Phillips C., Fahimi A., Das D., Mojabi F. S., Ponnusamy R., Salehi A. Noradrenergic system in Down syndrome and Alzheimer’s disease a target for therapy. Current Alzheimer Research. 2016;13(1):68–83.
    1. Bherer L., Erickson K. I., Liu-Ambrose T. Physical exercise and brain functions in older adults. Journal Aging Research. 2013;2013, article 197326:2. doi: 10.1155/2013/197326.
    1. Motl R. W., Birnbaum A. S., Kubik M. Y., Dishman R. K. Naturally occurring changes in physical activity are inversely related to depressive symptoms during early adolescence. Psychosomatic Medicine. 2004;66(3):336–342.
    1. Abu-Omar K., Rutten A., Lehtinen V. Mental health and physical activity in the European Union. Sozial- und Präventivmedizin. 2004;49(5):301–309.
    1. Pemberton R., Fuller Tyszkiewicz M. D. Factors contributing to depressive mood states in everyday life: a systematic review. Journal of Affective Disorders. 2016;200:103–110. doi: 10.1016/j.jad.2016.04.023.
    1. Schuch F. B., Vancampfort D., Richards J., Rosenbaum S., Ward P. B., Stubbs B. Exercise as a treatment for depression: a meta-analysis adjusting for publication bias. Journal of Psychiatric Research. 2016;77:42–51. doi: 10.1016/j.jpsychires.2016.02.023.
    1. Kvam S., Kleppe C. L., Nordhus I. H., Hovland A. Exercise as a treatment for depression: a meta-analysis. Journal of Affective Disorders. 2016;202:67–86. doi: 10.1016/j.jad.2016.03.063.
    1. Hoffman B. M., Babyak M. A., Craighead W. E., et al. Exercise and pharmacotherapy in patients with major depression: one-year follow-up of the SMILE study. Psychosomatic Medicine. 2011;73(2):127–133. doi: 10.1097/PSY.0b013e31820433a5.
    1. Babyak M., Blumenthal J. A., Herman S., et al. Exercise treatment for major depression: maintenance of therapeutic benefit at 10 months. Psychosomatic Medicine. 2000;62(5):633–638.
    1. Christofoletti G., Oliani M. M., Bucken-Gobbi L. T., Gobbi S., Beinotti F., Stella F. Physical activity attenuates neuropsychiatric disturbances and caregiver burden in patients with dementia. Clinics (São Paulo, Brazil) 2011;66(4):613–618.
    1. Berchtold N. C., Chinn G., Chou M., Kesslak J. P., Cotman C. W. Exercise primes a molecular memory for brain-derived neurotrophic factor protein induction in the rat hippocampus. Neuroscience. 2005;133(3):853–861. doi: 10.1016/j.neuroscience.2005.03.026.
    1. Yuen E. Y., Wei J., Liu W., Zhong P., Li X., Yan Z. Repeated stress causes cognitive impairment by suppressing glutamate receptor expression and function in prefrontal cortex. Neuron. 2012;73(5):962–977. doi: 10.1016/j.neuron.2011.12.033.
    1. Gibney S. M., McGuinness B., Prendergast C., Harkin A., Connor T. J. Poly I:C-induced activation of the immune response is accompanied by depression and anxiety-like behaviours, kynurenine pathway activation and reduced BDNF expression. Brain, Behavior, and Immunity. 2013;28:170–181. doi: 10.1016/j.bbi.2012.11.010.
    1. Yoshimura R., Hori H., Katsuki A., Atake K., Nakamura J. Serum levels of brain-derived neurotrophic factor (BDNF), proBDNF and plasma 3-methoxy-4-hydroxyphenylglycol levels in chronic schizophrenia. Annals of General Psychiatry. 2016;15:p. 1. doi: 10.1186/s12991-015-0084-9.
    1. Rothman S. M., Mattson M. P. Activity-dependent, stress-responsive BDNF signaling and the quest for optimal brain health and resilience throughout the lifespan. Neuroscience. 2013;239:228–240. doi: 10.1016/j.neuroscience.2012.10.014.
    1. Lee E., Son H. Adult hippocampal neurogenesis and related neurotrophic factors. BMB Reports. 2009;42(5):239–244.
    1. Devanand D. P., Pradhaban G., Liu X., et al. Hippocampal and entorhinal atrophy in mild cognitive impairment: prediction of Alzheimer disease. Neurology. 2007;68(11):828–836. doi: 10.1212/01.wnl.0000256697.20968.d7.
    1. Apostolova L. G., Dutton R. A., Dinov I. D., et al. Conversion of mild cognitive impairment to Alzheimer disease predicted by hippocampal atrophy maps. Archives of Neurology. 2006;63(5):693–699. doi: 10.1001/archneur.63.5.693.
    1. Nabkasorn C., Miyai N., Sootmongkol A., et al. Effects of physical exercise on depression, neuroendocrine stress hormones and physiological fitness in adolescent females with depressive symptoms. European Journal of Public Health. 2006;16(2):179–184. doi: 10.1093/eurpub/cki159.
    1. Woolley C. S., Gould E., McEwen B. S. Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Research. 1990;531(1-2):225–231.
    1. Cui W., Allen N. D., Skynner M., Gusterson B., Clark A. J. Inducible ablation of astrocytes shows that these cells are required for neuronal survival in the adult brain. Glia. 2001;34(4):272–282.
    1. Diniz D. G., Foro C. A., Rego C. M., et al. Environmental impoverishment and aging alter object recognition, spatial learning, and dentate gyrus astrocytes. The European Journal of Neuroscience. 2010;32(3):509–519. doi: 10.1111/j.1460-9568.2010.07296.x.
    1. Ye Y., Wang G., Wang H., Wang X. Brain-derived neurotrophic factor (BDNF) infusion restored astrocytic plasticity in the hippocampus of a rat model of depression. Neuroscience Letters. 2011;503(1):15–19. doi: 10.1016/j.neulet.2011.07.055.
    1. Fahimi A., Baktir M. A., Moghadam S., et al. Physical exercise induces structural alterations in the hippocampal astrocytes: exploring the role of BDNF-TrkB signaling. Brain Structure & Function. 2017;222(4):1797–1808. doi: 10.1007/s00429-016-1308-8.
    1. Alomari M. A., Khabour O. F., Alzoubi K. H., Alzubi M. A. Combining restricted diet with forced or voluntary exercises improves hippocampal BDNF and cognitive function in rats. The International Journal of Neuroscience. 2016;126(4):366–373. doi: 10.3109/00207454.2015.1012587.
    1. Lu B. Pro-region of neurotrophins: role in synaptic modulation. Neuron. 2003;39(5):735–738.
    1. Blumenthal J. A., Babyak M. A., Doraiswamy P. M., et al. Exercise and pharmacotherapy in the treatment of major depressive disorder. Psychosomatic Medicine. 2007;69(7):587–596. doi: 10.1097/PSY.0b013e318148c19a.
    1. Gomez-Pinilla F., Ying Z., Roy R. R., Molteni R., Edgerton V. R. Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. Journal of Neurophysiology. 2002;88(5):2187–2195. doi: 10.1152/jn.00152.2002.
    1. Post R. M. Role of BDNF in bipolar and unipolar disorder: clinical and theoretical implications. Journal of Psychiatric Research. 2007;41(12):979–990. doi: 10.1016/j.jpsychires.2006.09.009.
    1. Mata J., Thompson R. J., Gotlib I. H. BDNF genotype moderates the relation between physical activity and depressive symptoms. Health Psychology. 2010;29(2):130–133. doi: 10.1037/a0017261.
    1. Zoladz J. A., Pilc A., Majerczak J., Grandys M., Zapart-Bukowska J., Duda K. Endurance training increases plasma brain-derived neurotrophic factor concentration in young healthy men. Journal of Physiology and Pharmacology. 2008;59(Supplement 7):119–132.
    1. Seifert T., Brassard P., Wissenberg M., et al. Endurance training enhances BDNF release from the human brain. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 2010;298(2):R372–R377. doi: 10.1152/ajpregu.00525.2009.
    1. Ruscheweyh R., Willemer C., Krüger K., et al. Physical activity and memory functions: an interventional study. Neurobiology of Aging. 2011;32(7):1304–1319. doi: 10.1016/j.neurobiolaging.2009.08.001.
    1. Griffin E. W., Mullally S., Foley C., Warmington S. A., O'Mara S. M., Kelly A. M. Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiology & Behavior. 2011;104(5):934–941. doi: 10.1016/j.physbeh.2011.06.005.
    1. Pereira A. C., Huddleston D. E., Brickman A. M., et al. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(13):5638–5643. doi: 10.1073/pnas.0611721104.
    1. Erickson K. I., Voss M. W., Prakash R. S., et al. Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(7):3017–3022. doi: 10.1073/pnas.1015950108.
    1. Neeper S. A., Gomez-Pinilla F., Choi J., Cotman C. Exercise and brain neurotrophins. Nature. 1995;373(6510):p. 109. doi: 10.1038/373109a0.
    1. Ferris L. T., Williams J. S., Shen C. L. The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Medicine and Science in Sports and Exercise. 2007;39(4):728–734. doi: 10.1249/mss.0b013e31802f04c7.
    1. Coelho F. G., Vital T. M., Stein A. M., et al. Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer’s disease. Journal of Alzheimer's Disease. 2014;39(2):401–408. doi: 10.3233/JAD-131073.
    1. Stranahan A. M., Lee K., Mattson M. P. Contributions of impaired hippocampal plasticity and neurodegeneration to age-related deficits in hormonal pulsatility. Ageing Research Reviews. 2008;7(3):164–176. doi: 10.1016/j.arr.2007.12.004.
    1. Vaynman S., Gomez-Pinilla F. Revenge of the “sit”: how lifestyle impacts neuronal and cognitive health through molecular systems that interface energy metabolism with neuronal plasticity. Journal of Neuroscience Research. 2006;84(4):699–715. doi: 10.1002/jnr.20979.
    1. Vaynman S., Ying Z., Gomez-Pinilla F. Exercise induces BDNF and synapsin I to specific hippocampal subfields. Journal of Neuroscience Research. 2004;76(3):356–362. doi: 10.1002/jnr.20077.
    1. Gustafsson G., Lira C. M., Johansson J., et al. The acute response of plasma brain-derived neurotrophic factor as a result of exercise in major depressive disorder. Psychiatry Research. 2009;169(3):244–248. doi: 10.1016/j.psychres.2008.06.030.
    1. Laske C., Banschbach S., Stransky E., et al. Exercise-induced normalization of decreased BDNF serum concentration in elderly women with remitted major depression. The International Journal of Neuropsychopharmacology. 2010;13(5):595–602. doi: 10.1017/S1461145709991234.
    1. Toups M. S., Greer T. L., Kurian B. T., et al. Effects of serum brain derived neurotrophic factor on exercise augmentation treatment of depression. Journal of Psychiatric Research. 2011;45(10):1301–1306. doi: 10.1016/j.jpsychires.2011.05.002.
    1. Schuch F. B., Vasconcelos-Moreno M. P., Borowsky C., et al. The effects of exercise on oxidative stress (TBARS) and BDNF in severely depressed inpatients. European Archives of Psychiatry and Clinical Neuroscience. 2014;264(7):605–613. doi: 10.1007/s00406-014-0489-5.
    1. Rojas Vega S., Struder H. K., Vera Wahrmann B., Schmidt A., Bloch W., Hollmann W. Acute BDNF and cortisol response to low intensity exercise and following ramp incremental exercise to exhaustion in humans. Brain Research. 2006;1121(1):59–65. doi: 10.1016/j.brainres.2006.08.105.
    1. Tang S. W., Chu E., Hui T., Helmeste D., Law C. Influence of exercise on serum brain-derived neurotrophic factor concentrations in healthy human subjects. Neuroscience Letters. 2008;431(1):62–65. doi: 10.1016/j.neulet.2007.11.019.
    1. Krabbe K. S., Nielsen A. R., Krogh-Madsen R., et al. Brain-derived neurotrophic factor (BDNF) and type 2 diabetes. Diabetologia. 2007;50(2):431–438. doi: 10.1007/s00125-006-0537-4.
    1. Lommatzsch M., Zingler D., Schuhbaeck K., et al. The impact of age, weight and gender on BDNF levels in human platelets and plasma. Neurobiology of Aging. 2005;26(1):115–123. doi: 10.1016/j.neurobiolaging.2004.03.002.
    1. Rasmussen P., Brassard P., Adser H., et al. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Experimental Physiology. 2009;94(10):1062–1069. doi: 10.1113/expphysiol.2009.048512.
    1. Staats R., Stoll P., Zingler D., Virchow J. C., Lommatzsch M. Regulation of brain-derived neurotrophic factor (BDNF) during sleep apnoea treatment. Thorax. 2005;60(8):688–692. doi: 10.1136/thx.2004.038208.
    1. Patterson S. L. Immune dysregulation and cognitive vulnerability in the aging brain: interactions of microglia, IL-1beta, BDNF and synaptic plasticity. Neuropharmacology. 2015;96(Part A):11–18. doi: 10.1016/j.neuropharm.2014.12.020.
    1. Schneider L. S., Mangialasche F., Andreasen N., et al. Clinical trials and late-stage drug development for Alzheimer’s disease: an appraisal from 1984 to 2014. Journal of Internal Medicine. 2014;275(3):251–283. doi: 10.1111/joim.12191.
    1. Colcombe S., Kramer A. F. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychological Science. 2003;14(2):125–130. doi: 10.1111/1467-9280.t01-1-01430.
    1. Smith P. J., Blumenthal J. A., Hoffman B. M., et al. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosomatic Medicine. 2010;72(3):239–252. doi: 10.1097/PSY.0b013e3181d14633.
    1. Makizako H., Liu-Ambrose T., Shimada H., et al. Moderate-intensity physical activity, hippocampal volume, and memory in older adults with mild cognitive impairment. The Journals of Gerontology. Series a, Biological Sciences and Medical Sciences. 2015;70(4):480–486. doi: 10.1093/gerona/glu136.
    1. Barbour K. A., Edenfield T. M., Blumenthal J. A. Exercise as a treatment for depression and other psychiatric disorders: a review. Journal of Cardiopulmonary Rehabilitation and Prevention. 2007;27(6):359–367. doi: 10.1097/01.HCR.0000300262.69645.95.
    1. Ranjbar E., Memari A. H., Hafizi S., Shayestehfar M., Mirfazeli F. S., Eshghi M. A. Depression and exercise: a clinical review and management guideline. Asian Journal of Sports Medicine. 2015;6(2, article e24055) doi: 10.5812/asjsm.6(2)2015.24055.
    1. Clearinghouse N. G., editor. Psychiatrists TRANZCo. Practice Guidelines for the Treatment of Patients with Major Depressive Disorder. 2010.
    1. Whiteford H. A., Degenhardt L., Rehm J., et al. Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet. 2013;382(9904):1575–1586. doi: 10.1016/S0140-6736(13)61611-6.

Source: PubMed

3
購読する