Bone Marrow Aspirate Concentrate: Its Uses in Osteoarthritis

Gi Beom Kim, Min-Soo Seo, Wook Tae Park, Gun Woo Lee, Gi Beom Kim, Min-Soo Seo, Wook Tae Park, Gun Woo Lee

Abstract

Human bone marrow (BM) is a kind of source of mesenchymal stem cells (MSCs) as well as growth factors and cytokines that may aid anti-inflammation and regeneration for various tissues, including cartilage and bone. However, since MSCs in BM usually occupy only a small fraction (0.001%) of nucleated cells, bone marrow aspirate concentrate (BMAC) for cartilage pathologies, such as cartilage degeneration, defect, and osteoarthritis, have gained considerable recognition in the last few years due to its potential benefits including disease modifying and regenerative capacity. Although further research with well-designed, randomized, controlled clinical trials is needed to elucidate the exact mechanism of BMAC, this may have the most noteworthy effect in patients with osteoarthritis. The purpose of this article is to review the general characteristics of BMAC, including its constituent, action mechanisms, and related issues. Moreover, this article aims to summarize the clinical outcomes of BMAC reported to date.

Keywords: bone marrow; bone marrow aspirate concentrate; cartilage; mesenchymal stem cells; osteoarthritis; regeneration.

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Molecular mechanisms of osteoarthritis. Increased proinflammatory cytokines such as TNF-α, IL-1β and IL-6, activated matrix metalloproteinases (MMPs), and decreased growth factors such as TGF-β and ultimate chondrocyte senescence can be observed at the molecular level.
Figure 2
Figure 2
BMAC preparation and knee joint injection. (A) bone marrow aspiration at anterior iliac rim; (B) After centrifugation and some procedure, dark-colored BMAC (white arrow) was obtained; (C) BMAC injection to the knee joint with osteoarthritis.

References

    1. Mankin H.J. The response of articular cartilage to mechanical injury. J. Bone Jt. Surg Am. 1982;64:460–466. doi: 10.2106/00004623-198264030-00022.
    1. Goyal D., Keyhani S., Lee E.H., Hui J.H.P. Evidence-based status of microfracture technique: A systematic review of level I and II studies. Arthroscopy. 2013;29:1579–1588. doi: 10.1016/j.arthro.2013.05.027.
    1. De Lange-Brokaar B.J., Ioan-Facsinay A., Van Osch G.J., Zuurmond A.-M., Schoones J., Toes R.E., Huizinga T.W., Kloppenburg M. Synovial inflammation, immune cells and their cytokines in osteoarthritis: A review. Osteoarthr. Cartil. 2012;20:1484–1499. doi: 10.1016/j.joca.2012.08.027.
    1. Gupta S., Hawker G.A., Laporte A., Croxford R., Coyte P.C. The economic burden of disabling hip and knee osteoarthritis (OA) from the perspective of individuals living with this condition. Rheumatol. 2005;44:1531–1537. doi: 10.1093/rheumatology/kei049.
    1. Hawker G.A., Mian S., Bednis K., Stanaitis I. Osteoarthritis year 2010 in review: Non-pharmacologic therapy. Osteoarthr. Cartil. 2011;19:366–374. doi: 10.1016/j.joca.2011.01.021.
    1. Chevalier X., Eymard F., Richette P. Biologic agents in osteoarthritis: Hopes and disappointments. Nat. Rev. Rheumatol. 2013;9:400–410. doi: 10.1038/nrrheum.2013.44.
    1. Güler-Yüksel M., Allaart C.F., Watt I., Goekoop-Ruiterman Y.P.M., de Vries-Bouwstra J.K., van Schaardenburg D., van Krugten M.V., Dijkmans B.A.C., Huizinga T.W.J., Lems W.F., et al. Treatment with TNF-α inhibitor infliximab might reduce hand osteoarthritis in patients with rheumatoid arthritis. Osteoarthr. Cartil. 2010;18:1256–1262. doi: 10.1016/j.joca.2010.07.011.
    1. Mithoefer K., McAdams T., Williams R.J., Kreuz P.C., Mandelbaum B.R. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: An evidence-based systematic analysis. Am. J. Sports Med. 2009;37:2053–2063. doi: 10.1177/0363546508328414.
    1. Niemeyer P., Porichis S., Steinwachs M., Erggelet C., Kreuz P.C., Schmal H., Uhl M., Ghanem N., Südkamp N.P., Salzmann G. Long-term outcomes after first-generation autologous chondrocyte implantation for cartilage defects of the knee. Am. J. Sports Med. 2014;42:150–157. doi: 10.1177/0363546513506593.
    1. Gudas R., Gudaitė A., Mickevičius T., Masiulis N., Simonaitytė R., Čekanauskas E., Skurvydas A. Comparison of osteochondral autologous transplantation, microfracture, or debridement techniques in articular cartilage lesions associated with anterior cruciate ligament injury: A prospective study with a 3-year follow-up. Arthroscopy. 2013;29:89–97. doi: 10.1016/j.arthro.2012.06.009.
    1. McCarrel T., Fortier L. Temporal growth factor release from platelet-rich plasma, trehalose lyophilized platelets, and bone marrow aspirate and their effect on tendon and ligament gene expression. J. Orthop. Res. 2009;27:1033–1042. doi: 10.1002/jor.20853.
    1. Indrawattana N., Chen G., Tadokoro M., Shann L.H., Ohgushi H., Tateishi T., Tanaka J., Bunyaratvej A. Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochem. Biophys. Res. Commun. 2004;320:914–919. doi: 10.1016/j.bbrc.2004.06.029.
    1. Rubin R., Strayer D.S., Rubin E. Rubin’s pathology: Clinicopathologic foundations of medicine. Lippincott Williams and Wilkins; Philadelphia, PA, USA: 2008.
    1. Lucas D. The Bone Marrow Microenvironment for Hematopoietic Stem Cells. Adv. Exp. Med. Biol. 2017;1041:5–18.
    1. Buda R., Vannini F., Cavallo M., Grigolo B., Cenacchi A., Giannini S. Osteochondral lesions of the knee: A new one-step repair technique with bone-marrow-derived cells. J. Bone Jt. Surg Am. 2010;92(Suppl. 2):2–11. doi: 10.2106/JBJS.J.00813.
    1. Ipach I., Schäfer R., Lahrmann J., Kluba T. Stiffness after knee arthrotomy: Evaluation of prevalence and results after manipulation under anaesthesia. Orthop. Traumatol. Surg. Res. 2011;97:292–296. doi: 10.1016/j.otsr.2011.01.006.
    1. Huh S.W., Shetty A.A., Ahmed S., Lee D.H., Kim S.J. Autologous bone-marrow mesenchymal cell induced chondrogenesis (MCIC) J. Clin. Orthop. Trauma. 2016;7:153–156. doi: 10.1016/j.jcot.2016.05.004.
    1. Chiang H., Hsieh C.-H., Lin Y.-H., Lin S., Tsai-Wu J.-J., Jiang C.-C. Differences between chondrocytes and bone marrow-derived chondrogenic cells. Tissue Eng. Part. A. 2011;17:2919–2929. doi: 10.1089/ten.tea.2010.0732.
    1. Filardo G., Madry H., Jelic M., Roffi A., Cucchiarini M., Kon E. Mesenchymal stem cells for the treatment of cartilage lesions: From preclinical findings to clinical application in orthopaedics. Knee Surg. Sports Traumatol. Arthrosc. 2013;21:1717–1729. doi: 10.1007/s00167-012-2329-3.
    1. Fortier L.A., Potter H.G., Rickey E.J., Schnabel L.V., Foo L.F., Chong L.R., Stokol T., Cheetham J., Nixon A.J. Concentrated bone marrow aspirate improves full-thickness cartilage repair compared with microfracture in the equine model. J. Bone Jt. Surg. Am. 2010;92:1927–1937. doi: 10.2106/JBJS.I.01284.
    1. Johnson R.G. Bone marrow concentrate with allograft equivalent to autograft in lumbar fusions. Spine. 2014;39:695–700. doi: 10.1097/BRS.0000000000000254.
    1. Koga H., Shimaya M., Muneta T., Nimura A., Morito T., Hayashi M., Suzuki S., Ju Y.-J., Mochizuki T., Sekiya I. Local adherent technique for transplanting mesenchymal stem cells as a potential treatment of cartilage defect. Arthritis Res. 2008;10:R84. doi: 10.1186/ar2460.
    1. Orozco L., Munar A., Soler R., Alberca M., Soler F., Huguet M., Sentís J., Sánchez A., García-Sancho J. Treatment of knee osteoarthritis with autologous mesenchymal stem cells: A pilot study. Transplant. 2013;95:1535–1541. doi: 10.1097/TP.0b013e318291a2da.
    1. Cucchiarini M., Venkatesan J.K., Ekici M., Schmitt G., Madry H. Human mesenchymal stem cells overexpressing therapeutic genes: From basic science to clinical applications for articular cartilage repair. Biomed. Mater. Eng. 2012;22:197–208. doi: 10.3233/BME-2012-0709.
    1. Prockop D.J. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 1997;276:71–74. doi: 10.1126/science.276.5309.71.
    1. Lee G.W., Seo M.-S., Kang K.-K., Oh S.-K. Epidural fat-derived mesenchymal stem cell: First report of epidural fat-derived mesenchymal stem cell. Asian Spine J. 2019;13:361. doi: 10.31616/asj.2018.0215.
    1. Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., Deans R., Keating A., Prockop D., Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–317. doi: 10.1080/14653240600855905.
    1. Johnstone B., Hering T.M., Caplan A.I., Goldberg V.M., Yoo J.U. In vitrochondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell Res. 1998;238:265–272. doi: 10.1006/excr.1997.3858.
    1. Fukumoto T., Sperling J., Sanyal A., Fitzsimmons J., Reinholz G., Conover C.A., O’Driscoll S.W. Combined effects of insulin-like growth factor-1 and transforming growth factor-β1 on periosteal mesenchymal cells during chondrogenesis in vitro. Osteoarthr. Cartil. 2003;11:55–64. doi: 10.1053/joca.2002.0869.
    1. Caplan A.I., Dennis J.E. Mesenchymal stem cells as trophic mediators. J. Cell Biochem. 2006;98:1076–1084. doi: 10.1002/jcb.20886.
    1. Cassano J.M., Kennedy J.G., Ross K.A., Fraser E.J., Goodale M.B., Fortier L.A. Bone marrow concentrate and platelet-rich plasma differ in cell distribution and interleukin 1 receptor antagonist protein concentration. Knee Surg. Sports Traumatol. Arthrosc. 2018;26:333–342. doi: 10.1007/s00167-016-3981-9.
    1. Gharibi B., Hughes F.J. Effects of medium supplements on proliferation, differentiation potential, and in vitro expansion of mesenchymal stem cells. Stem Cells Transl. Med. 2012;1:771–782. doi: 10.5966/sctm.2010-0031.
    1. Tuli R., Tuli S., Nandi S., Huang X., Manner P.A., Hozack W.J., Danielson K.G., Hall D.J., Tuan R.S. Transforming growth factor-β-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt signaling cross-talk. J. Biol. Chem. 2003;278:41227–41236. doi: 10.1074/jbc.M305312200.
    1. Ham O., Lee C.Y., Kim R., Lee J., Oh S., Lee M.Y., Kim J., Hwang K.-C., Maeng L.-S., Chang W. Therapeutic potential of differentiated mesenchymal stem cells for treatment of osteoarthritis. Int. J. Mol. Sci. 2015;16:14961–14978. doi: 10.3390/ijms160714961.
    1. Jaime P., García-Guerrero N., Estella R., Pardo J., García-Álvarez F., Martinez-Lostao L. CD56+/CD16− Natural Killer cells expressing the inflammatory protease granzyme A are enriched in synovial fluid from patients with osteoarthritis. Osteoarthr. Cartil. 2017;25:1708–1718. doi: 10.1016/j.joca.2017.06.007.
    1. Nigrovic P.A., Lee D.M. Mast cells in inflammatory arthritis. Arthritis Res. 2004;7:1.
    1. Harrell C.R., Markovic B.S., Fellabaum C., Arsenijevic A., Volarevic V. Mesenchymal stem cell-based therapy of osteoarthritis: Current knowledge and future perspectives. Biomed. Pharm. 2019;109:2318–2326. doi: 10.1016/j.biopha.2018.11.099.
    1. Martin J.A., Buckwalter J.A. The role of chondrocyte senescence in the pathogenesis of osteoarthritis and in limiting cartilage repair. J. Bone Jt. Surg Am. 2003;85(Suppl. 2):106–110. doi: 10.2106/00004623-200300002-00014.
    1. Roach H.I., Yamada N., Cheung K.S., Tilley S., Clarke N.M., Oreffo R.O., Kokubun S., Bronner F. Association between the abnormal expression of matrix-degrading enzymes by human osteoarthritic chondrocytes and demethylation of specific CpG sites in the promoter regions. Arthritis Rheum. 2005;52:3110–3124. doi: 10.1002/art.21300.
    1. Vincenti M.P., Brinckerhoff C.E. Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: Integration of complex signaling pathways for the recruitment of gene-specific transcription factors. Arthritis Res. 2002;4:157. doi: 10.1186/ar401.
    1. Imam M.A., Holton J., Ernstbrunner L., Pepke W., Grubhofer F., Narvani A., Snow M. A systematic review of the clinical applications and complications of bone marrow aspirate concentrate in management of bone defects and nonunions. Int. Orthop. 2017;41:2213–2220. doi: 10.1007/s00264-017-3597-9.
    1. Jager M., Jelinek E.M., Wess K.M., Scharfstadt A., Jacobson M., Kevy S.V., Krauspe R. Bone marrow concentrate: A novel strategy for bone defect treatment. Curr. Stem Cell Res. 2009;4:34–43. doi: 10.2174/157488809787169039.
    1. Lee D.H., Ryu K.J., Kim J.W., Kang K.C., Choi Y.R. Bone marrow aspirate concentrate and platelet-rich plasma enhanced bone healing in distraction osteogenesis of the tibia. Clin. Orthop. Relat. Res. 2014;472:3789–3797. doi: 10.1007/s11999-014-3548-3.
    1. Potier E., Ferreira E., Dennler S., Mauviel A., Oudina K., Logeart-Avramoglou D., Petite H. Desferrioxamine-driven upregulation of angiogenic factor expression by human bone marrow stromal cells. J. Tissue Eng. Regen. Med. 2008;2:272–278. doi: 10.1002/term.92.
    1. Huang A.H., Motlekar N.A., Stein A., Diamond S.L., Shore E.M., Mauck R.L. High-throughput screening for modulators of mesenchymal stem cell chondrogenesis. Ann. Biomed. Eng. 2008;36:1909. doi: 10.1007/s10439-008-9562-4.
    1. Uccelli A., Pistoia V., Moretta L. Mesenchymal stem cells: A new strategy for immunosuppression? Trends Immunol. 2007;28:219–226. doi: 10.1016/j.it.2007.03.001.
    1. Wang Y., Chen X., Cao W., Shi Y. Plasticity of mesenchymal stem cells in immunomodulation: Pathological and therapeutic implications. Nat. Immunol. 2014;15:1009. doi: 10.1038/ni.3002.
    1. Wei C.-C., Lin A.B., Hung S.-C. Mesenchymal stem cells in regenerative medicine for musculoskeletal diseases: Bench, bedside, and industry. Cell Transpl. 2014;23:505–512. doi: 10.3727/096368914X678328.
    1. Fong E.L., Chan C.K., Goodman S.B. Stem cell homing in musculoskeletal injury. Biomaterials. 2011;32:395–409. doi: 10.1016/j.biomaterials.2010.08.101.
    1. Acharya C., Adesida A., Zajac P., Mumme M., Riesle J., Martin I., Barbero A. Enhanced chondrocyte proliferation and mesenchymal stromal cells chondrogenesis in coculture pellets mediate improved cartilage formation. J. Cell Physiol. 2012;227:88–97. doi: 10.1002/jcp.22706.
    1. Pers Y.-M., Ruiz M., Noël D., Jorgensen C. Mesenchymal stem cells for the management of inflammation in osteoarthritis: State of the art and perspectives. Osteoarthr. Cartil. 2015;23:2027–2035. doi: 10.1016/j.joca.2015.07.004.
    1. Oliver K., Awan T., Bayes M. Single- Versus Multiple-Site Harvesting Techniques for Bone Marrow Concentrate: Evaluation of Aspirate Quality and Pain. Orthop J. Sports Med. 2017;5:2325967117724398. doi: 10.1177/2325967117724398.
    1. Hernigou P., Homma Y., Flouzat Lachaniette C.H., Poignard A., Allain J., Chevallier N., Rouard H. Benefits of small volume and small syringe for bone marrow aspirations of mesenchymal stem cells. Int. Orthop. 2013;37:2279–2287. doi: 10.1007/s00264-013-2017-z.
    1. Yandow S.M., Van de Velde S.K., Siebert J., Perkins S.L. The influence of aspiration volume on the number of osteoblastic progenitors obtained from bone marrow in children. J. Pediatr. Orthop. 2019;39:382–386. doi: 10.1097/BPO.0000000000000949.
    1. Muschler G.F., Boehm C., Easley K. Aspiration to obtain osteoblast progenitor cells from human bone marrow: The influence of aspiration volume. J. Bone Jt. Surg. Am. 1997;79:1699–1709. doi: 10.2106/00004623-199711000-00012.
    1. Enea D., Cecconi S., Calcagno S., Busilacchi A., Manzotti S., Gigante A. One-step cartilage repair in the knee: Collagen-covered microfracture and autologous bone marrow concentrate. A pilot study. Knee. 2015;22:30–35. doi: 10.1016/j.knee.2014.10.003.
    1. Gobbi A., Chaurasia S., Karnatzikos G., Nakamura N. Matrix-induced autologous chondrocyte implantation versus multipotent stem cells for the treatment of large patellofemoral chondral lesions: A nonrandomized prospective trial. Cartilage. 2015;6:82–97. doi: 10.1177/1947603514563597.
    1. Gobbi A., Karnatzikos G., Sankineani S.R. One-step surgery with multipotent stem cells for the treatment of large full-thickness chondral defects of the knee. Am. J. Sports Med. 2014;42:648–657. doi: 10.1177/0363546513518007.
    1. Kim J.-D., Lee G.W., Jung G.H., Kim C.K., Kim T., Park J.H., Cha S.S., You Y.-B. Clinical outcome of autologous bone marrow aspirates concentrate (BMAC) injection in degenerative arthritis of the knee. Eur. J. Orthop. Surg. Traumatol. 2014;24:1505–1511. doi: 10.1007/s00590-013-1393-9.
    1. Hernigou P., Mathieu G., Poignard A., Manicom O., Beaujean F., Rouard H. Percutaneous autologous bone-marrow grafting for nonunions. Surgical technique. J. Bone Jt. Surg. Am. 2006;88:322–327. doi: 10.2106/00004623-200609001-00015.
    1. Gigante A., Cecconi S., Calcagno S., Busilacchi A., Enea D. Arthroscopic knee cartilage repair with covered microfracture and bone marrow concentrate. Arthrosc. Tech. 2012;1:e175–e180. doi: 10.1016/j.eats.2012.07.001.
    1. Skowroński J., Rutka M. Osteochondral lesions of the knee reconstructed with mesenchymal stem cells-results. Ortop. Traumatol. Rehabil. 2013;15:195–204. doi: 10.5604/15093492.1058409.
    1. Davatchi F., Abdollahi B.S., Mohyeddin M., Shahram F., Nikbin B. Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. Int. J. Rheum. Dis. 2011;14:211–215. doi: 10.1111/j.1756-185X.2011.01599.x.
    1. Varma H., Dadarya B., Vidyarthi A. The new avenues in the management of osteo-arthritis of knee-stem cells. J. Indian Med. Assoc. 2010;108:583–585.
    1. Zhao D., Cui D., Wang B., Tian F., Guo L., Yang L., Liu B., Yu X. Treatment of early stage osteonecrosis of the femoral head with autologous implantation of bone marrow-derived and cultured mesenchymal stem cells. Bone. 2012;50:325–330. doi: 10.1016/j.bone.2011.11.002.
    1. Hernigou P., Trousselier M., Roubineau F., Bouthors C., Chevallier N., Rouard H., Flouzat-Lachaniette C.-H. Stem cell therapy for the treatment of hip osteonecrosis: A 30-year review of progress. Clin. Orthop. Surg. 2016;8:1–8. doi: 10.4055/cios.2016.8.1.1.
    1. Kouroupis D., Ahari A.F., Correa D., Shammaa R. Intralesional Injection of Bone Marrow Aspirate Concentrate for the Treatment of Osteonecrosis of the Knee Secondary to Systemic Lupus Erythematosus: A Case Report. Front. Bioeng. Biotechnol. 2020;8:202. doi: 10.3389/fbioe.2020.00202.
    1. Gobbi A., Whyte G.P. Long-term Clinical Outcomes of One-Stage Cartilage Repair in the Knee With Hyaluronic Acid–Based Scaffold Embedded With Mesenchymal Stem Cells Sourced From Bone Marrow Aspirate Concentrate. Am. J. Sports Med. 2019;47:1621–1628. doi: 10.1177/0363546519845362.
    1. Centeno C., Pitts J., Al-Sayegh H., Freeman M. Efficacy of autologous bone marrow concentrate for knee osteoarthritis with and without adipose graft. Biomed. Res. Int. 2014;2014:370621. doi: 10.1155/2014/370621.
    1. Hauser R.A., Orlofsky A. Regenerative injection therapy with whole bone marrow aspirate for degenerative joint disease: A case series. Clin. Med. Insights Arthritis Musculoskelet Disord. 2013;6:65–72. doi: 10.4137/CMAMD.S10951.
    1. Chahla J., Dean C.S., Moatshe G., Pascual-Garrido C., Serra Cruz R., LaPrade R.F. Concentrated Bone Marrow Aspirate for the Treatment of Chondral Injuries and Osteoarthritis of the Knee: A Systematic Review of Outcomes. Orthop J. Sports Med. 2016;4:2325967115625481. doi: 10.1177/2325967115625481.
    1. Shapiro S.A., Kazmerchak S.E., Heckman M.G., Zubair A.C., O’Connor M.I. A Prospective, Single-Blind, Placebo-Controlled Trial of Bone Marrow Aspirate Concentrate for Knee Osteoarthritis. Am. J. Sports Med. 2017;45:82–90. doi: 10.1177/0363546516662455.
    1. Arora P., Sindhu A., Dilbaghi N., Chaudhury A., Rajakumar G., Rahuman A.A. Nano-regenerative medicine towards clinical outcome of stem cell and tissue engineering in humans. J. Cell Mol. Med. 2012;16:1991–2000. doi: 10.1111/j.1582-4934.2012.01534.x.
    1. Maleki Dizaj S., Lotfipour F., Barzegar-Jalali M., Zarrintan M.-H., Adibkia K. Ciprofloxacin HCl-loaded calcium carbonate nanoparticles: Preparation, solid state characterization, and evaluation of antimicrobial effect against Staphylococcus aureus. Artif. Cells Nanomed. Biotechnol. 2017;45:535–543. doi: 10.3109/21691401.2016.1161637.
    1. Chiu L., Waldman S. Nanomaterials for Cartilage Tissue Engineering. IAPC Publishing; Zagreb, Croatia: 2016.
    1. Yang Y., Leong K.W. Nanoscale surfacing for regenerative medicine. Wires Nanomed. Nanobiotechnol. 2010;2:478–495. doi: 10.1002/wnan.74.
    1. Gillogly S.D., Wheeler K.S. Autologous chondrocyte implantation with collagen membrane. Sports Med. Arthrosc. Rev. 2015;23:118–124. doi: 10.1097/JSA.0000000000000079.
    1. Pfeifer C.G., Berner A., Koch M., Krutsch W., Kujat R., Angele P., Nerlich M., Zellner J. Higher ratios of hyaluronic acid enhance chondrogenic differentiation of human MSCs in a hyaluronic acid–gelatin composite scaffold. Materials. 2016;9:381. doi: 10.3390/ma9050381.
    1. Alves da Silva M.L., Martins A., Costa-Pinto A., Correlo V., Sol P., Bhattacharya M., Faria S., Reis R., Neves N. Chondrogenic differentiation of human bone marrow mesenchymal stem cells in chitosan-based scaffolds using a flow-perfusion bioreactor. J. Tissue Eng. Regen Med. 2011;5:722–732. doi: 10.1002/term.372.
    1. Celik C., Mogal V.T., Hui J.H.P., Loh X.J., Toh W.S. Hydrogels. Springer; Berlin, Germany: 2018. Injectable Hydrogels for Cartilage Regeneration; pp. 315–337.
    1. Duarte Campos D.F., Drescher W., Rath B., Tingart M., Fischer H. Supporting biomaterials for articular cartilage repair. Cartilage. 2012;3:205–221. doi: 10.1177/1947603512444722.
    1. Walvoort M.T., van den Elst H., Plante O.J., Kröck L., Seeberger P.H., Overkleeft H.S., van der Marel G.A., Codée J.D. Automated Solid-Phase Synthesis of β-Mannuronic Acid Alginates. Angew. Chem. Int. Ed. 2012;51:4393–4396. doi: 10.1002/anie.201108744.
    1. Perán M., García M.A., López-Ruiz E., Bustamante M., Jiménez G., Madeddu R., Marchal J.A. Functionalized nanostructures with application in regenerative medicine. Int. J. Mol. Sci. 2012;13:3847–3886. doi: 10.3390/ijms13033847.
    1. Johnstone B., Alini M., Cucchiarini M., Dodge G.R., Eglin D., Guilak F., Madry H., Mata A., Mauck R.L., Semino C.E. Tissue engineering for articular cartilage repair—The state of the art. Eur. Cell Mater. 2013;25:e67. doi: 10.22203/eCM.v025a18.
    1. Eftekhari A., Maleki Dizaj S., Sharifi S., Salatin S., Rahbar Saadat Y., Zununi Vahed S., Samiei M., Ardalan M., Rameshrad M., Ahmadian E. The Use of Nanomaterials in Tissue Engineering for Cartilage Regeneration; Current Approaches and Future Perspectives. Int. J. Mol. Sci. 2020;21:536. doi: 10.3390/ijms21020536.
    1. Meyer U., Wiesmann H.P. Bone and cartilage engineering. Springer Science & Business Media; Berlin, Germany: 2006.
    1. Carletti E., Motta A., Migliaresi C. Methods in Molecular Biology: 3D Cell Culture. Humana Press; Totowa, NJ, USA: 2011. Scaffolds for tissue engineering and 3D cell culture; pp. 17–39.
    1. Chung S., King M.W. Design concepts and strategies for tissue engineering scaffolds. Biotechnol. Appl. Biochem. 2011;58:423–438. doi: 10.1002/bab.60.
    1. Gentleman E., Swain R.J., Evans N.D., Boonrungsiman S., Jell G., Ball M.D., Shean T.A., Oyen M.L., Porter A., Stevens M.M. Comparative materials differences revealed in engineered bone as a function of cell-specific differentiation. Nat. Mater. 2009;8:763–770. doi: 10.1038/nmat2505.
    1. Lu J., Rao M.P., MacDonald N.C., Khang D., Webster T.J. Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features. Acta Biomater. 2008;4:192–201. doi: 10.1016/j.actbio.2007.07.008.
    1. Drury J.L., Mooney D.J. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials. 2003;24:4337–4351. doi: 10.1016/S0142-9612(03)00340-5.
    1. Belkas J.S., Munro C.A., Shoichet M.S., Midha R. Peripheral nerve regeneration through a synthetic hydrogel nerve tube. Restor. Neurol. Neurosci. 2005;23:19–29.
    1. Erickson I.E., Huang A.H., Chung C., Li R.T., Burdick J.A., Mauck R.L. Differential maturation and structure–function relationships in mesenchymal stem cell-and chondrocyte-seeded hydrogels. Tissue Eng. Part. A. 2009;15:1041–1052. doi: 10.1089/ten.tea.2008.0099.
    1. Erickson I.E., Kestle S.R., Zellars K.H., Farrell M.J., Kim M., Burdick J.A., Mauck R.L. High mesenchymal stem cell seeding densities in hyaluronic acid hydrogels produce engineered cartilage with native tissue properties. Acta Biomater. 2012;8:3027–3034. doi: 10.1016/j.actbio.2012.04.033.
    1. Park J.Y., Gao G., Jang J., Cho D.-W. 3D printed structures for delivery of biomolecules and cells: Tissue repair and regeneration. J. Mater. Chem. 2016;4:7521–7539. doi: 10.1039/C6TB01662F.
    1. Mortisen D., Peroglio M., Alini M., Eglin D. Tailoring thermoreversible hyaluronan hydrogels by “click” chemistry and RAFT polymerization for cell and drug therapy. Biomacromolecules. 2010;11:1261–1272. doi: 10.1021/bm100046n.
    1. Ávila H.M., Schwarz S., Rotter N., Gatenholm P. 3D bioprinting of human chondrocyte-laden nanocellulose hydrogels for patient-specific auricular cartilage regeneration. Bioprinting. 2016;1:22–35. doi: 10.1016/j.bprint.2016.08.003.
    1. Giannitelli S.M., Accoto D., Trombetta M., Rainer A. Current trends in the design of scaffolds for computer-aided tissue engineering. Acta Biomater. 2014;10:580–594. doi: 10.1016/j.actbio.2013.10.024.

Source: PubMed

3
購読する