Breast Cancer and Its Relationship with the Microbiota

Mariana F Fernández, Iris Reina-Pérez, Juan Manuel Astorga, Andrea Rodríguez-Carrillo, Julio Plaza-Díaz, Luis Fontana, Mariana F Fernández, Iris Reina-Pérez, Juan Manuel Astorga, Andrea Rodríguez-Carrillo, Julio Plaza-Díaz, Luis Fontana

Abstract

The microorganisms that live symbiotically in human beings are increasingly recognized as important players in health and disease. The largest collection of these microorganisms is found in the gastrointestinal tract. Microbial composition reflects both genetic and lifestyle variables of the host. This microbiota is in a dynamic balance with the host, exerting local and distant effects. Microbial perturbation (dysbiosis) could contribute to the risk of developing health problems. Various bacterial genes capable of producing estrogen-metabolizing enzymes have been identified. Accordingly, gut microbiota is capable of modulating estrogen serum levels. Conversely, estrogen-like compounds may promote the proliferation of certain species of bacteria. Therefore, a crosstalk between microbiota and both endogenous hormones and estrogen-like compounds might synergize to provide protection from disease but also to increase the risk of developing hormone-related diseases. Recent research suggests that the microbiota of women with breast cancer differs from that of healthy women, indicating that certain bacteria may be associated with cancer development and with different responses to therapy. In this review, we discuss recent knowledge about the microbiome and breast cancer, identifying specific characteristics of the human microbiome that may serve to develop novel approaches for risk assessment, prevention and treatment for this disease.

Keywords: breast cancer; estrobolome; estrogens; microbiota.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Darbre P.D., Fernandez M.F. Environmental oestrogens and breast cancer: Long-term low-dose effects of mixtures of various chemical combinations. J. Epidemiol. Community Health. 2013;67:203–205. doi: 10.1136/jech-2012-201362.
    1. GLOBOCAN Cancer Fact Sheets: Breast Cancer. [(accessed on 22 May 2018)];2012 Available online: .
    1. Ghoncheh M., Pournamdar Z., Salehiniya H. Incidence and mortality and epidemiology of breast cancer in the world. Asian Pac. J. Cancer Prev. 2016;17:43–46. doi: 10.7314/APJCP.2016.17.S3.43.
    1. Ferlay J., Soerjomataram I., Dikshit R., Eser S., Mathers C., Rebelo M., Parkin D.M., Forman D., Bray F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer. 2015;136:E359–E386. doi: 10.1002/ijc.29210.
    1. Torre L.A., Bray F., Siegel R.L., Ferlay J., Lortet-Tieulent J., Jemal A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015;65:87–108. doi: 10.3322/caac.21262.
    1. Barnes B.B., Steindorf K., Hein R., Flesch-Janys D., Chang-Claude J. Population attributable risk of invasive postmenopausal breast cancer and breast cancer subtypes for modifiable and non-modifiable risk factors. Cancer Epidemiol. 2011;35:345–352. doi: 10.1016/j.canep.2010.11.003.
    1. Lacey J.V., Jr., Kreimer A.R., Buys S.S., Marcus P.M., Chang S.C., Leitzmann M.F., Hoover R.N., Prorok P.C., Berg C.D., Hartge P., et al. Breast cancer epidemiology according to recognized breast cancer risk factors in the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial Cohort. BMC Cancer. 2009;9:84. doi: 10.1186/1471-2407-9-84.
    1. Key T.J., Appleby P.N., Reeves G.K., Roddam A., Dorgan J.F., Longcope C., Stanczyk F.Z., Stephenson H.E., Jr., Falk R.T., Miller R., et al. Endogenous Hormones Breast Cancer Collaborative Group. Body mass index, serum sex hormones, and breast cancer risk in postmenopausal women. J. Natl. Cancer Inst. 2003;95:1218–1226.
    1. Sampson J.N., Falk R.T., Schairer C., Moore S.C., Fuhrman B.J., Dallal C.M., Bauer D.C., Dorgan J.F., Shu X.O., Zheng W., et al. Association of estrogen metabolism with breast cancer risk in different cohorts of postmenopausal women. Cancer Res. 2017;77:918–925. doi: 10.1158/0008-5472.CAN-16-1717.
    1. Anderson W.F., Rosenberg P.S., Prat A., Perou C.M., Sherman M.E. How many etiological subtypes of breast cancer: Two, three, four, or more? J. Natl. Cancer Inst. 2014;106 doi: 10.1093/jnci/dju165.
    1. Gierach G.L., Burke A., Anderson W.F. Epidemiology of triple negative breast cancers. Breast Dis. 2010;32:5–24. doi: 10.3233/BD-2010-0319.
    1. Brown S.B., Hankinson S.E. Endogenous estrogens and the risk of breast, endometrial, and ovarian cancers. Steroids. 2015;99:8–10. doi: 10.1016/j.steroids.2014.12.013.
    1. Fuhrman B.J., Feigelson H.S., Flores R., Gail M.H., Xu X., Ravel J., Goedert J.J. Associations of the fecal microbiome with urinary estrogens and estrogen metabolites in postmenopausal women. J. Clin. Endocrinol. Metab. 2014;99:4632–4640. doi: 10.1210/jc.2014-2222.
    1. Human Microbiome Project Consortium Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–214. doi: 10.1038/nature11234.
    1. Costello K., Lauber C.L., Hamady M., Fierer N., Gordon J.I., Knight R. Bacterial community variation in human body habitats across space and time. Science. 2009;326:1694–1697. doi: 10.1126/science.1177486.
    1. Schlaeppi K., Bulgarelli D. The plant microbiome at work. Mol. Plant Microbe Interact. 2015;28:212–217. doi: 10.1094/MPMI-10-14-0334-FI.
    1. Eren A.M., Maignien L., Sul W.J., Murphy L.G., Grim S.L., Morrison H.G., Sogin M.L. Oligotyping: Differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol. Evol. 2013;4:1111–1119. doi: 10.1111/2041-210X.12114.
    1. Tikhonov M., Leach R.W., Wingreen N.S. Interpreting 16S metagenomic data without clustering to achieve sub-OTU resolution. ISME J. 2015;9:68–80. doi: 10.1038/ismej.2014.117.
    1. Eren A.M., Morrison H.G., Lescault P.J., Reveillaud J., Vineis J.H., Sogin M.L. Minimum entropy decomposition: Unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences. ISME J. 2015;9:968–979. doi: 10.1038/ismej.2014.195.
    1. Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J., Holmes S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869.
    1. Edgar R.C. UNOISE2: Improved error-correction for Illumina 16S and ITS amplicon sequencing. BioRxiv. 2016:081257. doi: 10.1101/081257.
    1. Amir A., McDonald D., Navas-Molina J.A., Kopylova E., Morton J.T., Zech Xu Z., Kightley E.P., Thompson L.R., Hyde E.R., Gonzalez A., et al. Deblur rapidly resolves single-nucleotide community sequence patterns. MSystems. 2017;2:e00191-16. doi: 10.1128/mSystems.00191-16.
    1. Callahan B.J., McMurdie P.J., Holmes S.P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–2643. doi: 10.1038/ismej.2017.119.
    1. Selber-Hnatiw S., Rukundo B., Ahmadi M., Akoubi H., Al-Bizri H., Aliu A.F., Ambeaghen T.U., Avetisyan L., Bahar I., Baird A., et al. Human Gut Microbiota: Toward an Ecology of Disease. Front. Microbiol. 2017;8:1265. doi: 10.3389/fmicb.2017.01265.
    1. Rea D., Coppola G., Palma G., Barbieri A., Luciano A., Del Prete P., Rossetti S., Berretta M., Facchini G., Perdonà S., et al. Microbiota effects on cancer: From risks to therapies. Oncotarget. 2018;9:17915–17927. doi: 10.18632/oncotarget.24681.
    1. Caputi V., Giron M.C. Microbiome-gut-brain axis and toll-like receptors in Parkinson’s disease. Int. J. Mol. Sci. 2018;19:1689. doi: 10.3390/ijms19061689.
    1. Schwabe R., Jobin C. The microbiome and cancer. Nat. Rev. Cancer. 2013;13:800–812. doi: 10.1038/nrc3610.
    1. Lofgren J.L., Whary M.T., Ge Z., Muthupalani S., Taylor N.S., Mobley M., Potter A., Varro A., Eibach D., Suerbaum S., et al. Lack of commensal flora in Helicobacter pylori-infected INS-GAS mice reduces gastritis and delays intraepithelial neoplasia. Gastroenterology. 2011;140:210–220. doi: 10.1053/j.gastro.2010.09.048.
    1. Couturier-Maillard A., Secher T., Rehman A., Normand S., De Arcangelis A., Haesler R., Huot L., Grandjean T., Bressenot A., Delanoye-Crespin A., et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J. Clin. Investig. 2013;123:700–711. doi: 10.1172/JCI62236.
    1. Dapito D.H., Mencin A., Gwak G.Y., Pradere J.P., Jang M.K., Mederacke I., Caviglia J.M., Khiabanian H., Adeyemi A., Bataller R., et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell. 2012;21:504–516. doi: 10.1016/j.ccr.2012.02.007.
    1. Yan X., Yang M., Liu J., Gao R., Hu J., Li J., Zhang L., Shi Y., Guo H., Cheng J., et al. Discovery and validation of potential bacterial biomarkers for lung cancer. Am. J. Cancer Res. 2015;5:3111–3122.
    1. Yu Y., Champer J., Beynet D., Kim J., Friedman A.J. The role of the cutaneous microbiome in skin cancer: Lessons learned from the gut. J. Drugs Dermatol. 2015;14:461–465.
    1. De Martel C., Ferlay J., Franceschi S., Vignat J., Bray F., Forman D., Plummer M. Global burden of cancers attributable to infections in 2008: A review and synthetic analysis. Lancet Oncol. 2012;13:607–615. doi: 10.1016/S1470-2045(12)70137-7.
    1. Keku T.O., Dulal S., Deveaux A., Jovov B., Han X. The gastrointestinal microbiota and colorectal cancer. Am. J. Physiol. Gastrointest. Liver Physiol. 2015;308:G351–G363. doi: 10.1152/ajpgi.00360.2012.
    1. Turnbaugh P.J., Hamady M., Yatsunenko T., Cantarel B.L., Duncan A., Ley R.E., Sogin M.L., Jones W.J., Roe B.A., Affourtit J.P., et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–484. doi: 10.1038/nature07540.
    1. Adlercreutz H. Western diet and Western diseases: Some hormonal and biochemical mechanisms and associations. Scand. J. Clin. Lab. Investig. Suppl. 1990;201:3–23. doi: 10.1080/00365519009085798.
    1. Ye W., Held M., Lagergren J., Engstrand L., Blot W.J., McLaughlin J.K., Nyrén O. Helicobacter pylori infection and gastric atrophy: Risk of adenocarcinoma and squamous-cell carcinoma of the esophagus and adenocarcinoma of the gastric cardia. J. Natl. Cancer Inst. 2004;96:388–396. doi: 10.1093/jnci/djh057.
    1. Robinson K. Helicobacter pylori-mediated protection against extra-gastric immune and inflammatory disorders: The evidence and controversies. Diseases. 2015;3:34–55. doi: 10.3390/diseases3020034.
    1. Grivennikov S.I. Inflammation and colorectal cancer: Colitis-associated neoplasia. Semin. Immunopathol. 2013;35:229–244. doi: 10.1007/s00281-012-0352-6.
    1. Sheflin A.M., Whitney A.K., Weir T.L. Cancer-promoting effects of microbial dysbiosis. Curr. Oncol. Rep. 2014;16:406. doi: 10.1007/s11912-014-0406-0.
    1. Kostic A.D., Gevers D., Pedamallu C.S., Michaud M., Duke F., Earl A.M., Ojesina A.I., Jung J., Bass A.J., Tabernero J., et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012;22:292–298. doi: 10.1101/gr.126573.111.
    1. Mazmanian S.K., Round J.L., Kasper D.L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature. 2008;453:620–625. doi: 10.1038/nature07008.
    1. Yoshimoto S., Loo T.M., Atarashi K., Kanda H., Sato S., Oyadomari S., Iwakura Y., Oshima K., Morita H., Hattori M., et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 2013;499:97–101. doi: 10.1038/nature12347.
    1. Xuan C., Shamonki J.M., Chung A., Dinome M.L., Chung M., Sieling P.A., Lee D.J. Microbial dysbiosis is associated with human breast cancer. PLoS ONE. 2014;9:e83744. doi: 10.1371/journal.pone.0083744.
    1. Wang H., Altemus J., Niazi F., Green H., Calhoun B.C., Sturgis C., Grobmyer S.R., Eng C. Breast tissue, oral and urinary microbiomes in breast cancer. Oncotarget. 2017;8:88122–88138. doi: 10.18632/oncotarget.21490.
    1. Kwa M., Plottel C.S., Blaser M.J., Adams S. The intestinal microbiome and estrogen receptor-positive female breast cancer. Natl. Cancer Inst. 2016;108 doi: 10.1093/jnci/djw029.
    1. Adlercreutz H., Martin F. Biliary excretion and intestinal metabolism of progesterone and estrogens in man. J. Steroid Biochem. 1980;13:231–244. doi: 10.1016/0022-4731(80)90196-X.
    1. Luu T.H., Michel C., Bard J.M., Dravet F., Nazih H., Bobin-Dubigeon C. Intestinal Proportion of Blautia spp. is associated with clinical stage and histoprognostic grade in patients with early-stage breast cancer. Nutr. Cancer. 2017;69:267–275. doi: 10.1080/01635581.2017.1263750.
    1. Plottel C.S., Blaser M.J. Microbiome and malignancy. Cell Host Microbe. 2011;10:324–335. doi: 10.1016/j.chom.2011.10.003.
    1. Yang J., Tan Q., Fu Q., Zhou Y., Hu Y., Tang S., Zhou Y., Zhang J., Qiu J., Lv Q. Gastrointestinal microbiome and breast cancer: Correlations, mechanisms and potential clinical implications. Breast Cancer. 2017;24:220–228. doi: 10.1007/s12282-016-0734-z.
    1. Dabek M., McCrae S.I., Stevens V.J., Duncan S.H., Louis P. Distribution of beta-glucosidase and beta-glucuronidase activity and of beta-glucuronidase gene gus in human colonic bacteria. FEMS Microbiol. Ecol. 2008;66:487–495. doi: 10.1111/j.1574-6941.2008.00520.x.
    1. Goedert J.J., Jones G., Hua X., Xu X., Yu G., Flores R., Falk R.T., Gail M.H., Shi J., Ravel J., et al. Investigation of the association between the fecal microbiota and breast cancer in postmenopausal women: A population-based case-control pilot study. J. Natl. Cancer Inst. 2015;107 doi: 10.1093/jnci/djv147.
    1. Goedert J.J., Hua X., Bielecka A., Okayasu I., Milne G.L., Jones G.S., Fujiwara M., Sinha R., Wan Y., Xu X., et al. Postmenopausal breast cancer and oestrogen associations with the IgA-coated and IgA-noncoated faecal microbiota. Br. J. Cancer. 2018;18:471–479. doi: 10.1038/bjc.2017.435.
    1. Jost T., Lacroix C., Braegger C.P., Rochat F., Chassard C. Vertical mother-neonate transfer of maternal gut bacteria via breastfeeding. Environ. Microbiol. 2014;16:2891–2904. doi: 10.1111/1462-2920.12238.
    1. Bäckhed F., Ding H., Wang T., Hooper L.V., Koh G.Y., Nagy A., Semenkovich C.F., Gordon J.I. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA. 2004;101:15718–15723. doi: 10.1073/pnas.0407076101.
    1. Reeves G.K., Pirie K., Beral V., Green J., Spencer E., Bull D. Million Women Study Collaboration. Cancer incidence and mortality in relation to body mass index in the Million Women Study: Cohort study. BMJ. 2007;335:1134. doi: 10.1136/.
    1. Jandhyala S.M., Talukdar R., Subramanyam C., Vuyyuru H., Sasikala M., Reddy D.N. Role of the normal gut microbiota. World J. Gastroenterol. 2015;21:8787–8803. doi: 10.3748/wjg.v21.i29.8787.
    1. Walters W.A., Xu Z., Knight R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 2014;588:4223–4233. doi: 10.1016/j.febslet.2014.09.039.
    1. Ley R.E., Turnbaugh P.J., Klein S., Gordon J.I. Microbial ecology: Human gut microbes associated with obesity. Nature. 2006;444:1022–1023. doi: 10.1038/4441022a.
    1. Duncan S.H., Lobley G.E., Holtrop G., Ince J., Johnstone A.M., Louis P., Flint H.J. Human colonic microbiota associated with diet, obesity and weight loss. Int. J. Obes. 2008;32:1720–1724. doi: 10.1038/ijo.2008.155.
    1. Zhang H., DiBaise J.K., Zuccolo A., Kudrna D., Braidotti M., Yu Y., Parameswaran P., Crowell M.D., Wing R., Rittmann B.E., et al. Human gut microbiota in obesity and after gastric bypass. Proc. Natl. Acad. Sci. USA. 2009;106:2365–2370. doi: 10.1073/pnas.0812600106.
    1. Bard J.-M., Luu H.T., Dravet F., Michel C., Moyon T., Pagniez A., Nazih H., Bobin-Dubigeon C. Relationship between intestinal microbiota and clinical characteristics of patients with early stage breast cancer. FASEB J. 2015;29:914.2.
    1. Urbaniak C., Cummins J., Brackstone M., Macklaim J.M., Gloor G.B., Baban C.K., Scott L., O’Hanlon D.M., Burton J.P., Francis K.P., et al. Microbiota of human breast tissue. Appl. Environ. Microbiol. 2014;80:3007–3014. doi: 10.1128/AEM.00242-14.
    1. Banerjee S., Wei Z., Tan F., Peck K.N., Shih N., Feldman M., Rebbeck T.R., Alwine J.C., Robertson E.S. Distinct microbiological signatures associated with triple negative breast cancer. Sci. Rep. 2015;5:15162. doi: 10.1038/srep15162.
    1. Chan A.A., Bashir M., Rivas M.N., Duvall K., Sieling P.A., Pieber T.R., Vaishampayan P.A., Love S.M., Lee D.J. Characterization of the microbiome of nipple aspirate fluid of breast cancer survivors. Sci. Rep. 2016;6:28061. doi: 10.1038/srep28061.
    1. Hieken T.J., Chen J., Hoskin T.L., Walther-Antonio M., Johnson S., Ramaker S., Xiao J., Radisky D.C., Knutson K.L., Kalari K.R., et al. The Microbiome of aseptically collected human breast tissue in benign and malignant disease. Sci. Rep. 2016;6:30751. doi: 10.1038/srep30751.
    1. Urbaniak C., Gloor G.B., Brackstone M., Scott L., Tangney M., Reid G. The Microbiota of breast tissue and its association with breast cancer. Appl. Environ. Microbiol. 2016;82:5039–5048. doi: 10.1128/AEM.01235-16.
    1. Yazdi H.R., Movafagh A., Fallah F., Alizadeh Shargh S., Mansouri N., Heidary Pour A., Hashemi M. Evaluation of Methylobacterium radiotolerance and Sphyngomonas yanoikoaie in sentinel lymph nodes of breast cancer cases. Asian Pac. J. Cancer Prev. 2016;17:279–285. doi: 10.7314/APJCP.2016.17.S3.279.
    1. Thompson K.J., Ingle J.N., Tang X., Chia N., Jeraldo P.R., Walther-Antonio M.R., Kandimalla K.K., Johnson S., Yao J.Z., Harrington S.C., et al. A comprehensive analysis of breast cancer microbiota and host gene expression. PLoS ONE. 2017;12:e0188873. doi: 10.1371/journal.pone.0188873.
    1. Banerjee S., Tian T., Wei Z., Shih N., Feldman M.D., Peck K.N., DeMichele A.M., Alwine J.C., Robertson E.S. Distinct microbial signatures associated with different breast cancer types. Front. Microbiol. 2018;9:951. doi: 10.3389/fmicb.2018.00951.
    1. Donnet-Hughes A., Perez P.F., Doré J., Leclerc M., Levenez F., Benyacoub J., Serrant P., Segura-Roggero I., Schiffrin E.J. Potential role of the intestinal microbiota of the mother in neonatal immune education. Proc. Nutr. Soc. 2010;69:407–415. doi: 10.1017/S0029665110001898.
    1. Koller V.J., Marian B., Stidl R., Nersesyan A., Winter H., Simić T., Sontag G., Knasmüller S. Impact of lactic acid bacteria on oxidative DNA damage in human derived colon cells. Food Chem. Toxicol. 2008;46:1221–1229. doi: 10.1016/j.fct.2007.09.005.
    1. Marchesi J.R., Dutilh B.E., Hall N., Peters W.H., Roelofs R., Boleij A., Tjalsma H. Towards the human colorectal cancer microbiome. PLoS ONE. 2011;6:e20447. doi: 10.1371/journal.pone.0020447.
    1. Pawlik T.M., Fritsche H., Coombes K.R., Xiao L., Krishnamurthy S., Hunt K.K., Pusztai L., Chen J.N., Clarke C.H., Arun B., et al. Significant differences in nipple aspirate fluid protein expression between healthy women and those with breast cancer demonstrated by time-of-flight mass spectrometry. Breast Cancer Res. Treat. 2005;89:149–157. doi: 10.1007/s10549-004-1710-4.
    1. Crusz S.M., Balkwill F.R. Inflammation and cancer: Advances and new agents. Nat. Rev. Clin. Oncol. 2015;12:584–596. doi: 10.1038/nrclinonc.2015.105.
    1. Vogtmann E., Goedert J.J. Epidemiologic studies of the human microbiome and cancer. Br. J. Cancer. 2016;114:237–242. doi: 10.1038/bjc.2015.465.
    1. Subbaramaiah K., Morris P.G., Zhou X.K., Morrow M., Du B., Giri D., Kopelovich L., Hudis C.A., Dannenberg A.J. Increased levels of COX-2 and prostaglandin E2 contribute to elevated aromatase expression in inflamed breast tissue of obese women. Cancer Discov. 2012;2:356–365. doi: 10.1158/-11-0241.
    1. Bowers L.W., Brenner A.J., Hursting S.D., Tekmal R.R., deGraffenried L.A. Obesity-associated systemic interleukin-6 promotes pre-adipocyte aromatase expression via increased breast cancer cell prostaglandin E2 production. Breast Cancer Res. Treat. 2015;149:49–57. doi: 10.1007/s10549-014-3223-0.
    1. Gierach G.L., Lacey J.V., Jr., Schatzkin A., Leitzmann M.F., Richesson D., Hollenbeck A.R., Brinton L.A. Nonsteroidal anti-inflammatory drugs and breast cancer risk in the National Institutes of Health-AARP Diet and Health Study. Breast Cancer Res. 2008;10:R38. doi: 10.1186/bcr2089.
    1. Bardia A., Olson J.E., Vachon C.M., Lazovich D., Vierkant R.A., Wang A.H., Limburg P.J., Anderson K.E., Cerhan J.R. Effect of aspirin and other NSAIDs on postmenopausal breast cancer incidence by hormone receptor status: Results from a prospective cohort study. Breast Cancer Res. Treat. 2011;126:149–155. doi: 10.1007/s10549-010-1074-x.
    1. Silva M.T., Galvao T.F., Zimmerman I.R., Pereira M.G., Lopes L.C. Non-aspirin non-steroidal anti-inflammatory drugs for the primary chemoprevention of non-gastrointestinal cancer: Summary of evidence. Curr. Pharm. Des. 2012;18:4047–4070. doi: 10.2174/138161212802083699.
    1. Bowers L.W., Maximo I.X., Brenner A.J., Beeram M., Hursting S.D., Price R.S., Tekmal R.R., Jolly C.A., deGraffenried L.A. NSAID use reduces breast cancer recurrence in overweight and obese women: Role of prostaglandin-aromatase interactions. Cancer Res. 2014;74:4446–4457. doi: 10.1158/0008-5472.CAN-13-3603.
    1. De Pedro M., Baeza S., Escudero M.T., Dierssen-Sotos T., Gómez-Acebo I., Pollán M., Llorca J. Effect of COX-2 inhibitors and other non-steroidal inflammatory drugs on breast cancer risk: A meta-analysis. Breast Cancer Res. Treat. 2015;149:525–536. doi: 10.1007/s10549-015-3267-9.
    1. Yiannakopoulou . Aspirin and NSAIDs for breast cancer chemoprevention. Eur. J. Cancer Prev. 2015;24:416–421. doi: 10.1097/CEJ.0000000000000098.
    1. Zhong S., Chen L., Zhang X., Yu D., Tang J., Zhao J. Aspirin use and risk of breast cancer: Systematic review and meta-analysis of observational studies. Cancer Epidemiol. Biomarkers Prev. 2015;24:1645–1655. doi: 10.1158/1055-9965.EPI-15-0452.
    1. Peterson D.A., McNulty N.P., Guruge J.L., Gordon J.I. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe. 2007;2:328–339. doi: 10.1016/j.chom.2007.09.013.
    1. Pabst O. New concepts in the generation and functions of IgA. Nat. Rev. Immunol. 2012;12:821–832. doi: 10.1038/nri3322.
    1. Ashida H., Ogawa M., Kim M., Mimuro H., Sasakawa C. Bacteria and host interactions in the gut epithelial barrier. Nat. Chem. Biol. 2011;8:36–45. doi: 10.1038/nchembio.741.
    1. Carrega P., Bonaccorsi I., Di Carlo E., Morandi B., Paul P., Rizzello V., Cipollone G., Navarra G., Mingari M.C., Moretta L., et al. CD56(bright)perforin(low) noncytotoxic human NK cells are abundant in both healthy and neoplastic solid tissues and recirculate to secondary lymphoid organs via afferent lymph. J. Immunol. 2014;192:3805–3815. doi: 10.4049/jimmunol.1301889.
    1. Kosaka A., Yan H., Ohashi S., Gotoh Y., Sato A., Tsutsui H., Kaisho T., Toda T., Tsuji N.M. Lactococcus lactis subsp. cremoris FC triggers IFN-γ production from NK and T cells via IL-12 and IL-18. Int. Immunopharmacol. 2012;14:729–733. doi: 10.1016/j.intimp.2012.10.007.
    1. Hanahan D., Weinberg R.A. Hallmarks of cancer: The next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013.
    1. Cavuoto P., Fenech M.F. A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extension. Cancer Treat. Rev. 2012;38:726–736. doi: 10.1016/j.ctrv.2012.01.004.
    1. Hoffman R.M. Development of recombinant methioninase to target the general cancer-specific metabolic defect of methionine dependence: A 40-year odyssey. Expert Opin. Biol. Ther. 2015;15:21–31. doi: 10.1517/14712598.2015.963050.
    1. Yaghjyan L., Colditz G.A. Estrogens in the breast tissue: A systematic review. Cancer Causes Control. 2011;22:29–40. doi: 10.1007/s10552-011-9729-4.
    1. To S.Q., Knower K.C., Cheung V., Simpson E.R., Clyne C.D. Transcriptional control of local estrogen formation by aromatase in the breast. J. Steroid Biochem. Mol. Biol. 2015;145:179–186. doi: 10.1016/j.jsbmb.2014.05.004.
    1. Flores R., Shi J., Gail M.H., Gajer P., Ravel J., Goedert J.J. Association of fecal microbial diversity and taxonomy with selected enzymatic functions. PLoS ONE. 2012;7:e39745. doi: 10.1371/journal.pone.0039745.
    1. DeLuca J.A., Allred K.F., Menon R., Riordan R., Weeks B.R., Jayaraman A., Allred C.D. Bisphenol-A alters microbiota metabolites derived from aromatic amino acids and worsens disease activity during colitis. Exp. Biol. Med. 2018;243:864–875. doi: 10.1177/1535370218782139.
    1. Armstrong H., Bording-Jorgensen M., Dijk S., Wine E. The complex interplay between chronic inflammation, the microbiome, and cancer: Understanding disease progression and what we can do to prevent it. Cancers. 2018;10:83. doi: 10.3390/cancers10030083.

Source: PubMed

3
購読する