Causes of Performance Degradation in Non-invasive Electromyographic Pattern Recognition in Upper Limb Prostheses

Iris Kyranou, Sethu Vijayakumar, Mustafa Suphi Erden, Iris Kyranou, Sethu Vijayakumar, Mustafa Suphi Erden

Abstract

Surface Electromyography (EMG)-based pattern recognition methods have been investigated over the past years as a means of controlling upper limb prostheses. Despite the very good reported performance of myoelectric controlled prosthetic hands in lab conditions, real-time performance in everyday life conditions is not as robust and reliable, explaining the limited clinical use of pattern recognition control. The main reason behind the instability of myoelectric pattern recognition control is that EMG signals are non-stationary in real-life environments and present a lot of variability over time and across subjects, hence affecting the system's performance. This can be the result of one or many combined changes, such as muscle fatigue, electrode displacement, difference in arm posture, user adaptation on the device over time and inter-subject singularity. In this paper an extensive literature review is performed to present the causes of the drift of EMG signals, ways of detecting them and possible techniques to counteract for their effects in the application of upper limb prostheses. The suggested techniques are organized in a table that can be used to recognize possible problems in the clinical application of EMG-based pattern recognition methods for upper limb prosthesis applications and state-of-the-art methods to deal with such problems.

Keywords: EMG concept drift; EMG drifts; EMG variability between users; EMG variability with time; electromyography; upper limb prostheses applications.

Figures

Figure 1
Figure 1
Graph representing algorithm in Luttmann et al. (2000). Increase of with shift of median frequency (MDF) to the higher frequencies corresponds to force increase whereas increase in amplitude and shift to the lower frequencies indicates muscle fatigue. Similarly a decrease of the with simultaneous shift to the lower frequencies of the median frequency indicates force decrease whereas shift to the higher frequencies recovery from fatigue.

References

    1. Adewuyi A. A., Hargrove L. J., Kuiken T. A. (2016). Evaluating emg feature and classifier selection for application to partial-hand prosthesis control. Front. Neurorobot. 10:15. 10.3389/fnbot.2016.00015
    1. Ahsan M., Ibrahimy M., Khalifa O. (2011). Hand motion detection from emg signals by using ann based classifier for human computer interaction, in Modeling, Simulation and Applied Optimization (ICMSAO), 2011 4th International Conference on (Kuala Lumpur: ), 1–6.
    1. Alkan A., Günay M. (2012). Identification of emg signals using discriminant analysis and svm classifier. Exp. Syst. Appl. 39, 44–47. 10.1016/j.eswa.2011.06.043
    1. Al-Mulla M. R., Sepulveda F. (2010). Novel feature modelling the prediction and detection of semg muscle fatigue towards an automated wearable system. Sensors 10, 4838–4854. 10.3390/s100504838
    1. Al-Mulla M. R., Sepulveda F., Colley M., Kattan A. (2009). Classification of localized muscle fatigue with genetic programming on semg during isometric contraction, in 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Minneapolis, MN: ), 2633–2638.
    1. Amsuss S., Paredes L. P., Rudigkeit N., Graimann B., Herrmann M. J., Farina D. (2013). Long term stability of surface emg pattern classification for prosthetic control, in 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (Osaka: ), 3622–3625.
    1. Antuvan C. W., Ison M., Artemiadis P. (2014). Embedded human control of robots using myoelectric interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 820–827. 10.1109/TNSRE.2014.2302212
    1. Arendt-Nielsen L., Mills K. (1985). The relationship between mean power frequency of the EMG spectrum and muscle fibre conduction velocity. Electroencephalogr. Clin. Neurophysiol. 60, 130–134. 10.1016/0013-4694(85)90019-7
    1. Artemiadis P. K., Kyriakopoulos K. J. (2008). Assessment of muscle fatigue using a probabilistic framework for an emg-based robot control scenario, in BioInformatics and BioEngineering, 2008. BIBE 2008. 8th IEEE International Conference on (Athens: ), 1–6.
    1. Artemiadis P. K., Kyriakopoulos K. J. (2010). An EMG-based robot control scheme robust to time-varying EMG signal features. IEEE Trans. Inform. Technol. Biomed. 14, 582–588. 10.1109/TITB.2010.2040832
    1. Artemiadis P. K., Kyriakopoulos K. J. (2011). A switching regime model for the EMG-based control of a robot arm. IEEE Trans. Syst. Man Cybern. B (Cybernetics) 41, 53–63. 10.1109/TSMCB.2010.2045120
    1. Atzori M., Cognolato M., Mller H. (2016). Deep learning with convolutional neural networks applied to electromyography data: a resource for the classification of movements for prosthetic hands. Front. Neurorobot. 10:9. 10.3389/fnbot.2016.00009
    1. Atzori M., Gijsberts A., Castellini C., Caputo B., Hager A.-G. M., Elsig S., et al. . (2014). Electromyography data for non-invasive naturally-controlled robotic hand prostheses. Sci. Data 1:140053. 10.1038/sdata.2014.53
    1. Bartuzi P., Roman-Liu D. (2014). Assessment of muscle load and fatigue with the usage of frequency and time-frequency analysis of the emg signal. Acta Bioeng. Biomech. 16, 31–39. 10.5277/abb140204
    1. Basmajian J. V., De Luca C. (1985). Muscles Alive. Baltimore, MD: Williams & Wilkins.
    1. Betthauser J. L., Hunt C. L., Osborn L. E., Kaliki R. R., Thakor N. V. (2016). Limb-position robust classification of myoelectric signals for prosthesis control using sparse representations, in 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (Orlando, FL: ), 6373–6376.
    1. Biddiss E., Chau T. (2007). Upper-limb prosthetics: critical factors in device abandonment. Am. J. Phys. Med. Rehabil. 86, 977–987. 10.1097/PHM.0b013e3181587f6c
    1. Bitzer S., van der Smagt P. (2006). Learning emg control of a robotic hand: towards active prostheses, in Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006 (Orlando, FL: ), 2819–2823.
    1. Bonato P., Roy S. H., Knaflitz M., De Luca C. J. (2001). Time-frequency parameters of the surface myoelectric signal for assessing muscle fatigue during cyclic dynamic contractions. IEEE Trans. Biomed. Eng. 48, 745–753. 10.1109/10.930899
    1. Boschmann A., Platzner M. (2012). Reducing classification accuracy degradation of pattern recognition based myoelectric control caused by electrode shift using a high density electrode array, in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (San Diego, CA: ), 4324–4327.
    1. Boschmann A., Platzner M. (2014). Towards robust hd emg pattern recognition: reducing electrode displacement effect using structural similarity, in Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE (IEEE; ) (Chicago, IL: ), 4547–4550.
    1. Côté-Allard U., Fall C. L., Drouin A., Campeau-Lecours A., Gosselin C., Glette K., et al. (2018). Deep learning for electromyographic hand gesture signal classification by leveraging transfer learning. arXiv:1801.07756 [Preprint].
    1. Camata T. V., Dantas J. L., Abro T., Brunetto M. A. O. C., Moraes A. C., Altimari L. R. (2010). Fourier and wavelet spectral analysis of emg signals in supramaximal constant load dynamic exercise, in 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology (Buenos Aires: ), 1364–1367.
    1. Cao H., Dib I. E. H., Antoni J., Marque C. (2007). Analysis of muscular fatigue during cyclic dynamic movement, in 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Lyon: ), 1880–1883.
    1. Castellini C., Fiorilla A. E., Sandini G. (2009). Multi-subject/daily-life activity emg-based control of mechanical hands. J. NeuroEng. Rehabil. 6, 1–11. 10.1186/1743-0003-6-41
    1. Castellini C., van der Smagt P. (2009). Surface emg in advanced hand prosthetics. Biol. Cybern. 100, 35–47. 10.1007/s00422-008-0278-1
    1. Chan A., Englehart K. (2005). Continuous myoelectric control for powered prostheses using hidden markov models. IEEE Trans. Biomed. Eng. 52, 121–124. 10.1109/TBME.2004.836492
    1. Chattopadhyay R., Krishnan N. C., Panchanathan S. (2011). Topology preserving domain adaptation for addressing subject based variability in semg signal, in AAAI Spring Symposium: Computational Physiology (Arlington, VA: ), 4–9.
    1. Chen L., Geng Y., Li G. (2011). Effect of upper-limb positions on motion pattern recognition using electromyography, in Image and Signal Processing (CISP), 2011 4th International Congress on, Vol. 1 (Shanghai: ), 139–142.
    1. Chen X., Zhang D., Zhu X. (2013). Application of a self-enhancing classification method to electromyography pattern recognition for multifunctional prosthesis control. J. NeuroEng. Rehabil. 10:44. 10.1186/1743-0003-10-44
    1. Christodoulou C., Pattichis C. (1999). Unsupervised pattern recognition for the classification of EMG signals. IEEE Trans. Biomed. Eng. 46, 169–178. 10.1109/10.740879
    1. Cifrek M., Medved V., Tonković S., Ostojić S. (2009). Surface EMG based muscle fatigue evaluation in biomechanics. Clin. Biomech. 24, 327–340. 10.1016/j.clinbiomech.2009.01.010
    1. Cobb S., Forbes A. (1923). Electromyographic studies of muscular fatigue in man. Amer. J. Physiol. 65, 234–251. 10.1152/ajplegacy.1923.65.2.234
    1. Daley H., Englehart K., Hargrove L., Kuruganti U. (2012). High density electromyography data of normally limbed and transradial amputee subjects for multifunction prosthetic control. J. Electromyogr. Kinesiol. 22, 478–484. 10.1016/j.jelekin.2011.12.012
    1. De Luca C. J. (1983). Myoelectrical manifestations of localized muscular fatigue in humans. Crit. Rev. Biomed. Eng. 11, 251–279.
    1. De Luca C. J. (1997). The use of surface electromyography in biomechanics. J. Appl. Biomech. 13, 135–163. 10.1123/jab.13.2.135
    1. De Luca C. J., Van Dyk E. J. (1975). Derivation of some parameters of myoelectric signals recorded during sustained constant force isometric contractions. Biophys. J. 15, 1167–1180. 10.1016/S0006-3495(75)85893-0
    1. Du Y., Jin W., Wei W., Hu Y., Geng W. (2017). Surface EMG-based inter-session gesture recognition enhanced by deep domain adaptation. Sensors 17:458. 10.3390/s17030458
    1. Enoka R. M., Duchateau J. (2007). Muscle fatigue: what, why and how it influences muscle function. J. Physiol. 586(Pt 1): 11–23. 10.1113/jphysiol.2007.139477
    1. Fang Y., Liu H. (2014). Robust semg electrodes configuration for pattern recognition based prosthesis control, in 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (San Diego, CA: ), 2210–2215.
    1. Fitts P. M., Posner M. I. (1967). Human Performance. Belmont, CA: Brooks/Cole.
    1. Fougner A., Scheme E., Chan A. D., Englehart K., Stavdahl Ø. (2011a). A multi-modal approach for hand motion classification using surface emg and accelerometers, in Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE (IEEE: ), 4247–4250.
    1. Fougner A., Scheme E., Chan A. D. C., Englehart K., Stavdahl O. (2011b). Resolving the limb position effect in myoelectric pattern recognition. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 644–651. 10.1109/TNSRE.2011.2163529
    1. Fukuda O., Tsuji T., Kaneko M. (1997). An EMG controlled robotic manipulator using neural networks, in Robot and Human Communication, 1997. RO-MAN '97. Proceedings., 6th IEEE International Workshop on (Sendai: ), 442–447.
    1. Fukuda O., Tsuji T., Kaneko M., Otsuka A. (2003). A human-assisting manipulator teleoperated by EMG signals and arm motions. IEEE Trans. Robot. Automat. 19, 210–222. 10.1109/TRA.2003.808873
    1. Gazzoni M., Celadon N., Mastrapasqua D., Paleari M., Margaria V., Ariano P. (2014). Quantifying forearm muscle activity during wrist and finger movements by means of multi-channel electromyography. PLoS ONE 9:e109943. 10.1371/journal.pone.0109943
    1. Geng Y., Zhou P., Li G. (2012). Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees. J. NeuroEng. Rehabil. 9, 1–11. 10.1186/1743-0003-9-74
    1. Gibson A. E., Ison M. R., Artemiadis P. (2013). User-independent hand motion classification with electromyography, in ASME 2013 Dynamic Systems and Control Conference (Stanford, CA: American Society of Mechanical Engineers; ).
    1. Gijsberts A., Atzori M., Castellini C., Mller H., Caputo B. (2014a). Movement error rate for evaluation of machine learning methods for semg-based hand movement classification. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 735–744. 10.1109/TNSRE.2014.2303394
    1. Gijsberts A., Bohra R., Sierra Gonzlez D., Werner A., Nowak M., Caputo B., et al. . (2014b). Stable myoelectric control of a hand prosthesis using non-linear incremental learning. Front. Neurorobot. 8:8. 10.3389/fnbot.2014.00008
    1. Guo W., Sheng X., Liu J., Hua L., Zhang D., Zhu X. (2015). Towards zero training for myoelectric control based on a wearable wireless semg armband, in 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM) (Busan: ), 196–201.
    1. Hägg G. (1981). Electromyographic fatigue analysis based on the number of zero crossings. Pflügers Archiv 391, 78–80. 10.1007/BF00580699
    1. Hahne J. M., Farina D., Jiang N., Liebetanz D. (2016). A novel percutaneous electrode implant for improving robustness in advanced myoelectric control. Front. Neurosci. 10:114. 10.3389/fnins.2016.00114
    1. Hahne J. M., Graimann B., Muller K. (2012). Spatial filtering for robust myoelectric control. IEEE Trans. Biomed. Eng. 59, 1436–1443. 10.1109/TBME.2012.2188799
    1. Hargrove L., Englehart K., Hudgins B. (2006). The effect of electrode displacements on pattern recognition based myoelectric control, in Engineering in Medicine and Biology Society, 2006. EMBS '06. 28th Annual International Conference of the IEEE (New York, NY: ), 2203–2206.
    1. Hargrove L., Englehart K., Hudgins B. (2008). A training strategy to reduce classification degradation due to electrode displacements in pattern recognition based myoelectric control. Biomed. Signal Process. Control 3, 175–180. 10.1016/j.bspc.2007.11.005
    1. Hargrove L., Losier Y., Lock B., Englehart K., Hudgins B. (2007). A real-time pattern recognition based myoelectric control usability study implemented in a virtual environment, in 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Lyon: ), 4842–4845.
    1. Hargrove L., Zhou P., Englehart K., Kuiken T. A. (2009). The effect of ecg interference on pattern-recognition-based myoelectric control for targeted muscle reinnervated patients. IEEE Trans. Biomed. Eng. 56, 2197–2201. 10.1109/TBME.2008.2010392
    1. He J., Zhang D., Jiang N., Sheng X., Farina D., Zhu X. (2015). User adaptation in long-term, open-loop myoelectric training: implications for emg pattern recognition in prosthesis control. J. Neural Eng. 12:046005. 10.1088/1741-2560/12/4/046005
    1. He J., Zhang D., Sheng X., Zhu X. (2013). Effects of long-term myoelectric signals on pattern recognition, in International Conference on Intelligent Robotics and Applications (Berlin, Heidelberg: Springer; ), 396–404.
    1. Huang H., Zhang F., Sun Y. L., He H. (2010). Design of a robust emg sensing interface for pattern classification. J. Neural Eng. 7:056005. 10.1088/1741-2560/7/5/056005
    1. Hudgins B., Parker P., Scott R. N. (1993). A new strategy for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 40, 82–94. 10.1109/10.204774
    1. Inbar G. F., Paiss O., Allin J., Kranz H. (1986). Monitoring surface EMG spectral changes by the zero crossing rate. Med. Biol. Eng. Comput. 24, 10–18. 10.1007/BF02441600
    1. Ison M., Antuvan C. W., Artemiadis P. (2014). Learning efficient control of robots using myoelectric interfaces, in 2014 IEEE International Conference on Robotics and Automation (ICRA) (Hong Kong: ), 2880–2885.
    1. Ison M., Artemiadis P. (2015). Proportional myoelectric control of robots: muscle synergy development drives performance enhancement, retainment, and generalization. IEEE Trans. Robot. 31, 259–268. 10.1109/TRO.2015.2395731
    1. Ison M., Vujaklija I., Whitsell B., Farina D., Artemiadis P. (2016). High-density electromyography and motor skill learning for robust long-term control of a 7-dof robot arm. IEEE Trans. Neural Syst. Rehabil. Eng. 24, 424–433. 10.1109/TNSRE.2015.2417775
    1. Ison M. R., Artemiadis P. (2013). Beyond user-specificity for emg decoding using multiresolution muscle synergy analysis, in ASME 2013 Dynamic Systems and Control Conference (Stanford, CA: American Society of Mechanical Engineers; ).
    1. Jain S., Singhal G., Smith R. J., Kaliki R., Thakor N. (2012). Improving long term myoelectric decoding, using an adaptive classifier with label correction, in 2012 4th IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) (Rome: ), 532–537.
    1. Jiang N., Muceli S., Graimann B., Farina D. (2013). Effect of arm position on the prediction of kinematics from emg in amputees. Med. Biol. Eng. Comput. 51, 143–151. 10.1007/s11517-012-0979-4
    1. Jiang N., Vujaklija I., Rehbaum H., Graimann B., Farina D. (2014). Is accurate mapping of EMG signals on kinematics needed for precise online myoelectric control? IEEE Trans. Neural Syst. Rehabil. Eng. 22, 549–558. 10.1109/TNSRE.2013.2287383
    1. Kato R., Fujita T., Yokoi H., Arai T. (2006a). Adaptable emg prosthetic hand using on-line learning method -investigation of mutual adaptation between human and adaptable machine, in ROMAN 2006 - The 15th IEEE International Symposium on Robot and Human Interactive Communication (Hatfield: ), 599–604.
    1. Kato R., Yokoi H., Arai T. (2006b). Real-time learning method for adaptable motion-discrimination using surface EMG signal, in 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (Beijing: ), 2127–2132.
    1. Kaufmann P., Englehart K., Platzner M. (2010). Fluctuating EMG signals: investigating long-term effects of pattern matching algorithms, in Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE (Buenos Aires: IEEE; ), 6357–6360.
    1. Khushaba R. N. (2014). Correlation analysis of electromyogram signals for multiuser myoelectric interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 745–755. 10.1109/TNSRE.2014.2304470
    1. Khushaba R. N., Al-Timemy A., Kodagoda S., Nazarpour K. (2016). Combined influence of forearm orientation and muscular contraction on emg pattern recognition. Exp. Syst. Appl. 61, 154–161. 10.1016/j.eswa.2016.05.031
    1. Khushaba R. N., Shi L., Kodagoda S. (2012). Time-dependent spectral features for limb position invariant myoelectric pattern recognition, in Communications and Information Technologies (ISCIT), 2012 International Symposium on (Dallas, TX: IEEE; ), 1015–1020.
    1. Khushaba R. N., Takruri M., Miro J. V., Kodagoda S. (2014). Towards limb position invariant myoelectric pattern recognition using time-dependent spectral features. Neural Netw. 55, 42–58. 10.1016/j.neunet.2014.03.010
    1. Kim J.-S., Jeong H., Son W. (2004). A new means of HCI: EMG-mouse, in Systems, Man and Cybernetics, 2004 IEEE International Conference on (The Hague: ), Vol. 1, 100–104.
    1. Krasoulis A., Kyranou I., Erden M. S., Nazarpour K., Vijayakumar S. (2017). Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements. J. NeuroEng. Rehabil. 14:71. 10.1186/s12984-017-0284-4
    1. Kuiken T. A., Li G., Lock B. A., Lipschutz R. D., Miller L. A., Stubblefield K. A., et al. . (2009). Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA 301, 619–628. 10.1001/jama.2009.116
    1. Kumar D. K., Pah N. D., Bradley A. (2003). Wavelet analysis of surface electromyography. IEEE Trans. Neural Syst. Rehabil. Eng. 11, 400–406. 10.1109/TNSRE.2003.819901
    1. Kwatny E., Thomas D. H., Kwatny H. G. (1970). An application of signal processing techniques to the study of myoelectric signals. IEEE Trans. Biomed. Eng. BME-17, 303–313. 10.1109/TBME.1970.4502758
    1. Kyranou I., Krasoulis A., Erden M. S., Nazarpour K., Vijayakumar S. (2016). Real-time classification of multi-modal sensory data for prosthetic hand control, in 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob) (Singapore: ), 536–541.
    1. Laming D. R. J. (1969). Information, theory of choice-reaction times. new york: Academic press, 1968. Behav. Sci. 14, 330–333. 10.1002/bs.3830140408
    1. LeCun Y., Bengio Y., Hinton G. (2015). Deep learning. Nature 521, 436–444. 10.1038/nature14539
    1. Lindstrom L., Magnusson R., Petersen I. (1970). Muscular fatigue and action potential conduction velocity changes studied with frequency analysis of emg signals. Electromyography 10, 341–356.
    1. Liu J. (2015). Adaptive myoelectric pattern recognition toward improved multifunctional prosthesis control. Med. Eng. Phys. 37, 424–430. 10.1016/j.medengphy.2015.02.005
    1. Liu J., Sheng X., Zhang D., He J., Zhu X. (2016a). Reduced daily recalibration of myoelectric prosthesis classifiers based on domain adaptation. IEEE J. Biomed. Health Inform. 20, 166–176. 10.1109/JBHI.2014.2380454
    1. Liu J., Sheng X., Zhang D., Jiang N., Zhu X. (2016b). Towards zero retraining for myoelectric control based on common model component analysis. IEEE Trans. Neural Syst. Rehabil. Eng. 24, 444–454. 10.1109/TNSRE.2015.2420654
    1. Liu J., Zhang D., He J., Zhu X. (2012). Effect of dynamic change of arm position on myoelectric pattern recognition, in 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO) (Guangzhou: ), 1470–1475.
    1. Liu J., Zhang D., Sheng X., Zhu X. (2014). Quantification and solutions of arm movements effect on SEMG pattern recognition. Biomed. Signal Process. Control 13, 189–197. 10.1016/j.bspc.2014.05.001
    1. Lock B., Englehart K., Hudgins B. (2005). Real-time myoelectric control in a virtual environment to relate usability vs. accuracy, in Myoelectric Symposium (Fredericton, NB: ).
    1. Lock B. A., Simon A. M., Stubblefield K., Hargrove L. J. (2011). Prosthesis-guided training for practical use of pattern recognition control of prostheses, in Myoelectric Symposium (Fredericton, NB: ).
    1. López N. M., di Sciascio F., Soria C. M., Valentinuzzi M. E. (2009). Robust emg sensing system based on data fusion for myoelectric control of a robotic arm. BioMed. Eng. OnLine 8:5. 10.1186/1475-925X-8-5
    1. Lucas M.-F., Gaufriau A., Pascual S., Doncarli C., Farina D. (2008). Multi-channel surface emg classification using support vector machines and signal-based wavelet optimization. Biomed. Signal Process. Control 3, 169–174. 10.1016/j.bspc.2007.09.002
    1. Luttmann A., Jäger M., Laurig W. (2000). Electromyographical indication of muscular fatigue in occupational field studies. Int. J. Indust. Ergon. 25, 645–660. 10.1016/S0169-8141(99)00053-0
    1. MacIsaac D., Parker P. A., Scott R. N. (2001). The short-time fourier transform and muscle fatigue assessment in dynamic contractions. J. Electromyogr. Kinesiol. 11, 439–449. 10.1016/S1050-6411(01)00021-9
    1. Mainardi E., Urbano E., Davalli A. (2008). Design of a new EMG sensor for upper limb prosthetic control and real time frequency analysis, in Myoelectric Symposium (Fredericton, NB: ).
    1. Masuda T., Miyano H., Sadoyama T. (1982). The measurement of muscle fiber conduction velocity using a gradient threshold zero-crossing method. IEEE Trans. Biomed. Eng. 10, 673–678. 10.1109/TBME.1982.324859
    1. Matsubara T., Hyon S. H., Morimoto J. (2011). Learning and adaptation of a stylistic myoelectric interface: EMG-based robotic control with individual user differences, in 2011 IEEE International Conference on Robotics and Biomimetics (Phuket: ), 390–395.
    1. Matsubara T., Morimoto J. (2013). Bilinear modeling of EMG signals to extract user-independent features for multiuser myoelectric interface. IEEE Trans. Biomed. Eng. 60, 2205–2213. 10.1109/TBME.2013.2250502
    1. Merletti R., Knaflitz M., De Luca C. (1990). Myoelectric manifestations of fatigue in voluntary and electrically elicited contractions. J. Appl. Physiol. 69, 1810–1820. 10.1152/jappl.1990.69.5.1810
    1. Merletti R., Sabbahi M. A., De Luca C. J. (1984). Median frequency of the myoelectric signal. Eur. J. Appl. Physiol. Occupat. Physiol. 52, 258–265. 10.1007/BF01015206
    1. Mosier K. M., Scheidt R. A., Acosta S., Mussa-Ivaldi F. A. (2005). Remapping hand movements in a novel geometrical environment. J. Neurophysiol. 94, 4362–4372. 10.1152/jn.00380.2005
    1. Muceli S., Jiang N., Farina D. (2014). Extracting signals robust to electrode number and shift for online simultaneous and proportional myoelectric control by factorization algorithms. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 623–633. 10.1109/TNSRE.2013.2282898
    1. Naik G. R., Nguyen H. T. (2015). Nonnegative matrix factorization for the identification of emg finger movements: evaluation using matrix analysis. IEEE J. Biomed. Health Inform. 19, 478–485. 10.1109/JBHI.2014.2326660
    1. Naik G. R., Selvan S. E., Gobbo M., Acharyya A., Nguyen H. T. (2016). Principle component analysis applied to surface electromyography: a comprehensive review. IEEE Access. 4, 4025–4037. 10.1109/ACCESS.2016.2593013
    1. Navaneethakrishna M., Ramakrishnan S. (2014). Multiscale feature based analysis of surface emg signals under fatigue and non-fatigue conditions, in 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Chicago, IL: ), 4627–4630.
    1. Nishikawa D., Yu W., Maruishi M., Watanabe I., Yokoi H., Mano Y., et al. (2000). On-line learning based electromyogram to forearm motion classifier with motor skill evaluation. JSME Int. J. Ser. C 43, 906–915. 10.1299/jsmec.43.906
    1. Orabona F., Castellini C., Caputo B., Fiorilla A. E., Sandini G. (2009). Model adaptation with least-squares svm for adaptive hand prosthetics, in Robotics and Automation, 2009. ICRA '09. IEEE International Conference on (Kobe: ), 2897–2903.
    1. Ortiz-Catalan M., Brånemark R., Håkansson B. (2013). Biopatrec: a modular research platform for the control of artificial limbs based on pattern recognition algorithms. Source Code Biol. Med. 8:11. 10.1186/1751-0473-8-11
    1. Ortiz-Catalan M., Rouhani F., Brånemark R., Håkansson B. (2015). Offline accuracy: a potentially misleading metric in myoelectric pattern recognition for prosthetic control, in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (Milan: ), 1140–1143.
    1. Paiss O., Inbar G. F. (1987). Autoregressive modeling of surface emg and its spectrum with application to fatigue. IEEE Trans. Biomed. Eng. BME-34, 761–770.
    1. Pan L., Zhang D., Jiang N., Sheng X., Zhu X. (2015). Improving robustness against electrode shift of high density EMG for myoelectric control through common spatial patterns. J. Neuroeng. Rehabil. 12:110. 10.1186/s12984-015-0102-9
    1. Park E., Meek S. G. (1993). Fatigue compensation of the electromyographic signal for prosthetic control and force estimation. IEEE Trans. Biomed. Eng. 40, 1019–1023. 10.1109/10.247800
    1. Park K. H., Suk H. I., Lee S. W. (2016). Position-independent decoding of movement intention for proportional myoelectric interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 24, 928–939. 10.1109/TNSRE.2015.2481461
    1. Patricia N., Tommasit T., Caputo B. (2014). Multi-source adaptive learning for fast control of prosthetics hand, in Pattern Recognition (ICPR), 2014 22nd International Conference on (Stockholm: IEEE; ), 2769–2774.
    1. Phinyomark A., Phukpattaranont P., Limsakul C. (2012a). Feature reduction and selection for emg signal classification. Exp. Syst. Appl. 39, 7420–7431. 10.1016/j.eswa.2012.01.102
    1. Phinyomark A., Phukpattaranont P., Limsakul C. (2012b). Investigating long-term effects of feature extraction methods for continuous emg pattern classification. Fluctuat. Noise Lett. 11:1250028 10.1142/S0219477512500289
    1. Phinyomark A., Quaine F., Charbonnier S., Serviere C., Tarpin-Bernard F., Laurillau Y. (2013a). EMG feature evaluation for improving myoelectric pattern recognition robustness. Exp. Syst. Appl. 40, 4832–4840. 10.1016/j.eswa.2013.02.023
    1. Phinyomark A., Quaine F., Charbonnier S., Serviere C., Tarpin-Bernard F., Laurillau Y. (2013b). A feasibility study on the use of anthropometric variables to make muscle-computer interface more practical. Eng. Appl. Artif. Intell. 26, 1681–1688. 10.1016/j.engappai.2013.01.004
    1. Phinyomark A., Thongpanja S., Hu H., Phukpattaranont P., Limsakul C. (2012c). The usefulness of mean and median frequencies in electromyography analysis, in Computational Intelligence in Electromyography Analysis-A Perspective on Current Applications and Future Challenges. London: InTech.
    1. Pistohl T., Cipriani C., Jackson A., Nazarpour K. (2013). Abstract and proportional myoelectric control for multi-fingered hand prostheses. Ann. Biomed. Eng. 41, 2687–2698. 10.1007/s10439-013-0876-5
    1. Powell M. A., Kaliki R. R., Thakor N. V. (2014). User training for pattern recognition-based myoelectric prostheses: improving phantom limb movement consistency and distinguishability. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 522–532. 10.1109/TNSRE.2013.2279737
    1. Putnam W., Knapp R. (1993). Real-time computer control using pattern recognition of the electromyogram, in Engineering in Medicine and Biology Society, 1993. Proceedings of the 15th Annual International Conference of the IEEE (Hong Kong: ), 1236–1237.
    1. Radhakrishnan S. M., Baker S. N., Jackson A. (2008). Learning a novel myoelectric-controlled interface task. J. Neurophysiol. 100, 2397–2408. 10.1152/jn.90614.2008
    1. Radmand A., Scheme E., Englehart K. (2014). On the suitability of integrating accelerometry data with electromyography signals for resolving the effect of changes in limb position during dynamic limb movement. J. Prosthet. Orthot. 26, 185–193. 10.1097/JPO.0000000000000041
    1. Ravier P., Buttelli O., Jennane R., Couratier P. (2005). An EMG fractal indicator having different sensitivities to changes in force and muscle fatigue during voluntary static muscle contractions. J. Electromyogr. Kinesiol. 15, 210–221. 10.1016/j.jelekin.2004.08.008
    1. Sadoyama T., Masuda T., Miyano H. (1983). Relationships between muscle fibre conduction velocity and frequency parameters of surface emg during sustained contraction. Eur. J. Appl. Physiol. Occupat. Physiol. 51, 247–256. 10.1007/BF00455188
    1. Scheme E., Fougner A., Stavdahl O., Chan A. D. C., Englehart K. (2010). Examining the adverse effects of limb position on pattern recognition based myoelectric control, in 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology (Buenos Aires: ), 6337–6340.
    1. Scheme E. J., Englehart K. B. (2013). Validation of a selective ensemble-based classification scheme for myoelectric control using a three-dimensional fitts' law test. IEEE Trans. Neural Syst. Rehabil. Eng. 21, 616–623.
    1. Scheme E. J., Englehart K. B., Hudgins B. S. (2011). Selective classification for improved robustness of myoelectric control under nonideal conditions. IEEE Trans. Biomed. Eng. 58, 1698–1705. 10.1109/TBME.2011.2113182
    1. Sensinger J. W., Lock B. A., Kuiken T. A. (2009). Adaptive pattern recognition of myoelectric signals: exploration of conceptual framework and practical algorithms. IEEE Trans. Neural Syst. Rehabil. Eng. 17, 270–278. 10.1109/TNSRE.2009.2023282
    1. Shin S., Langari R., Tafreshi R. (2014). A performance comparison of EMG classification methods for hand and finger motion, in ASME 2014 Dynamic Systems and Control Conference (San Antonio, CA: American Society of Mechanical Engineers; ).
    1. Simon A. M., Hargrove L. J., Lock B. A., Kuiken T. A. (2011). The target achievement control test: evaluating real-time myoelectric pattern recognition control of a multifunctional upper-limb prosthesis. J. Rehabil. Res. Dev. 48:619 10.1682/JRRD.2010.08.0149
    1. Simon A. M., Lock B. A., Stubblefield K. A. (2012). Patient training for functional use of pattern recognition–controlled prostheses. J. Prosth. Orthot. 24:56. 10.1097/JPO.0b013e3182515437
    1. Song J.-H., Jung J.-W., Bien Z. (2006). Robust emg pattern recognition to muscular fatigue effect for human-machine interaction, in Mexican International Conference on Artificial Intelligence (Apizaco: Springer; ), 1190–1199.
    1. Stango A., Negro F., Farina D. (2015). Spatial correlation of high density emg signals provides features robust to electrode number and shift in pattern recognition for myocontrol. IEEE Trans. Neural Syst. Rehabil. Eng. 23, 189–198. 10.1109/TNSRE.2014.2366752
    1. Stival F., Michieletto S., Pagello E. (2016). Online subject-independent modeling of SEMG signals for the motion of a single robot joint, in 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob) (Singapore: ), 1110–1116.
    1. Stulen F. B., Luca C. J. D. (1981). Frequency parameters of the myoelectric signal as a measure of muscle conduction velocity. IEEE Trans. Biomed. Eng. BME-28, 515–523. 10.1109/TBME.1981.324738
    1. Subasi A., Kiymik M. K. (2010). Muscle fatigue detection in emg using time–frequency methods, ica and neural networks. J. Med. Syst. 34, 777–785. 10.1007/s10916-009-9292-7
    1. Thongpanja S., Phinyomark A., Phukpattaranont P., Limsakul C. (2013). Mean and median frequency of emg signal to determine muscle force based on time-dependent power spectrum. Elektronika ir Elektrotechnika 19, 51–56. 10.5755/j01.eee.19.3.3697
    1. Tkach D., Huang H., Kuiken T. A. (2010). Study of stability of time-domain features for electromyographic pattern recognition. J. Neuroeng. Rehabil. 7:21. 10.1186/1743-0003-7-21
    1. Tommasi T., Orabona F., Castellini C., Caputo B. (2013). Improving control of dexterous hand prostheses using adaptive learning. IEEE Trans. Robot. 29, 207–219. 10.1109/TRO.2012.2226386
    1. Tsymbal A. (2004). The Problem of Concept Drift: Definitions and Related Work. Computer Science Department, Trinity College Dublin; (Dublin: ), 106.
    1. Vidovic M. M. C., Hwang H. J., Amsss S., Hahne J. M., Farina D., Mller K. R. (2016). Improving the robustness of myoelectric pattern recognition for upper limb prostheses by covariate shift adaptation. IEEE Trans. Neural Syst. Rehabil. Eng. 24, 961–970. 10.1109/TNSRE.2015.2492619
    1. Vujaklija I., Roche A. D., Hasenoehrl T., Sturma A., Amsuess S., Farina D., et al. . (2017). Translating research on myoelectric control into clinics are the performance assessment methods adequate? Front. Neurorobot. 11:7. 10.3389/fnbot.2017.00007
    1. Wei W., Wong Y., Du Y., Hu Y., Kankanhalli M., Geng W. (2017). A multi-stream convolutional neural network for semg-based gesture recognition in muscle-computer interface. Patt. Recogn. Lett. 10.1016/j.patrec.2017.12.005. [Epub ahead of print].
    1. Yang D., Yang W., Huang Q., Liu H. (2015). Classification of multiple finger motions during dynamic upper limb movements. IEEE J. Biomed. Health Inform. 21, 134–141.
    1. Yokoi H., Arieta A. H., Katoh R., Yu W., Watanabe I., Maruishi M. (2004). Mutual adaptation in a prosthetics application, in Embodied Artificial Intelligence, eds Iida F., Pfeifer R., Steels L., Kuniyoshi Y. (Berlin; Heidelberg: Springer; ), 146–159.
    1. Yokus M. A., Jur J. S. (2016). Fabric-based wearable dry electrodes for body surface biopotential recording. IEEE Trans. Biomed. Eng. 63, 423–430. 10.1109/TBME.2015.2462312
    1. Yosinski J., Clune J., Bengio Y., Lipson H. (2014). How transferable are features in deep neural networks? CoRR abs/1411.1792.
    1. Young A. J., Hargrove L. J., Kuiken T. A. (2012). Improving myoelectric pattern recognition robustness to electrode shift by changing interelectrode distance and electrode configuration. IEEE Trans. Biomed. Eng. 59, 645–652. 10.1109/TBME.2011.2177662
    1. Young A. J., Smith L. H., Rouse E. J., Hargrove L. J. (2013). Classification of simultaneous movements using surface EMG pattern recognition. IEEE Trans. Biomed. Eng. 60, 1250–1258. 10.1109/TBME.2012.2232293
    1. Zhai X., Jelfs B., Chan R. H. M., Tin C. (2017). Self-recalibrating surface EMG pattern recognition for neuroprosthesis control based on convolutional neural network. Front. Neurosci. 11:379. 10.3389/fnins.2017.00379
    1. Zhang D., Xiong A., Zhao X., Han J. (2012). PCA and LDA for emg-based control of bionic mechanical hand, in Information and Automation (ICIA), 2012 International Conference on (Shenyang: ), 960–965.
    1. Zhang Q., Liu R., Chen W., Xiong C. (2017). Simultaneous and continuous estimation of shoulder and elbow kinematics from surface emg signals. Front. Neurosci. 11:280. 10.3389/fnins.2017.00280
    1. Zhang X., Chen X., Zhao Z.-Y., Li Q., Yang J.-H., Lantz V., et al. (2008). An adaptive feature extractor for gesture SEMG recognition, in International Conference on Medical Biometrics (Berlin: Springer; ), 83–90.
    1. Zhang X., Huang H. (2015). A real-time, practical sensor fault-tolerant module for robust EMG pattern recognition. J. NeuroEng. Rehabil. 12:18. 10.1186/s12984-015-0011-y
    1. Zhou P., Lowery M. M., Englehart K. B., Huang H., Li G., Hargrove L., et al. . (2007). Decoding a new neural–machine interface for control of artificial limbs. J. Neurophysiol. 98, 2974–2982. 10.1152/jn.00178.2007

Source: PubMed

3
購読する