Development of DNA confirmatory and high-risk diagnostic testing for newborns using targeted next-generation DNA sequencing

Arindam Bhattacharjee, Tanya Sokolsky, Stacia K Wyman, Martin G Reese, Erik Puffenberger, Kevin Strauss, Holmes Morton, Richard B Parad, Edwin W Naylor, Arindam Bhattacharjee, Tanya Sokolsky, Stacia K Wyman, Martin G Reese, Erik Puffenberger, Kevin Strauss, Holmes Morton, Richard B Parad, Edwin W Naylor

Abstract

Purpose: Genetic testing is routinely used for second-tier confirmation of newborn sequencing results to rule out false positives and to confirm diagnoses in newborns undergoing inpatient and outpatient care. We developed a targeted next-generation sequencing panel coupled with a variant processing pipeline and demonstrated utility and performance benchmarks across multiple newborn disease presentations in a retrospective clinical study.

Methods: The test utilizes an in silico gene filter that focuses directly on 126 genes related to newborn screening diseases and is applied to the exome or a next-generation sequencing panel called NBDx. NBDx targets the 126 genes and additional newborn-specific disorders. It integrates DNA isolation from minimally invasive biological specimens, targeted next-generation screening, and rapid characterization of genetic variation.

Results: We report a rapid parallel processing of 8 to 20 cases within 105 hours with high coverage on our NBDx panel. Analytical sensitivity of 99.8% was observed across known mutation hotspots. Concordance calls with or without clinical summaries were 94% and 75%, respectively.

Conclusion: Rapid, automated targeted next-generation sequencing and analysis are practical in newborns for second-tier confirmation and neonatal intensive care unit diagnoses, laying a foundation for future primary DNA-based molecular screening of additional disorders and improving existing molecular testing options for newborns.

References

    1. J Mol Diagn. 2013 Sep;15(5):710-22
    1. Genome Res. 2010 Sep;20(9):1297-303
    1. Pediatrics. 1963 Sep;32:338-43
    1. BMC Bioinformatics. 2013 Jun 18;14:195
    1. Biochem Med Metab Biol. 1993 Apr;49(2):200-11
    1. Sci Transl Med. 2012 Oct 3;4(154):154ra135
    1. J Pediatr. 2014 Jan;164(1):14-9
    1. Pediatrics. 2004 Jun;113(6):1573-81
    1. Lancet. 1979 Mar 3;1(8114):472-4
    1. J Child Neurol. 1999 Nov;14 Suppl 1:S4-8
    1. Epigenetics. 2013 May;8(5):542-7
    1. Genet Med. 2008 Apr;10(4):294-300
    1. Semin Perinatol. 1985 Apr;9(3):232-49
    1. Clin Chem. 2013 Jul;59(7):1045-51
    1. Am J Hum Genet. 2001 Jun;68(6):1408-18
    1. Bioinformatics. 2009 Jul 15;25(14):1754-60
    1. Annu Rev Genomics Hum Genet. 2002;3:17-45
    1. Genet Med. 2013 Jul;15(7):565-74
    1. Genet Med. 2013 Nov;15(11):910-1
    1. Mol Genet Metab. 2013 Sep-Oct;110(1-2):65-72
    1. Nature. 2009 Sep 10;461(7261):272-6
    1. J Mol Diagn. 2003 Feb;5(1):42-7
    1. Nat Genet. 2011 May;43(5):491-8
    1. Mayo Clin Proc. 2001 Aug;76(8):777-83
    1. Science. 2013 Sep 13;341(6151):1163
    1. Am J Med Genet. 1985 Jun;21(2):231-42
    1. Curr Opin Allergy Clin Immunol. 2007 Dec;7(6):522-7
    1. N Engl J Med. 2012 Nov 15;367(20):1921-9
    1. Am J Hum Genet. 2014 Apr 3;94(4):599-610
    1. Genome Res. 2012 Nov;22(11):2138-45
    1. Genet Med. 2014 Feb;16(2):176-82
    1. Clin Chem. 2000 Mar;46(3):425-8
    1. Union Med Can. 1973 Oct;102(10):2062-4
    1. N Engl J Med. 2013 Oct 17;369(16):1502-11
    1. Genome Res. 2011 Sep;21(9):1498-505
    1. Pediatrics. 1988 Jun;81(6):866-74
    1. JAMA. 2014 Mar 12;311(10):1035-45

Source: PubMed

3
購読する