Control of Cross Talk between Angiogenesis and Inflammation by Mesenchymal Stem Cells for the Treatment of Ocular Surface Diseases

Fei Li, Shao-Zhen Zhao, Fei Li, Shao-Zhen Zhao

Abstract

Angiogenesis is beneficial in the treatment of ischemic heart disease and peripheral artery disease. However, it facilitates inflammatory cell filtration and inflammation cascade that disrupt the immune and angiogenesis privilege of the avascular cornea, resulting in ocular surface diseases and even vision loss. Although great progress has been achieved, healing of severe ocular surface injury and immunosuppression of corneal transplantation are the most difficult and challenging step in the treatment of ocular surface disorders. Mesenchymal stem cells (MSCs), derived from various adult tissues, are able to differentiate into different cell types such as endothelial cells and fat cells. Although it is still under debate whether MSCs could give rise to functional corneal cells, recent results from different study groups showed that MSCs could improve corneal disease recovery through suppression of inflammation and modulation of immune cells. Thus, MSCs could become a promising tool for ocular surface disorders. In this review, we discussed how angiogenesis and inflammation are orchestrated in the pathogenesis of ocular surface disease. We overviewed and updated the knowledge of MSCs and then summarized the therapeutic potential of MSCs via control of angiogenesis, inflammation, and immune response in the treatment of ocular surface disease.

Figures

Figure 1
Figure 1
Modulation of immune cells and inflammatory cells by MSCs in corneal surface diseases. Cornea is the avascular and transparent front part of the eye, maintained by immune and angiogenesis privilege. In the occurrence of injury and transplantation, ingrowth of blood and lymph vessels into the cornea leads to infiltration of inflammatory cells and Th1 cells, which strengthen the inflammation and damage the cornea structure. MSCs have several protective functions by (1) inhibition of the inflammatory cell infiltration and inflammatory cytokine release, (2) activation of Treg cells for immune tolerance, (3) tuning the transition from Th1 cells toward Th2 cells, and (4) improving epithelium regeneration (not shown).

References

    1. Dua H. S., Azuara-Blanco A. Limbal stem cells of the corneal epithelium. Survey of Ophthalmology. 2000;44(5):415–425. doi: 10.1016/S0039-6257(00)00109-0.
    1. Pellegrini G., Rama P., Mavilio F., De Luca M. Epithelial stem cells in corneal regeneration and epidermal gene therapy. Journal of Pathology. 2009;217(2):217–228. doi: 10.1002/path.2441.
    1. Jonas J. B., Rank R. M., Budde W. M. Immunologic graft reactions after allogenic penetrating keratoplasty. American Journal of Ophthalmology. 2002;133(4):437–443. doi: 10.1016/s0002-9394(01)01426-x.
    1. Inoue K., Amano S., Oshika T., Tsuru T. Risk factors for corneal graft failure and rejection in penetrating keratoplasty. Acta Ophthalmologica Scandinavica. 2001;79(3):251–255. doi: 10.1034/j.1600-0420.2001.790308.x.
    1. Thompson R. W., Jr., Price M. O., Bowers P. J., Price F. W., Jr. Long-term graft survival after penetrating keratoplasty. Ophthalmology. 2003;110(7):1396–1402. doi: 10.1016/S0161-6420(03)00463-9.
    1. Whitcher J. P., Srinivasan M., Upadhyay M. P. Corneal blindness: a global perspective. Bulletin of the World Health Organization. 2001;79(3):214–221.
    1. Bianco P., Robey P. G., Simmons P. J. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell. 2008;2(4):313–319. doi: 10.1016/j.stem.2008.03.002.
    1. Otto W. R., Wright N. A. Mesenchymal stem cells: from experiment to clinic. Fibrogenesis and Tissue Repair. 2011;4(1, article 20) doi: 10.1186/1755-1536-4-20.
    1. Uccelli A., Moretta L., Pistoia V. Mesenchymal stem cells in health and disease. Nature Reviews Immunology. 2008;8(9):726–736. doi: 10.1038/nri2395.
    1. Hu N., Zhang Y.-Y., Gu H.-W., Guan H.-J. Effects of bone marrow mesenchymal stem cells on cell proliferation and growth factor expression of limbal epithelial cells in vitro. Ophthalmic Research. 2012;48(2):82–88. doi: 10.1159/000331006.
    1. Salem H. K., Thiemermann C. Mesenchymal stromal cells: current understanding and clinical status. STEM CELLS. 2010;28(3):585–596. doi: 10.1002/stem.269.
    1. Pittenger M. F., Mackay A. M., Beck S. C., et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–147. doi: 10.1126/science.284.5411.143.
    1. Da Silva Meirelles L., Chagastelles P. C., Nardi N. B. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of Cell Science. 2006;119(11):2204–2213. doi: 10.1242/jcs.02932.
    1. Crisan M., Yap S., Casteilla L., et al. A Perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3(3):301–313. doi: 10.1016/j.stem.2008.07.003.
    1. Crisan M., Yap S., Casteilla L., et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3(3):301–313. doi: 10.1016/j.stem.2008.07.003.
    1. Crisan M., Chen C.-W., Corselli M., Andriolo G., Lazzari L., Péault B. Perivascular multipotent progenitor cells in human organs. Annals of the New York Academy of Sciences. 2009;1176:118–123. doi: 10.1111/j.1749-6632.2009.04967.x.
    1. Dominici M., Le Blanc K., Mueller I., et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006;8(4):315–317. doi: 10.1080/14653240600855905.
    1. Alviano F., Fossati V., Marchionni C., et al. Term amniotic membrane is a high throughput source for multipotent mesenchymal stem cells with the ability to differentiate into endothelial cells in vitro. BMC Developmental Biology. 2007;7, article 11 doi: 10.1186/1471-213x-7-11.
    1. Cipriani P., Guiducci S., Miniati I., et al. Impairment of endothelial cell differentiation from bone marrow-derived mesenchymal stem cells: new insight into the pathogenesis of systemic sclerosis. Arthritis and Rheumatism. 2007;56(6):1994–2004. doi: 10.1002/art.22698.
    1. Păunescu V., Deak E., Herman D., et al. In vitro differentiation of human mesenchymal stem cells to epithelial lineage. Journal of Cellular and Molecular Medicine. 2007;11(3):502–508. doi: 10.1111/j.1582-4934.2007.00041.x.
    1. Gu S., Xing C., Han J., Tso M. O. M., Hong J. Differentiation of rabbit bone marrow mesenchymal stem cells into corneal epithelial cells in vivo and ex vivo. Molecular Vision. 2009;15:99–107.
    1. Martínez-Conesa E. M., Espel E., Reina M., Casaroli-Marano R. P. Characterization of ocular surface epithelial and progenitor cell markers in human adipose stromal cells derived from lipoaspirates. Investigative Opthalmology & Visual Science. 2012;53(1):513–520. doi: 10.1167/iovs.11-7550.
    1. Liu H., Zhang J., Liu C.-Y., Hayashi Y., Kao W. W.-Y. Bone marrow mesenchymal stem cells can differentiate and assume corneal keratocyte phenotype. Journal of Cellular and Molecular Medicine. 2012;16(5):1114–1124. doi: 10.1111/j.1582-4934.2011.01418.x.
    1. Liu H., Zhang J., Liu C.-Y., et al. Cell therapy of congenital corneal diseases with umbilical mesenchymal stem cells: lumican null mice. PLoS ONE. 2010;5(5) doi: 10.1371/journal.pone.0010707.e10707
    1. Nakahara M., Okumura N., Kay E. P., et al. Corneal endothelial expansion promoted by human bone marrow mesenchymal stem cell-derived conditioned medium. PLoS ONE. 2013;8(7) doi: 10.1371/journal.pone.0069009.e69009
    1. Phinney D. G., Prockop D. J. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. STEM CELLS. 2007;25(11):2896–2902. doi: 10.1634/stemcells.2007-0637.
    1. Galipeau J. The mesenchymal stromal cells dilemma-does a negative phase III trial of random donor mesenchymal stromal cells in steroid-resistant graft-versus-host disease represent a death knell or a bump in the road? Cytotherapy. 2013;15(1):2–8. doi: 10.1016/j.jcyt.2012.10.002.
    1. Lei J., Hui D., Huang W., et al. Heterogeneity of the biological properties and gene expression profiles of murine bone marrow stromal cells. International Journal of Biochemistry and Cell Biology. 2013;45(11):2431–2443. doi: 10.1016/j.biocel.2013.07.015.
    1. Krampera M., Cosmi L., Angeli R., et al. Role for interferon-γ in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells. 2006;24(2):386–398. doi: 10.1634/stemcells.2005-0008.
    1. Ren G., Su J., Zhang L., et al. Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells. 2009;27(8):1954–1962. doi: 10.1002/stem.118.
    1. Zhang X., Jiao C., Zhao S. Role of mesenchymal stem cells in immunological rejection of organ transplantation. Stem Cell Reviews and Reports. 2009;5(4):402–409. doi: 10.1007/s12015-009-9076-y.
    1. Aggarwal S., Pittenger M. F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105(4):1815–1822. doi: 10.1182/blood-2004-04-1559.
    1. Duffy M. M., Ritter T., Ceredig R., Griffin M. D. Mesenchymal stem cell effects on T-cell effector pathways. Stem Cell Research and Therapy. 2011;2(4, article 34) doi: 10.1186/scrt75.
    1. Soleymaninejadian E., Pramanik K., Samadian E. Immunomodulatory properties of mesenchymal stem cells: cytokines and factors. American Journal of Reproductive Immunology. 2012;67(1):1–8. doi: 10.1111/j.1600-0897.2011.01069.x.
    1. Bassi Ê. J., de Almeida D. C., Moraes-Vieira P. M. M., Câmara N. O. S. Exploring the role of soluble factors associated with immune regulatory properties of mesenchymal stem cells. Stem Cell Reviews and Reports. 2012;8(2):329–342. doi: 10.1007/s12015-011-9311-1.
    1. Baratelli F., Lin Y., Zhu L., et al. Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4+ T cells. The Journal of Immunology. 2005;175(3):1483–1490. doi: 10.4049/jimmunol.175.3.1483.
    1. English K., Ryan J. M., Tobin L., Murphy M. J., Barry F. P., Mahon B. P. Cell contact, prostaglandin E2 and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25High forkhead box P3+ regulatory T cells. Clinical & Experimental Immunology. 2009;156(1):149–160. doi: 10.1111/j.1365-2249.2009.03874.x.
    1. Casiraghi F., Perico N., Remuzzi G. Mesenchymal stromal cells to promote solid organ transplantation tolerance. Current Opinion in Organ Transplantation. 2013;18(1):51–58. doi: 10.1097/MOT.0b013e32835c5016.
    1. Wu G. D., Nolta J. A., Jin Y.-S., et al. Migration of mesenchymal stem cells to heart allografts during chronic rejection. Transplantation. 2003;75(5):679–685. doi: 10.1097/01.TP.0000048488.35010.95.
    1. Itakura S., Asari S., Rawson J., et al. Mesenchymal stem cells facilitate the induction of mixed hematopoietic chimerism and islet allograft tolerance without GVHD in the rat. American Journal of Transplantation. 2007;7(2):336–346. doi: 10.1111/j.1600-6143.2006.01643.x.
    1. Ge W., Jiang J., Arp J., Liu W., Garcia B., Wang H. Regulatory T-cell generation and kidney allograft tolerance induced by mesenchymal stem cells associated with indoleamine 2,3-dioxygenase expression. Transplantation. 2010;90(12):1312–1320. doi: 10.1097/tp.0b013e3181fed001.
    1. Wan C. D., Cheng R., Wang H. B., Liu T. Immunomodulatory effects of mesenchymal stem cells derived from adipose tissues in a rat orthotopic livertransplantation model. Hepatobiliary & Pancreatic Diseases International. 2008;7(1):29–33.
    1. Gao J., Dennis J. E., Muzic R. F., Lundberg M., Caplan A. I. The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs. 2001;169(1):12–20. doi: 10.1159/000047856.
    1. Wu Y., Zhao R. C. The role of chemokines in mesenchymal stem cell homing to myocardium. Stem Cell Reviews and Reports. 2012;8(1):243–250. doi: 10.1007/s12015-011-9293-z.
    1. Hatch H. M., Zheng D., Jorgensen M. L., Petersen B. E. SDF-1α/CXCR4: a mechanism for hepatic oval cell activation and bone marrow stem cell recruitment to the injured liver of rats. Cloning and Stem Cells. 2002;4(4):339–351. doi: 10.1089/153623002321025014.
    1. Wynn R. F., Hart C. A., Corradi-Perini C., et al. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood. 2004;104(9):2643–2645. doi: 10.1182/blood-2004-02-0526.
    1. Chavakis E., Urbich C., Dimmeler S. Homing and engraftment of progenitor cells: a prerequisite for cell therapy. Journal of Molecular and Cellular Cardiology. 2008;45(4):514–522. doi: 10.1016/j.yjmcc.2008.01.004.
    1. Ye J., Yao K., Kim J. C. Mesenchymal stem cell transplantation in a rabbit corneal alkali burn model: engraftment and involvement in wound healing. Eye. 2006;20(4):482–490. doi: 10.1038/sj.eye.6701913.
    1. Roddy G. W., Oh J. Y., Lee R. H., et al. Action at a distance: systemically administered adult stem/progenitor cells (MSCs) reduce inflammatory damage to the cornea without engraftment and primarily by secretion of TNF-α stimulated gene/protein 6. Stem Cells. 2011;29(10):1572–1579. doi: 10.1002/stem.708.
    1. Park S. H., Kim K. W., Chun Y. S., Kim J. C. Human mesenchymal stem cells differentiate into keratocyte-like cells in keratocyte-conditioned medium. Experimental Eye Research. 2012;101:16–26. doi: 10.1016/j.exer.2012.05.009.
    1. Cejkova J., Trosan P., Cejka C., et al. Suppression of alkali-induced oxidative injury in the cornea by mesenchymal stem cells growing on nanofiber scaffolds and transferred onto the damaged corneal surface. Experimental Eye Research. 2013;116:312–323. doi: 10.1016/j.exer.2013.10.002.
    1. Oh J. Y., Lee R. H., Yu J. M., et al. Intravenous mesenchymal stem cells prevented rejection of allogeneic corneal transplants by aborting the early inflammatory response. Molecular Therapy. 2012;20(11):2143–2152. doi: 10.1038/mt.2012.165.
    1. Jia Z., Jiao C., Zhao S., et al. Immunomodulatory effects of mesenchymal stem cells in a rat corneal allograft rejection model. Experimental Eye Research. 2012;102:44–49. doi: 10.1016/j.exer.2012.06.008.
    1. Treacy O., O'Flynn L., Ryan A. E., et al. Mesenchymal stem cell therapy promotes corneal allograft survival in rats by local and systemic immunomodulation. American Journal of Transplantation. 2014;14(9):2023–2036. doi: 10.1111/ajt.12828.
    1. Lee M. J., Ko A. Y., Ko J. H., et al. Mesenchymal stem/stromal cells protect the ocular surface by suppressing inflammation in an experimental dry eye. Molecular Therapy. 2015;23(1):139–146. doi: 10.1038/mt.2014.159.
    1. Weng J., He C., Lai P., et al. Mesenchymal stromal cells treatment attenuates dry eye in patients with chronic graft-versus-host disease. Molecular Therapy. 2012;20(12):2347–2354. doi: 10.1038/mt.2012.208.
    1. Inoue S., Popp F. C., Koehl G. E., et al. Immunomodulatory effects of mesenchymal stem cells in a rat organ transplant model. Transplantation. 2006;81(11):1589–1595. doi: 10.1097/01.tp.0000209919.90630.7b.
    1. Lee E. Y., Xia Y., Kim W.-S., et al. Hypoxia-enhanced wound-healing function of adipose-derived stem cells: increase in stem cell proliferation and up-regulation of VEGF and bFGF. Wound Repair and Regeneration. 2009;17(4):540–547. doi: 10.1111/j.1524-475x.2009.00499.x.
    1. Cashman T. J., Gouon-Evans V., Costa K. D. Mesenchymal stem cells for cardiac therapy: practical challenges and potential mechanisms. Stem Cell Reviews and Reports. 2013;9(3):254–265. doi: 10.1007/s12015-012-9375-6.
    1. Abarbanell A. M., Wang Y., Herrmann J. L., et al. Toll-like receptor 2 mediates mesenchymal stem cell-associated myocardial recovery and VEGF production following acute ischemia-reperfusion injury. The American Journal of Physiology—Heart and Circulatory Physiology. 2010;298(5):H1529–H1536. doi: 10.1152/ajpheart.01087.2009.
    1. Jackson W. M., Nesti L. J., Tuan R. S. Concise review: clinical translation of wound healing therapies based on mesenchymal stem cells. Stem Cells Translational Medicine. 2012;1(1):44–50. doi: 10.5966/sctm.2011-0024.
    1. Yao L., Li Z.-R., Su W.-R., et al. Role of mesenchymal stem cells on cornea wound healing induced by acute alkali burn. PLoS ONE. 2012;7(2) doi: 10.1371/journal.pone.0030842.e30842
    1. Oh J. Y., Kim M. K., Shin M. S., et al. The anti-inflammatory and anti-angiogenic role of mesenchymal stem cells in corneal wound healing following chemical injury. Stem Cells. 2008;26(4):1047–1055. doi: 10.1634/stemcells.2007-0737.
    1. Holan V., Javorkova E. Mesenchymal stem cells, nanofiber scaffolds and ocular surface reconstruction. Stem Cell Reviews and Reports. 2013;9(5):609–619. doi: 10.1007/s12015-013-9449-0.
    1. Reinshagen H., Auw-Haedrich C., Sorg R. V., et al. Corneal surface reconstruction using adult mesenchymal stem cells in experimental limbal stem cell deficiency in rabbits. Acta Ophthalmologica. 2011;89(8):741–748. doi: 10.1111/j.1755-3768.2009.01812.x.
    1. Liang L., Sheha H., Li J., Tseng S. C. G. Limbal stem cell transplantation: new progresses and challenges. Eye. 2009;23(10):1946–1953. doi: 10.1038/eye.2008.379.
    1. Eslani M., Baradaran-Rafii A., Movahedan A., Djalilian A. R. The ocular surface chemical burns. Journal of Ophthalmology. 2014;2014:9. doi: 10.1155/2014/196827.196827
    1. Lan Y., Kodati S., Lee H. S., Omoto M., Jin Y., Chauhan S. K. Kinetics and function of mesenchymal stem cells in corneal injury. Investigative Ophthalmology and Visual Science. 2012;53(7):3638–3644. doi: 10.1167/iovs.11-9311.
    1. Oh J. Y., Ko J. H., Kim M. K., Wee W. R. Effects of mesenchymal stem/stromal cells on cultures of corneal epithelial progenitor cells with ethanol injury. Investigative Opthalmology & Visual Science. 2014;55(11):7628–7635. doi: 10.1167/iovs.14-15424.
    1. Oh J. Y., Kim M. K., Shin M. S., et al. The anti-inflammatory and anti-angiogenic role of mesenchymal stem cells in corneal wound healing following chemical injury. STEM CELLS. 2008;26(4):1047–1055. doi: 10.1634/stemcells.2007-0737.
    1. Ma Y., Xu Y., Xiao Z., et al. Reconstruction of chemically burned rat corneal surface by bone marrow-derived human mesenchymal stem cells. Stem Cells. 2006;24(2):315–321. doi: 10.1634/stemcells.2005-0046.
    1. Zajicova A., Pokorna K., Lencova A., et al. Treatment of ocular surface injuries by limbal and mesenchymal stem cells growing on nanofiber scaffolds. Cell Transplantation. 2010;19(10):1281–1290. doi: 10.3727/096368910x509040.
    1. Lee J. Y., Jeong H. J., Kim M. K., Wee W. R. Bone marrow-derived mesenchymal stem cells affect immunologic profiling of interleukin-17-secreting cells in a chemical burn mouse model. Korean Journal of Ophthalmology. 2014;28(3):246–256. doi: 10.3341/kjo.2014.28.3.246.
    1. Oh J. Y., Roddy G. W., Choi H., et al. Anti-inflammatory protein TSG-6 reduces inflammatory damage to the cornea following chemical and mechanical injury. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(39):16875–16880. doi: 10.1073/pnas.1012451107.
    1. Cunnusamy K., Chen P. W., Niederkorn J. Y. Paradigm shifts in the role of CD4+ T cells in keratoplasty. Discovery Medicine. 2010;10(54):452–461.
    1. Niederkorn J. Y., Larkin D. F. Immune privilege of corneal allografts. Ocular Immunology and Inflammation. 2010;18(3):162–171. doi: 10.3109/09273948.2010.486100.
    1. Chong E., Dana M. R. Graft failure IV. Immunologic mechanisms of corneal transplant rejection. International Ophthalmology. 2008;28(3):209–222. doi: 10.1007/s10792-007-9099-9.
    1. Niederkorn J. Y. High-risk corneal allografts and why they lose their immune privilege. Current Opinion in Allergy and Clinical Immunology. 2010;10(5):493–497. doi: 10.1097/ACI.0b013e32833dfa11.
    1. Poon A., Constantinou M., Lamoureux E., Taylor H. R. Topical Cyclosporin A in the treatment of acute graft rejection: a randomized controlled trial. Clinical and Experimental Ophthalmology. 2008;36(5):415–421. doi: 10.1111/j.1442-9071.2008.01784.x.
    1. Liu Y., Jiang J., Xiao H., et al. Topical application of FTY720 and cyclosporin A prolong corneal graft survival in mice. Molecular Vision. 2012;18:624–633.
    1. Yuan J., Zhai J. J., Huang X., Zhou S. Y., Chen J. Q. Ocular safety and pharmacokinetics study of FK506 suspension eye drops after corneal transplantation. Journal of Ocular Pharmacology and Therapeutics. 2012;28(2):153–158. doi: 10.1089/jop.2011.0108.
    1. Zaki A. A., Elalfy M. S., Said D. G., Dua H. S. Deep anterior lamellar keratoplasty—triple procedure: a useful clinical application of the pre-Descemet's layer (Dua's layer) Eye. 2015;29(3):323–326. doi: 10.1038/eye.2014.273.
    1. Pantanelli S. M., Herzlich A., Yeaney G., Ching S. T. Recurrence of granular corneal dystrophy type I deposits within host stroma after non-Descemet baring anterior lamellar keratoplasty. Cornea. 2014;33(12):1348–1351. doi: 10.1097/ICO.0000000000000267.
    1. Peh G. S. L., Beuerman R. W., Colman A., Tan D. T., Mehta J. S. Human corneal endothelial cell expansion for corneal endothelium transplantation: an overview. Transplantation. 2011;91(8):811–819. doi: 10.1097/tp.0b013e3182111f01.
    1. Casiraghi F., Azzollini N., Todeschini M., et al. Localization of mesenchymal stromal cells dictates their immune or proinflammatory effects in kidney transplantation. American Journal of Transplantation. 2012;12(9):2373–2383. doi: 10.1111/j.1600-6143.2012.04115.x.
    1. Krampera M. Mesenchymal stromal cell ‘licensing’: a multistep process. Leukemia. 2011;25(9):1408–1414. doi: 10.1038/leu.2011.108.
    1. Casiraghi F., Azzollini N., Cassis P., et al. Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells. Journal of Immunology. 2008;181(6):3933–3946. doi: 10.4049/jimmunol.181.6.3933.
    1. Oh J. Y., Kim M. K., Ko J. H., Lee H. J., Lee J. H., Wee W. R. Rat allogeneic mesenchymal stem cells did not prolong the survival of corneal xenograft in a pig-to-rat model. Veterinary Ophthalmology. 2009;12(supplement 1):35–40. doi: 10.1111/j.1463-5224.2009.00724.x.
    1. Fuentes-Julián S., Arnalich-Montiel F., Jaumandreu L., et al. Adipose-derived mesenchymal stem cell administration does not improve corneal graft survival outcome. PLoS ONE. 2015;10(3) doi: 10.1371/journal.pone.0117945.e0117945
    1. The definition and classification of dry eye disease: report of the definition and classification Subcommittee of the International Dry Eye Workshop (2007) The Ocular Surface. 2007;5(2):75–92. doi: 10.1016/s1542-0124(12)70081-2.
    1. Gayton J. L. Etiology, prevalence, and treatment of dry eye disease. Clinical Ophthalmology. 2009;3(1):405–412.
    1. Ogawa Y., Kuwana M. Dry eye as a major complication associated with chronic graft-versus-host disease after hematopoietic stem cell transplantation. Cornea. 2003;22(7):S19–S27. doi: 10.1097/00003226-200310001-00004.
    1. Ogawa Y., Okamoto S., Wakui M., et al. Dry eye after haematopoietic stem cell transplantation. British Journal of Ophthalmology. 1999;83(10):1125–1130. doi: 10.1136/bjo.83.10.1125.
    1. Stern M. E., Schaumburg C. S., Pflugfelder S. C. Dry eye as a mucosal autoimmune disease. International Reviews of Immunology. 2013;32(1):19–41. doi: 10.3109/08830185.2012.748052.
    1. Stevenson W., Chauhan S. K., Dana R. Dry eye disease: an immune-mediated ocular surface disorder. Archives of Ophthalmology. 2012;130(1):90–100. doi: 10.1001/archophthalmol.2011.364.
    1. Zoukhri D. Mechanisms involved in injury and repair of the murine lacrimal gland: role of programmed cell death and mesenchymal stem cells. Ocular Surface. 2010;8(2):60–69. doi: 10.1016/s1542-0124(12)70070-8.
    1. Zoukhri D., Hodges R. R., Byon D., Kublin C. L. Role, of proinflammatory cytokines in the impaired lacrimation associated with autoimmune xerophthalmia. Investigative Ophthalmology and Visual Science. 2002;43(5):1429–1436.
    1. Beyazyıldız E., Pınarlı F. A., Beyazyıldız Ö., et al. Efficacy of topical mesenchymal stem cell therapy in the treatment of experimental dry eye syndrome model. Stem Cells International. 2014;2014:9. doi: 10.1155/2014/250230.250230
    1. Wood J. A., Chung D.-J., Park S. A., et al. Periocular and intra-articular injection of canine adipose-derived mesenchymal stem cells: an in vivo imaging and migration study. Journal of Ocular Pharmacology and Therapeutics. 2012;28(3):307–317. doi: 10.1089/jop.2011.0166.
    1. Villatoro A. J., Fernández V., Claros S., Rico-Llanos G. A., Becerra J., Andrades J. A. Use of adipose-derived mesenchymal stem cells in keratoconjunctivitis sicca in a canine model. BioMed Research International. 2015;2015:10. doi: 10.1155/2015/527926.527926

Source: PubMed

3
購読する