MECHANISMS IN ENDOCRINOLOGY: Diabetic cardiomyopathy: pathophysiology and potential metabolic interventions state of the art review

Eylem Levelt, Gaurav Gulsin, Stefan Neubauer, Gerry P McCann, Eylem Levelt, Gaurav Gulsin, Stefan Neubauer, Gerry P McCann

Abstract

Heart failure is a major cause of morbidity and mortality in type 2 diabetes. Type 2 diabetes contributes to the development of heart failure through a variety of mechanisms, including disease-specific myocardial structural, functional and metabolic changes. This review will focus on the contemporary contributions of state of the art non-invasive technologies to our understanding of diabetic cardiomyopathy, including data on cardiac disease phenotype, cardiac energy metabolism and energetic deficiency, ectopic and visceral adiposity, diabetic liver disease, metabolic modulation strategies and cardiovascular outcomes with new classes of glucose-lowering therapies.

© 2018 The authors.

Figures

Figure 1
Figure 1
Cardiac energy metabolism and the sites of action of the different metabolic modulators. These range from (A) mitochondrial carnitine shuttle (CPT inhibitors) and (B) β-fatty acid oxidation inhibitors (C) pyruvate dehydrogenase (PDH) activators. In practice, the latter two represent the clinically pertinent therapeutic targets. Group (A) includes perhexiline, etomoxir, oxfenicine and to a lesser extent amiodarone. Group (B) includes trimetazidine and ranolazine. Group (C) includes dichloroacetate. GLUT denotes glucose transporter, PCr phosphocreatine, Cr free creatine.
Figure 2
Figure 2
Differences in cardiac function, hepatic steatosis, and hepatic cT1 among the study cohorts. (A) Peak circumferential systolic strain; (B) diastolic strain rate; (C) hepatic triglyceride content (%) and (D) hepatic corrected T1 map (ms). The dots indicate values outside the interquartile range. Reproduced with permission from Levelt et al. (83). Copyright© The American College of Cardiology.

References

    1. WHO. Fact sheet no 310; the top 10 causes of death. updated May 2014. Geneva: World Health Organization. (available at: )
    1. Garcia MJ, McNamara PM, Gordon T, Kannel WB. Morbidity and mortality in diabetics in the Framingham population. Sixteen year follow-up study. Diabetes 1974. 23 105–111. (10.2337/diab.23.2.105)
    1. Nichols GA, Gullion CM, Koro CE, Ephross SA, Brown JB. The incidence of congestive heart failure in type 2 diabetes: an update. Diabetes Care 2004. 27 1879–1884. (10.2337/diacare.27.8.1879)
    1. Morrish JN, Wang S-L, Stevens KL, Fuller HJ, Keen H. Mortality and causes of death in the WHO multinational study of vascular disease in diabetes. Diabetologia 2001. 44 S14–S21. (10.1007/PL00002934)
    1. Tancredi M, Rosengren A, Svensson A-M, Kosiborod M, Pivodic A, Gudbjörnsdottir S, Wedel H, Clements M, Dahlqvist S, Lind M. et al Excess mortality among persons with type 2 diabetes. New England Journal of Medicine 2015. 373 1720–1732. (10.1056/NEJMoa1504347)
    1. Cavender MA, Steg PG, Smith SC, Eagle K, Ohman EM, Goto S, Kuder J, Im K, Wilson PW, Bhatt DL. et al Impact of diabetes mellitus on hospitalization for heart failure, cardiovascular events, and death. Circulation 2015. 132 923.
    1. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ. et al Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. New England Journal of Medicine 2015. 373 2117–2128.
    1. Richard MC, Brook A, Adil R, Ben NM, Peysh AP, Guy G, Gale CP, Batin PD, Ajjan R, Kearney L. et al Diabetes mellitus is associated with adverse prognosis in chronic heart failure of ischaemic and non-ischaemic aetiology. Diabetes and Vascular Disease Research 2013. 10 330–336. (10.1177/1479164112471064)
    1. Boudina S, Abel ED. Diabetic cardiomyopathy, causes and effects. Reviews in Endocrine and Metabolic Disorders 2010. 11 31–39.
    1. Leyden E. Asthma and diabetes mellitus. Zeutschr Klin Med 1881. 3 358–364.
    1. Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. American Journal of Cardiology 1972. 30 595–602. (10.1016/0002-9149(72)90595-4)
    1. Kannel WB, McGee DL. Diabetes and cardiovascular disease: the framingham study. JAMA 1979. 241 2035–2038. (10.1001/jama.1979.03290450033020)
    1. Hansson L, Zanchetti A, Carruthers SG, Dahlöf B, Elmfeldt D, Julius S, Ménard J, Rahn KH, Wedel H, Westerling S. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. Lancet 1998. 351 1755–1762. (10.1016/S0140-6736(98)04311-6)
    1. Long AN, Dagogo-Jack S. The comorbidities of diabetes and hypertension: mechanisms and approach to target organ protection. Journal of Clinical Hypertension 2011. 13 244–251. (10.1111/j.1751-7176.2011.00434.x)
    1. Skali H, Shah A, Gupta DK, Cheng S, Claggett B, Liu J, Bello N, Aguilar D, Vardeny O, Matsushita K. et al Cardiac structure and function across the glycemic spectrum in elderly men and women free of prevalent heart disease: the atherosclerosis risk in the community study. Circulation: Heart Failure 2015. 8 448–454.
    1. Devereux RB, Roman MJ, Paranicas M, O’Grady MJ, Lee ET, Welty TK, Fabsitz RR, Robbins D, Rhoades ER, Howard BV. Impact of diabetes on cardiac structure and function: the strong heart study. Circulation 2000. 101 2271–2276. (10.1161/01.CIR.101.19.2271)
    1. De Marco M, de Simone G, Roman MJ, Chinali M, Lee ET, Calhoun D, Howard BV, Devereux RB. Cardiac geometry and function in diabetic or prediabetic adolescents and young adults. Diabetes Care 2011. 34 2300–2305. (10.2337/dc11-0191)
    1. Bluemke DA, Kronmal RA, Lima JAC, Liu K, Olson J, Burke GL, Folsom AR. The relationship of left ventricular mass and geometry to incident cardiovascular events: the MESA study. Journal of the American College of Cardiology 2008. 52 2148–2155. (10.1016/j.jacc.2008.09.014)
    1. Taegtmeyer H, McNulty P, Young ME. Adaptation and maladaptation of the heart in diabetes: part I: general concepts. Circulation 2002. 105 1727–1733. (10.1161/01.CIR.0000012466.50373.E8)
    1. van Heerebeek L, Hamdani N, Handoko ML, Falcao-Pires I, Musters RJ, Kupreishvili K, Ijsselmuiden AJ, Schalkwijk CG, Bronzwaer JG, Diamant M. et al Diastolic stiffness of the failing diabetic heart: importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circulation 2008. 117 43–51. (10.1161/CIRCULATIONAHA.107.728550)
    1. Liu S, Han J, Nacif M, Jones J, Kawel N, Kellman P, Sibley CT, Bluemke DA. Diffuse myocardial fibrosis evaluation using cardiac magnetic resonance T1 mapping: sample size considerations for clinical trials. Journal of Cardiovascular Magnetic Resonance 2012. 14 90.
    1. Khan JN, Wilmot EG, Leggate M, Singh A, Yates T, Nimmo M, Khunti K, Horsfield MA, Biglands J, Clarysse P. et al Subclinical diastolic dysfunction in young adults with Type 2 diabetes mellitus: a multiparametric contrast-enhanced cardiovascular magnetic resonance pilot study assessing potential mechanisms. European Heart Journal – Cardiovascular Imaging 2014. 15 1263–1269. (10.1093/ehjci/jeu121)
    1. Levelt E, Mahmod M, Piechnik SK, Ariga R, Francis JM, Rodgers CT, Clarke WT, Sabharwal N, Schneider JE, Karamitsos TD. et al Relationship between left ventricular structural and metabolic remodelling in type 2 diabetes mellitus. Diabetes 2016. 65 44–52.
    1. Wong TC, Piehler KM, Kang IA, Kadakkal A, Kellman P, Schwartzman DS, Mulukutla SR, Simon MA, Shroff SG, Kuller LH. et al Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. European Heart Journal 2014. 35 657.
    1. Treibel TA, Zemrak F, Sado DM, Banypersad SM, White SK, Maestrini V, Barison A, Patel V, Herrey AS, Davies C. et al Extracellular volume quantification in isolated hypertension – changes at the detectable limits? Journal of Cardiovascular Magnetic Resonance 2015. 17 74.
    1. Rodrigues JCL, Amadu AM, Dastidar AG, Szantho GV, Lyen SM, Godsave C, Ratcliffe LE, Burchell AE, Hart EC, Hamilton MC. et al Comprehensive characterisation of hypertensive heart disease left ventricular phenotypes. Heart 2016. 102 1671.
    1. Boyer JK, Thanigaraj S, Schechtman KB, Pérez JE. Prevalence of ventricular diastolic dysfunction in asymptomatic, normotensive patients with diabetes mellitus. American Journal of Cardiology 2004. 93 870–875. (10.1016/j.amjcard.2003.12.026)
    1. Di Bonito P, Moio N, Cavuto L, Covino G, Murena E, Scilla C, Turco S, Capaldo B, Sibilio G. Early detection of diabetic cardiomyopathy: usefulness of tissue Doppler imaging. Diabetic Medicine 2005. 22 1720–1725. (10.1111/j.1464-5491.2005.01685.x)
    1. From AM, Scott CG, Chen HH. The development of heart failure in patients with diabetes mellitus and preclinical diastolic dysfunction: a population based study. Journal of the American College of Cardiology 2010. 55 300–305. (10.1016/j.jacc.2009.12.003)
    1. Levelt E, Rodgers CT, Clarke WT, Mahmod M, Ariga R, Francis JM, Liu A, Wijesurendra RS, Dass S, Sabharwal N. et al Cardiac energetics, oxygenation, and perfusion during increased workload in patients with type 2 diabetes mellitus. European Heart Journal 2015. 37 3461–3469.
    1. Neubauer S. The failing heart – an engine out of fuel. New England Journal of Medicine 2007. 356 1140–1151. (10.1056/NEJMra063052)
    1. Finck BN, Lehman JJ, Leone TC, Welch MJ, Bennett MJ, Kovacs A, Han X, Gross RW, Kozak R, Lopaschuk GD. et al The cardiac phenotype induced by PPARα overexpression mimics that caused by diabetes mellitus. Journal of Clinical Investigation 2002. 109 121–130. (10.1172/Jbib214080)
    1. Gulick T, Cresci S, Caira T, Moore DD, Kelly DP. The peroxisome proliferator-activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression. PNAS 1994. 91 11012–11016. (10.1073/pnas.91.23.11012)
    1. Scheuermann-Freestone M, Madsen PL, Manners D, Blamire AM, Buckingham RE, Styles P, Radda GK, Neubauer S, Clarke K. Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes. Circulation 2003. 107 3040–3046. (10.1161/01.CIR.0000072789.89096.10)
    1. Wright JJ, Kim J, Buchanan J, Boudina S, Sena S, Bakirtzi K, Ilkun O, Theobald HA, Cooksey RC, Kandror KV. et al Mechanisms for increased myocardial fatty acid utilization following short-term high-fat feeding. Cardiovascular Research 2009. 82 351–360. (10.1093/cvr/cvp017)
    1. How O-J, Aasum E, Severson DL, Chan WYA, Essop MF, Larsen TS. Increased myocardial oxygen consumption reduces cardiac efficiency in diabetic mice. Diabetes 2006. 55 466–473. (10.2337/diabetes.55.02.06.db05-1164)
    1. Taegtmeyer H, Hems R, Krebs HA. Utilization of energy-providing substrates in the isolated working rat heart. Biochemical Journal 1980. 186 701–711. (10.1042/bj1860701)
    1. Kim J-Y, Nolte LA, Hansen PA, Han D-H, Ferguson K, Thompson PA, Holloszy JO. High-fat diet-induced muscle insulin resistance: relationship to visceral fat mass. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology 2000. 279 R2057–R2065. (10.1152/ajpregu.2000.279.6.R2057)
    1. Storlien LH, James DE, Burleigh KM, Chisholm DJ, Kraegen EW. Fat feeding causes widespread in vivo insulin resistance, decreased energy expenditure, and obesity in rats. American Journal of Physiology – Endocrinology and Metabolism 1986. 251 E576–E583. (10.1152/ajpendo.1986.251.5.E576)
    1. Grundleger ML, Thenen SW. Decreased insulin binding, glucose transport, and glucose metabolism in soleus muscle of rats fed a high fat diet. Diabetes 1982. 31 232–237. (10.2337/diab.31.3.232)
    1. Lopaschuk G. Metabolic abnormalities in the diabetic heart. Heart Failure Reviews 2002. 7 149–159. (10.1023/A:1015328625394)
    1. Lopaschuk GD, Ussher JR, Folmes CDL, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiological Reviews 2010. 90 207–258. (10.1152/physrev.00015.2009)
    1. An D, Rodrigues B. Role of changes in cardiac metabolism in development of diabetic cardiomyopathy. American Journal of Physiology – Heart and Circulatory Physiology 2006. 291 H1489–H1506. (10.1152/ajpheart.00278.2006)
    1. Carley AN, Severson DL. Fatty acid metabolism is enhanced in type 2 diabetic hearts. Biochimica et Biophysica Acta (BBA) – Molecular and Cell Biology of Lipids 2005. 1734 112–126. (10.1016/j.bbalip.2005.03.005)
    1. Aasum E, Hafstad AD, Severson DL, Larsen TS. Age-dependent changes in metabolism, contractile function, and ischemic sensitivity in hearts from db/db mice. Diabetes 2003. 52 434–441. (10.2337/diabetes.52.2.434)
    1. Mazumder PK, O’Neill BT, Roberts MW, Buchanan J, Yun UJ, Cooksey RC, Boudina S, Abel ED. Impaired cardiac efficiency and increased fatty acid oxidation in insulin-resistant ob/ob mouse hearts. Diabetes 2004. 53 2366–2374. (10.2337/diabetes.53.9.2366)
    1. Rider OJ, Cox P, Tyler D, Clarke K, Neubauer S. Myocardial substrate metabolism in obesity. International Journal of Obesity 2013. 37 972–979. (10.1038/ijo.2012.170)
    1. Veech RL. The determination of the redox states and phosphorylation potential in living tissues and their relationship to metabolic control of disease phenotypes. Biochemistry and Molecular Biology Education 2006. 34 168–179. (10.1002/bmb.2006.49403403168)
    1. Veech RL. The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins, Leukotrienes, and Essential Fatty Acids 2004. 70 309–319. (10.1016/j.plefa.2003.09.007)
    1. Hue L, Taegtmeyer H. The Randle cycle revisited: a new head for an old hat. American Journal of Physiology-Endocrinology and Metabolism 2009. 297 E578–E591.
    1. Ingwall JS, Weiss RG. Is the failing heart energy starved? On using chemical energy to support cardiac function. Circulation Research 2004. 95 135–145. (10.1161/01.RES.0000137170.41939.d9)
    1. He J, Ogden LG, Bazzano LA, Vupputuri S, Loria C, Whelton PK. Risk factors for congestive heart failure in us men and women: Nhanes i epidemiologic follow-up study. Archives of Internal Medicine 2001. 161 996–1002. (10.1001/archinte.161.7.996)
    1. Matsushita K, Blecker S, Pazin-Filho A, Bertoni A, Chang PP, Coresh J, Selvin E. The association of hemoglobin A1c with incident heart failure among people without diabetes: the atherosclerosis risk in communities study. Diabetes 2010. 59 2020–2026. (10.2337/db10-0165)
    1. Zhang Y, Hu G, Yuan Z, Chen L. Glycosylated hemoglobin in relationship to cardiovascular outcomes and death in patients with type 2 diabetes: a systematic review and meta-analysis. PLoS ONE 2012. 7 e42551.
    1. Nielson C, Lange T. Blood glucose and heart failure in nondiabetic patients. Diabetes Care 2005. 28 607.
    1. Udell JA, Cavender MA, Bhatt DL, Chatterjee S, Farkouh ME, Scirica BM. Glucose-lowering drugs or strategies and cardiovascular outcomes in patients with or at risk for type 2 diabetes: a meta-analysis of randomised controlled trials. Lancet Diabetes and Endocrinology 2015. 3 356–366.
    1. Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus Lancet 1963. 281 785–789. (10.1016/S0140-6736(63)91500-9)
    1. Zhang L, Ding W-Y, Wang Z-H, Tang M-X, Wang F, Li Y, Zhong M, Zhang Y, Zhang W. Early administration of trimetazidine attenuates diabetic cardiomyopathy in rats by alleviating fibrosis, reducing apoptosis and enhancing autophagy. Journal of Translational Medicine 2016. 14 109 (10.1186/s12967-016-0849-1)
    1. Zhang L, Lu Y, Jiang H, Zhang L, Sun A, Zou Y, Ge J. Additional use of trimetazidine in patients with chronic heart failure: a meta-analysis. Journal of the American College of Cardiology 2012. 59 913–922. (10.1016/j.jacc.2011.11.027)
    1. Zhao P, Zhang J, Yin X-G, Maharaj P, Narraindoo S, Cui L-Q, Tang YS. The effect of trimetazidine on cardiac function in diabetic patients with idiopathic dilated cardiomyopathy. Life Sciences 2013. 92 633–638. (10.1016/j.lfs.2012.03.015)
    1. Lee L, Campbell R, Scheuermann-Freestone M, Taylor R, Gunaruwan P, Williams L, Ashrafian H, Horowitz J, Fraser AG, Clarke K. et al Metabolic modulation with perhexiline in chronic heart failure. Circulation 2005. 112 3280.
    1. Beadle RM, Williams LK, Kuehl M, Bowater S, Abozguia K, Leyva F, Yousef Z, Wagenmakers AJ, Thies F, Horowitz J. et al Improvement in cardiac energetics by perhexiline in heart failure due to dilatedcardiomyopathy. JACC: Heart Failure 2015. 3 202–211.
    1. Abozguia K, Elliott P, McKenna W, Phan TT, Nallur-Shivu G, Ahmed I, Maher AR, Kaur K, Taylor J, Henning A. et al Metabolic modulator perhexiline corrects energy deficiency and improves exercise capacity in symptomatic hypertrophic cardiomyopathy. Circulation 2010. 122 1562.
    1. Bansal M, Chan J, Leano R, Pillans P, Horowitz J, Marwick TH. Effects of perhexiline on myocardial deformation in patients with ischaemic left ventricular dysfunction. International Journal of Cardiology 2010. 139 107–112.
    1. Liepinsh E, Skapare E, Svalbe B, Makrecka M, Cirule H, Dambrova M. Anti-diabetic effects of mildronate alone or in combination with metformin in obese Zucker rats. European Journal of Pharmacology 2011. 658 277–283.
    1. Scott R, O’Brien R, Fulcher G, Pardy C, d’Emden M, Tse D, Taskinen MR, Ehnholm C, Keech A. & Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) Study Investigators. Effects of fenofibrate treatment on cardiovascular disease risk in 9,795 individuals with type 2 diabetes and various components of the metabolic syndrome: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Diabetes Care 2009. 32 493–498.
    1. Ashrafian H, Neubauer S. Metabolic modulation in heart failure: high time for a definitive clinical trial. Heart 2011. 97 267–268. (10.1136/hrt.2010.214932)
    1. Kassiotis C, Rajabi M, Taegtmeyer H. Metabolic reserve of the heart: the forgotten link between contraction and coronary flow. Progress in Cardiovascular Diseases 2008. 51 74–88. (10.1016/j.pcad.2007.11.005)
    1. Bielawska AE, Shapiro JP, Jiang L, Melkonyan HS, Piot C, Wolfe CL, Tomei LD, Hannun YA, Umansky SR. Ceramide is involved in triggering of cardiomyocyte apoptosis induced by ischemia and reperfusion. American Journal of Pathology 1997. 151 1257–1263.
    1. McGavock JM, Lingvay I, Zib I, Tillery T, Salas N, Unger R, Levine BD, Raskin P, Victor RG, Szczepaniak LS. Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study. Circulation 2007. 116 1170–1175. (10.1161/CIRCULATIONAHA.106.645614)
    1. Monji A, Mitsui T, Bando YK, Aoyama M, Shigeta T, Murohara T. Glucagon-like peptide-1 receptor activation reverses cardiac remodeling via normalizing cardiac steatosis and oxidative stress in type 2 diabetes. American Journal of Physiology – Heart and Circulatory Physiology 2013. 305 H295–H304. (10.1152/ajpheart.00990.2012)
    1. Ramírez E, Klett-Mingo M, Ares-Carrasco S, Picatoste B, Ferrarini A, Rupérez FJ, Caro-Vadillo A, Barbas C, Egido J, Tuñón J. et al Eplerenone attenuated cardiac steatosis, apoptosis and diastolic dysfunction in experimental type-II diabetes. Cardiovascular Diabetology 2013. 12 172.
    1. Okura T, Nakata Y, Yamabuki K, Tanaka K. Regional body composition changes exhibit opposing effects on coronary heart disease risk factors. Arteriosclerosis, Thrombosis, and Vascular Biology 2004. 24 923–929. (10.1161/01.ATV.0000125702.26272.f6)
    1. Fantuzzi G, Mazzone T. Adipose tissue and atherosclerosis: exploring the connection. Arteriosclerosis, Thrombosis, and Vascular Biology 2007. 27 996–1003. (10.1161/ATVBAHA.106.131755)
    1. Montani JP, Carroll JF, Dwyer TM, Antic V, Yang Z, Dulloo AG. Ectopic fat storage in heart, blood vessels and kidneys in the pathogenesis of cardiovascular diseases. International Journal of Obesity and Related Metabolic Disorders 2004. 28 S58–S65.
    1. Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P, Liu C-Y, Vasan RS, Murabito JM, Meigs JB, Cupples LA. et al Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 2007. 116 39–48. (10.1161/CIRCULATIONAHA.106.675355)
    1. Fox CS, Gona P, Hoffmann U, Porter SA, Salton CJ, Massaro JM, Levy D, Larson MG, D’Agostino RB, Sr, O’Donnell CJ. et al Pericardial fat, intrathoracic fat, and measures of left ventricular structure and function: the Framingham Heart Study. Circulation 2009. 119 1586–1591. (10.1161/CIRCULATIONAHA.108.828970)
    1. Fox CS, Massaro JM, Schlett CL, Lehman SJ, Meigs JB, O’Donnell CJ, Hoffmann U, Murabito JM. Periaortic fat deposition is associated with peripheral arterial disease: the Framingham Heart Study. Circulation: Cardiovascular Imaging 2010. 3 515–519.
    1. Rijzewijk LJ, van der Meer RW, Smit JWA, Diamant M, Bax JJ, Hammer S, Romijn JA, de Roos A, Lamb HJ. Myocardial steatosis is an independent predictor of diastolic dysfunction in type 2 diabetes mellitus. Journal of the American College of Cardiology 2008. 52 1793–1799. (10.1016/j.jacc.2008.07.062)
    1. Rijzewijk LJ, Jonker JT, van der Meer RW, Lubberink M, de Jong HW, Romijn JA, Bax JJ, de Roos A, Heine RJ, Twisk JW. et al Effects of hepatic triglyceride content on myocardial metabolism in type 2 diabetes. Journal of the American College of Cardiology 2010. 56 225–233. (10.1016/j.jacc.2010.02.049)
    1. Levelt E, Pavlides M, Banerjee R, Mahmod M, Kelly C, Sellwood J, Ariga R, Thomas S, Francis J, Rodgers C. et al Ectopic and visceral fat deposition in lean and obese patients with type 2 diabetes. Journal of the American College of Cardiology 2016. 68 53–63. (10.1016/j.jacc.2016.03.597)
    1. Petta S, Argano C, Colomba D, Cammà C, Di Marco V, Cabibi D, Tuttolomondo A, Marchesini G, Pinto A, Licata G. et al Epicardial fat, cardiac geometry and cardiac function in patients with non-alcoholic fatty liver disease: association with the severity of liver disease. Journal of Hepatology 2015. 62 928–933. (10.1016/j.jhep.2014.11.030)
    1. Heilbronn L, Smith SR, Ravussin E. Failure of fat cell proliferation, mitochondrial function and fat oxidation results in ectopic fat storage, insulin resistance and type II diabetes mellitus. International Journal of Obesity and Related Metabolic Disorders 2004. 28 S12–S21.
    1. Nelson MD, Victor RG, Szczepaniak EW, Simha V, Garg A, Szczepaniak LS. Cardiac steatosis and left ventricular hypertrophy in patients with generalized lipodystrophy as determined by magnetic resonance spectroscopy and imaging. American Journal of Cardiology 2013. 112 1019–1024. (10.1016/j.amjcard.2013.05.036)
    1. Johannsen DL, Tchoukalova Y, Tam CS, Covington JD, Xie W, Schwarz J-M, Bajpeyi S, Ravussin E. Effect of 8 weeks of overfeeding on ectopic fat deposition and insulin sensitivity: testing the “adipose tissue expandability” hypothesis. Diabetes Care 2014. 37 2789–2797. (10.2337/dc14-0761)
    1. Reitman ML. Metabolic lessons from genetically lean mice. Annual Review of Nutrition 2002. 22 459–482. (10.1146/annurev.nutr.22.010402.102849)
    1. Witteles RM, Fowler MB. Insulin-resistant cardiomyopathy: clinical evidence, mechanisms, and treatment options. Journal of the American College of Cardiology 2008. 51 93–102. (10.1016/j.jacc.2007.10.021)
    1. Zhang Q-J, Holland WL, Wilson L, Tanner JM, Kearns D, Cahoon JM, Pettey D, Losee J, Duncan B, Gale D. et al Ceramide mediates vascular dysfunction in diet-induced obesity by PP2A-mediated dephosphorylation of the eNOS-Akt complex. Diabetes 2012. 61 1848–1859. (10.2337/db11-1399)
    1. Poornima IG, Parikh P, Shannon RP. Diabetic cardiomyopathy: the search for a unifying hypothesis. Circulation Research 2006. 98 596–605. (10.1161/01.RES.0000207406.94146.c2)
    1. Taegtmeyer H, Beauloye C, Harmancey R, Hue L. Insulin resistance protects the heart from fuel overload in dysregulated metabolic states. American Journal of Physiology – Heart and Circulatory Physiology 2013. 305 H1693–H1697. (10.1152/ajpheart.00854.2012)
    1. Nolan CJ, Ruderman NB, Prentki M. Intensive insulin for type 2 diabetes: the risk of causing harm. Lancet Diabetes and Endocrinology 2013. 1 9–10.
    1. Nolan CJ, Ruderman NB, Kahn SE, Pedersen O, Prentki M. Insulin resistance as a physiological defense against metabolic stress: implications for the management of subsets of type 2 diabetes. Diabetes 2015. 64 673–686. (10.2337/db14-0694)
    1. Thakur ML, Sharma S, Kumar A, Bhatt SP, Luthra K, Guleria R, Pandey RM, Vikram NK. Nonalcoholic fatty liver disease is associated with subclinical atherosclerosis independent of obesity and metabolic syndrome in Asian Indians. Atherosclerosis 2012. 223 507–511. (10.1016/j.atherosclerosis.2012.06.005)
    1. Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, Sarov-Blat L, O’Brien S, Keiper EA, Johnson AG. et al Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 2003. 108 2460–2466. (10.1161/01.CIR.0000099542.57313.C5)
    1. Bonnard C, Durand A, Peyrol S, Chanseaume E, Chauvin M-A, Morio B, Vidal H, Rieusset J. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. Journal of Clinical Investigation 2008. 118 789–800.
    1. Hoehn KL, Salmon AB, Hohnen-Behrens C, Turner N, Hoy AJ, Maghzal GJ, Stocker R, Van Remmen H, Kraegen EW, Cooney GJ. et al Insulin resistance is a cellular antioxidant defense mechanism. PNAS 2009. 106 17787–17792. (10.1073/pnas.0902380106)
    1. Sakai K, Matsumoto K, Nishikawa T, Suefuji M, Nakamaru K, Hirashima Y, Kawashima J, Shirotani T, Ichinose K, Brownlee M. et al Mitochondrial reactive oxygen species reduce insulin secretion by pancreatic beta-cells. Biochemical and Biophysical Research Communications 2003. 300 216–222. (10.1016/S0006-291X(02)02832-2)
    1. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. New England Journal of Medicine 2007. 356 2457–2471. (10.1056/NEJMoa072761)
    1. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JFE, Nauck MA, Nissen SE, Pocock S, Poulter NR, Ravn LS. et al Liraglutide and cardiovascular outcomes in type 2 diabetes. New England Journal of Medicine 2016. 375 311–322. (10.1056/NEJMoa1603827)
    1. Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 2006. 368 1696–1705. (10.1016/S0140-6736(06)69705-5)
    1. Lutz TA, Osto E. Glucagon-like peptide-1, glucagon-like peptide-2, and lipid metabolism. Current Opinion in Lipidology 2016. 27 257–263. (10.1097/MOL.0000000000000293)
    1. Drucker DJ. Biologic actions and therapeutic potential of the proglucagon-derived peptides. Nature Clinical Practice Endocrinology and Metabolism 2005. 1 22–31. (10.1038/ncpendmebib17)
    1. Nauck MA, Heimesaat MM, Behle K, Holst JJ, Nauck MS, Ritzel R, Hüfner M, Schmiegel WH. Effects of glucagon-like peptide 1 on counterregulatory hormone responses, cognitive functions, and insulin secretion during hyperinsulinemic, stepped hypoglycemic clamp experiments in healthy volunteers. Journal of Clinical Endocrinology and Metabolism 2002. 87 1239–1246.
    1. Nikolaidis LA, Elahi D, Hentosz T, Doverspike A, Huerbin R, Zourelias L, Stolarski C, Shen YT, Shannon RP. Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation 2004. 110 955.
    1. Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes 2004. 54 146.
    1. Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, Lingvay I, Rosenstock J, Seufert J, Warren ML. et al Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. New England Journal of Medicine 2016. 375 1834–1844. (10.1056/NEJMoa1607141)
    1. Holman RR, Bethel MA, Mentz RJ, Thompson VP, Lokhnygina Y, Buse JB, Chan JC, Choi J, Gustavson SM, Iqbal N. et al Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. New England Journal of Medicine 2017. 377 1228–1239. (10.1056/NEJMoa1612917)
    1. Margulies KB, Hernandez AF, Redfield MM, Givertz MM, Oliveira GH, Cole R, Mann DL, Whellan DJ, Kiernan MS, Felker GM. et al Effects of liraglutide on clinical stability among patients with advanced heart failure and reduced ejection fraction: a randomized clinical trial. JAMA 2016. 316 500–508. (10.1001/jama.2016.10260)
    1. Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, Ohman P, Frederich R, Wiviott SD, Hoffman EB. et al Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. New England Journal of Medicine 2013. 369 1317–1326. (10.1056/NEJMoa1307684)
    1. White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Bakris GL, Perez AT, Fleck PR, Mehta CR, Kupfer S. et al Alogliptin after acute coronary syndrome in patients with type 2 diabetes. New England Journal of Medicine 2013. 369 1327–1335. (10.1056/NEJMoa1305889)
    1. Green JB, Bethel MA, Armstrong PW, Buse JB, Engel SS, Garg J, Josse R, Kaufman KD, Koglin J, Korn S. et al Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. New England Journal of Medicine 2015. 373 232–242.
    1. Filion KB, Azoulay L, Platt RW, Dahl M, Dormuth CR, Clemens KK, Hu N, Paterson JM, Targownik L, Turin TC. et al A multicenter observational study of incretin-based drugs and heart failure. New England Journal of Medicine 2016. 374 1145–1154. (10.1056/NEJMoa1506115)
    1. Abdesselam I, Pepino P, Troalen T, Macia M, Ancel P, Masi B, Fourny N, Gaborit B, Giannesini B, Kober F. et al Time course of cardiometabolic alterations in a high fat high sucrose diet mice model and improvement after GLP-1 analog treatment using multimodal cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance 2015. 17 95 (10.1186/s12968-015-0198-x)
    1. Armstrong MJ, Hull D, Guo K, Barton D, Hazlehurst JM, Gathercole LL, Nasiri M, Yu J, Gough SC, Newsome PN. et al Glucagon-like peptide 1 decreases lipotoxicity in non-alcoholic steatohepatitis. Journal of Hepatology 64 399–408.
    1. Gallo LA, Wright EM, Vallon V. Probing SGLT2 as a therapeutic target for diabetes: basic physiology and consequences. Diabetes and Vascular Disease Research 2015. 12 78–89. (10.1177/1479164114561992)
    1. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, Shaw W, Law G, Desai M, Matthews DR. et al Canagliflozin and cardiovascular and renal events in type 2 diabetes. New England Journal of Medicine 2017. 377 644–657. (10.1056/NEJMoa1611925)
    1. Kosiborod M, Cavender MA, Fu AZ, Wilding JP, Khunti K, Holl RW, Norhammar A, Birkeland KI, Jørgensen ME, Thuresson M. et al Lower risk of heart failure and death in patients initiated on SGLT-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL Study. Circulation 2017. 136 249–259.
    1. Ceriello A, Genovese S, Mannucci E, Gronda E. Understanding EMPA-REG OUTCOME. Lancet Diabetes and Endocrinology 2015. 3 929–930.
    1. Hawley SA, Ford RJ, Smith BK, Gowans GJ, Mancini SJ, Pitt RD, Day EA, Salt IP, Steinberg GR, Hardie DG. The Na+/Glucose cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels. Diabetes 2016. 65 2784–2794. (10.2337/db16-0058)
    1. Hardie DG. AMPK – sensing energy while talking to other signaling pathways. Cell Metabolism 2014. 20 939–952. (10.1016/j.cmet.2014.09.013)
    1. Ferrannini E, Baldi S, Frascerra S, Astiarraga B, Heise T, Bizzotto R, Mari A, Pieber TR, Muscelli E. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes 2016. 65 1190–1195. (10.2337/db15-1356)
    1. Mudaliar S, Alloju S, Henry RR. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME Study? A unifying hypothesis. Diabetes Care 2016. 39 1115–1122. (10.2337/dc16-0542)
    1. Miki T, Yuda S, Kouzu H, Miura T. Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Failure Reviews 2013. 18 149–166. (10.1007/s10741-012-9313-3)
    1. Torffvit O, Lövestam-Adrian M, Agardh E, Agardh CD. Nephropathy, but not retinopathy, is associated with the development of heart disease in Type 1 diabetes: a 12-year observation study of 462 patients. Diabetic Medicine 2005. 22 723–729. (10.1111/j.1464-5491.2005.01476.x)
    1. Sakata S, Lebeche D, Sakata Y, Sakata N, Chemaly ER, Liang L, Nakajima-Takenaka C, Tsuji T, Konishi N, del Monte F. et al Transcoronary gene transfer of SERCA2a increases coronary blood flow and decreases cardiomyocyte size in a Type 2 diabetic rat model. American Journal of Physiology – Heart and Circulatory Physiology. 2007. 292 H1204.
    1. Li J, Zhu H, Shen E, Wan L, Arnold JM, Peng T. Deficiency of rac1 blocks NADPH oxidase activation, inhibits endoplasmic reticulum stress, and reduces myocardial remodeling in a mouse model of type 1 diabetes. Diabetes 2010. 59 2033–2042.
    1. Basu R, Oudit GY, Wang X, Zhang L, Ussher JR, Lopaschuk GD, Kassiri Z. Type 1 diabetic cardiomyopathy in the Akita (Ins2WT/C96Y) mouse model is characterized by lipotoxicity and diastolic dysfunction with preserved systolic function. American Journal of Physiology – Heart and Circulatory Physiology 2009. 297 H2096.
    1. Shivu GN, Abozguia K, Phan TT, Ahmed I, Weaver R, Narendran P, Stevens M, Frenneaux M. Increased left ventricular torsion in uncomplicated type 1 diabetic patients: the role of coronary microvascular function. Diabetes Care 2009. 32 1710–1712. (10.2337/dbib9-0408)
    1. Shivu GN, Phan TT, Abozguia K, Ahmed I, Wagenmakers A, Henning A, Narendran P, Stevens M, Frenneaux M. Relationship between coronary microvascular dysfunction and cardiac energetics impairment in type 1 diabetes mellitus. Circulation 2010. 121 1209–1215. (10.1161/CIRCULATIONAHA.109.873273)

Source: PubMed

3
購読する