Central gain control in tinnitus and hyperacusis

Benjamin D Auerbach, Paulo V Rodrigues, Richard J Salvi, Benjamin D Auerbach, Paulo V Rodrigues, Richard J Salvi

Abstract

Sensorineural hearing loss induced by noise or ototoxic drug exposure reduces the neural activity transmitted from the cochlea to the central auditory system. Despite a reduced cochlear output, neural activity from more central auditory structures is paradoxically enhanced at suprathreshold intensities. This compensatory increase in the central auditory activity in response to the loss of sensory input is referred to as central gain enhancement. Enhanced central gain is hypothesized to be a potential mechanism that gives rise to hyperacusis and tinnitus, two debilitating auditory perceptual disorders that afflict millions of individuals. This review will examine the evidence for gain enhancement in the central auditory system in response to cochlear damage. Further, it will address the potential cellular and molecular mechanisms underlying this enhancement and discuss the contribution of central gain enhancement to tinnitus and hyperacusis. Current evidence suggests that multiple mechanisms with distinct temporal and spectral profiles are likely to contribute to central gain enhancement. Dissecting the contributions of these different mechanisms at different levels of the central auditory system is essential for elucidating the role of central gain enhancement in tinnitus and hyperacusis and, most importantly, the development of novel treatments for these disorders.

Keywords: central gain enhancement; homeostatic plasticity; hyperacusis; lateral inhibition; tinnitus.

Figures

Figure 1
Figure 1
Gain enhancement in the central auditory system. (A) Schematic showing the general anatomical organization of the auditory system. The nuclei and areas of the auditory system are highlighted in blue. The ascending anatomical projections are depicted with solid blue lines whereas the dotted blue lines represent descending projections. Limbic regions that respond to auditory stimuli and display some evidence of central gain enhancement are highlighted in green. (B) Schematics of intensity-level functions collected from the auditory nerve (AN), cochlear nucleus (CN), inferior colliculus (IC), and auditory cortex (AC). The black lines represent baseline intensity-level functions. Cochlear damage via noise or ototoxic drug exposure results in depression of sound-evoked responses in lower auditory structures (blue lines) but results in enhancement of suprathreshold responses in higher areas (red lines), despite thresholds being shifted (black arrows). SOC, superior olivary complex; VCN, ventral cochlear nucleus; DCN, dorsal cochlear nucleus; IC, inferior colliculus; MGB, medial geniculate body; AC, auditory cortex.
Figure 2
Figure 2
Relationship between electrophysiological and behavioral threshold shifts. (A) Schematic showing temporary threshold shifts in adult chinchillas that were exposed to an octave band noise centered at 4 kHz with 86 dB SPL amplitude for 5 days. Electrophysiological recordings of auditory nerve fibers revealed thresholds shifts of up to 70 dB SPL at characteristic frequencies between 4 and 11 kHz (black dots). However, behavioral audiograms (red line) revealed relatively smaller behavioral threshold shifts in comparison, ranging from 5 to 20 dBs SPL at frequencies between 4 and 11 kHz. (B) Cochleogram showing narrow lesions of inner (dotted red line) and outer hair cells (black line) over the 1 mm that correlated with the frequency of the electrophysiological and behavioral threshold shifts [modified from Ref. (48)].
Figure 3
Figure 3
Origins of central gain enhancement. Schematized data for amplitude-level functions to a 1 kHz tone chronically recorded from chinchillas at the round window (CAP), cochlear nucleus (CN), and inferior colliculus (IC), before (black lines) and 24 h after (red lines) noise-exposure of 105 dB SPL at 2.8 kHz for 2 h. Green arrows indicate the direction of amplitude change after noise-exposure. Responses are normalized to maximum response before the noise-exposure [modified from Ref. (57)].
Figure 4
Figure 4
Temporal dynamics of central gain enhancement. Schematized data representing the temporal dynamics of noise-induced changes to amplitude-level functions in response to click stimuli from the (A) compound action potential (CAP), (B) inferior colliculus (IC), and (C) auditory cortex (AC). The amplitude-level functions were computed from chronic recordings of CAP and LFPs from the IC and AC before (black lines), 1 h (red lines), 1 day (yellow lines), and 1 week (green lines) post-noise-exposure. The parameters for noise-exposure were white broadband noise at 115 dB SPL for 1 h [modified from Ref. (72)].
Figure 5
Figure 5
Spectral profile of central gain enhancement. Schematized data representing the amplitude-level functions before (solid lines) and after (dotted lines) restricted high-frequency hearing loss in the inferior colliculus (IC) and auditory cortex (AC). (Bottom) The tonotopic organization of the cochlea is depicted in the rainbow color spectrum with orange colors of the spectrum representing low-frequencies, green colors representing middle frequencies, and blue colors representing high-frequencies. (Middle) In the IC, high-frequency hearing loss results in increased threshold and depressed amplitude-level functions in the tonotopic region corresponding to the region of hearing loss (blue), while suprathreshold responses are enhanced at low and middle frequencies (orange and green, respectively). (Top) In contrast, amplitude-level functions from the AC are enhanced in the region of hearing loss (blue) while relative unchanged at low (orange) and middle (green) frequencies.
Figure 6
Figure 6
Carboplatin-induced changes to peripheral and central auditory system. Schematic representation of the effects of carboplatin treatment (30 mg/kg) on (A) hair cell loss, and amplitude-level functions from the (B) compound action potential (CAP), (C) inferior colliculus (IC), and (D) auditory cortex (AC). (A) Mean cochleogram showing the effects of carboplatin on OHC (gray lines) and IHC (black lines). While relatively little OHC loss was observed, an average of 30% of IHC are lost across the frequency-place map. (B–D) amplitude-level functions measured at 1 kHz before (black lines) and after (red lines) carboplatin treatment [modified from Ref. (102)].
Figure 7
Figure 7
Model of excitatory and inhibitory receptive field overlap in the auditory system. (A) Under control conditions there is strong inhibition (purple) at edge of the characteristic excitatory (green) frequency. At frequencies where the threshold for inhibition is equal to or lower the threshold for excitation, the response of the neuron is inhibited, resulting in narrow excitatory tuning curves. (B) Noise-exposure that causes restricted cochlear damage above the excitatory characteristic frequency results in the loss of this side-band inhibition, resulting in broader excitatory tuning curves.
Figure 8
Figure 8
Model of the effects of loss of lateral inhibition on rate-level functions from single-unit recordings in the inferior colliculus. (Bottom) Tonotopic projections from the cochlea result in excitatory responses of corresponding frequency regions in the inferior colliculus (IC) (cochlear nucleus is not represented for clarity). In addition to excitatory projections (semi-circles), there are inhibitory projections (flat lines) to neighboring frequencies resulting in lateral inhibition. High-frequency hearing loss results in both the loss of excitatory projections to the corresponding tonotopic region in the IC as well as loss of inhibitory projections to surround frequencies (dotted lines). (Top) Normally, increasing sound intensity results in recruitment of lateral inhibitory projections so that many cells in the IC have non-monotonic rate-level functions (solid lines). High-frequency noise-damage not only results in decreased rate-level functions in the region of hearing loss (dotted blue line) but enhanced rate-level functions and increased monotonicity due to loss of lateral inhibition at edge frequencies (dotted orange and green lines). This loss of lateral inhibition and increase in monotonic rate-level functions could contribute to the enhancement of amplitude-level functions observed at frequencies outside of hearing loss region in the IC (see Figure 5).

References

    1. Rybak LP, Ramkumar V. Ototoxicity. Kidney Int (2007) 72:931–5.10.1038/sj.ki.5002434
    1. Baguley DM. Hyperacusis. J R Soc Med (2003) 96:582–5.10.1258/jrsm.96.12.582
    1. Hoffman HJ, Reed GW. Epidemiology of tinnitus. In: Snow J, editor. Tinnitus Theory and Management. Hamilton, ON: BC Decker; (2004). p. 16–41
    1. Baguley D, McFerran D, Hall D. Tinnitus. Lancet (2013) 382:1600–7.10.1016/S0140-6736(13)60142-7
    1. Shargorodsky J, Curhan GC, Farwell WR. Prevalence and characteristics of tinnitus among US adults. Am J Med (2010) 123:711–8.10.1016/j.amjmed.2010.02.015
    1. Andersson G, Lindvall N, Hursti T, Carlbring P. Hypersensitivity to sound (hyperacusis): a prevalence study conducted via the Internet and post. Int J Audiol (2002) 41:545–54.10.3109/14992020209056075
    1. Gu JW, Halpin CF, Nam E-C, Levine RA, Melcher JR. Tinnitus, diminished sound-level tolerance, and elevated auditory activity in humans with clinically normal hearing sensitivity. J Neurophysiol (2010) 104(6):3361–70.10.1152/jn.00226.2010
    1. Fausti SA, Wilmington DJ, Gallun FJ, Myers PJ, Henry JA. Auditory and vestibular dysfunction associated with blast-related traumatic brain injury. J Rehabil Res Dev (2009) 46:797–810.10.1682/JRRD.2008.09.0118
    1. Eggermont JJ, Roberts LE. The neuroscience of tinnitus. Trends Neurosci (2004) 27:676–82.10.1016/j.tins.2004.08.010
    1. Weisz N, Hartmann T, Dohrmann K, Schlee W, Norena A. High-frequency tinnitus without hearing loss does not mean absence of deafferentation. Hear Res (2006) 222:108–14.10.1016/j.heares.2006.09.003
    1. Kiang NY, Moxon EC, Levine RA. Auditory-nerve activity in cats with normal and abnormal cochleas. Sensorineural Hearing Loss. Ciba Foundation Symposium (1970). p. 241–73
    1. Lepage EL. Frequency-dependent self-induced bias of the basilar-membrane and its potential for controlling sensitivity and tuning in the mammalian cochlea. J Acoust Soc Am (1987) 82:139–54.10.1121/1.395557
    1. Lepage EL. Functional-role of the olivocochlear bundle: a motor unit in the mammalian cochlea. Hear Res (1989) 38:177–98.10.1016/0378-5955(89)90064-6
    1. Jastreboff PJ. Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neurosci Res (1990) 8:221–54.10.1016/0168-0102(90)90031-9
    1. Dallos P, Harris D. Properties of auditory nerve responses in absence of outer hair cells. J Neurophysiol (1978) 41(2):365–83.
    1. House JW, Brackmann DE. Tinnitus: surgical treatment. Ciba Found Symp (1981) 85:204–16.
    1. Feldmann H. Homolateral and contralateral masking of tinnitus by noise-bands and by pure tones. Audiology (1971) 10:138–44.10.3109/00206097109072551
    1. Flor H, Elbert T, Muhlnickel W, Pantev C, Wienbruch C, Taub E. Cortical reorganization and phantom phenomena in congenital and traumatic upper-extremity amputees. Exp Brain Res (1998) 119:205–12.10.1007/s002210050334
    1. Muhlnickel W, Elbert T, Taub E, Flor H. Reorganization of auditory cortex in tinnitus. Proc Natl Acad Sci U S A (1998) 95:10340–3.10.1073/pnas.95.17.10340
    1. Rauschecker JP. Auditory cortical plasticity: a comparison with other sensory systems. Trends Neurosci (1999) 22:74–80.10.1016/S0166-2236(98)01303-4
    1. Noreña AJ, Eggermont JJ. Changes in spontaneous neural activity immediately after an acoustic trauma: implications for neural correlates of tinnitus. Hear Res (2003) 183:137–53.10.1016/S0378-5955(03)00225-9
    1. Llinás R, Urbano FJ, Leznik E, Ramírez RR, van Marle HJ. Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends Neurosci (2005) 28:325–33.10.1016/j.tins.2005.04.006
    1. Weisz N, Müller S, Schlee W, Dohrmann K, Hartmann T, Elbert T. The neural code of auditory phantom perception. J Neurosci (2007) 27:1479–84.10.1523/JNEUROSCI.3711-06.2007
    1. Kaltenbach JA, Afman CE. Hyperactivity in the dorsal cochlear nucleus after intense sound exposure and its resemblance to tone-evoked activity: a physiological model for tinnitus. Hear Res (2000) 140:165–72.10.1016/S0378-5955(99)00197-5
    1. Mulders WH, Robertson D. Hyperactivity in the auditory midbrain after acoustic trauma: dependence on cochlear activity. Neuroscience (2009) 164:733–46.10.1016/j.neuroscience.2009.08.036
    1. Rauschecker JP, Leaver AM, Mühlau M. Tuning out the noise: limbic-auditory interactions in tinnitus. Neuron (2010) 66:819–26.10.1016/j.neuron.2010.04.032
    1. De Ridder D, Elgoyhen AB, Romo R, Langguth B. Phantom percepts: tinnitus and pain as persisting aversive memory networks. Proc Natl Acad Sci U S A (2011) 108:8075–80.10.1073/pnas.1018466108
    1. Henry JA, Roberts LE, Caspary DM, Theodoroff SM, Salvi RJ. Underlying mechanisms of tinnitus: review and clinical implications. J Am Acad Audiol (2014) 25:5–22.10.3766/jaaa.25.1.2
    1. Salvi R, Henderson D, Boettcher F, Powers N. Functional changes in central auditory pathways resulting from cochlear diseases. In: Katz J, Stecker N, Henderson D, editors. Central Auditory Processing: A Transdisciplinary View. St. Louis, MO: Mosby Year Book, Inc; (1992). p. 47–60
    1. Sun W, Zhang L, Lu J, Yang G, Laundrie E, Salvi R. Noise exposure-induced enhancement of auditory cortex response and changes in gene expression. Neuroscience (2008) 156:374–80.10.1016/j.neuroscience.2008.07.040
    1. Chen G-D, Manohar S, Salvi R. Amygdala hyperactivity and tonotopic shift after salicylate exposure. Brain Res (2012) 1485:63–76.10.1016/j.brainres.2012.03.016
    1. Sun W, Deng A, Jayaram A, Gibson B. Noise exposure enhances auditory cortex responses related to hyperacusis behavior. Brain Res (2012) 1485:108–16.10.1016/j.brainres.2012.02.008
    1. Chen G-D, Stolzberg D, Lobarinas E, Sun W, Ding D, Salvi R. Salicylate-induced cochlear impairments, cortical hyperactivity and re-tuning, and tinnitus. Hear Res (2013) 295:100–13.10.1016/j.heares.2012.11.016
    1. Niu Y, Kumaraguru A, Wang R, Sun W. Hyperexcitability of inferior colliculus neurons caused by acute noise exposure. J Neurosci Res (2013) 91:292–9.10.1002/jnr.23152
    1. Chen G-D, Radziwon KE, Kashanian N, Manohar S, Salvi R. Salicylate-induced auditory perceptual disorders and plastic changes in nonclassical auditory centers in rats. Neural Plast (2014) 2014:18.10.1155/2014/658741
    1. Liberman MC. Efferent synapses in the inner hair cell area of the cat cochlea: an electron microscopic study of serial sections. Hear Res (1980) 3:189–204.10.1016/0378-5955(80)90007-6
    1. Liberman MC. The cochlear frequency map for the cat-labeling auditory nerve fibers of known characteristic frequency. J Acoust Soc Am (1982) 72:1441–9.10.1121/1.388677
    1. Liberman MC. Single-neuron labeling in the cat auditory nerve. Science (1982) 216:1239–41.10.1126/science.7079757
    1. Glowatzki E, Fuchs PA. Transmitter release at the hair cell ribbon synapse. Nat Neurosci (2002) 5:147–54.10.1038/nn796
    1. Polley DB, Read HL, Storace DA, Merzenich MM. Multiparametric auditory receptive field organization across five cortical fields in the albino rat. J Neurophysiol (2007) 97:3621–38.10.1152/jn.01298.2006
    1. Romanski LM, Averbeck BB. The primate cortical auditory system and neural representation of conspecific vocalizations. Annu Rev Neurosci (2009) 32:315–46.10.1146/annurev.neuro.051508.135431
    1. Medalla M, Barbas H. Specialized prefrontal “auditory fields”: organization of primate prefrontal-temporal pathways. Front Neurosci (2014) 8:77.10.3389/fnins.2014.00077
    1. Ledoux JE, Farb C, Ruggiero DA. Topographic organization of neurons in the acoustic thalamus that project to the amygdala. J Neurosci (1990) 10:1043–54.
    1. LeDoux JE, Farb CR, Romanski LM. Overlapping projections to the amygdala and striatum from auditory processing areas of the thalamus and cortex. Neurosci Lett (1991) 134:139–44.10.1016/0304-3940(91)90526-Y
    1. Budinger E, Heil P, Hess A, Scheich H. Multisensory processing via early cortical stages: connections of the primary auditory cortical field with other sensory systems. Neuroscience (2006) 143:1065–83.10.1016/j.neuroscience.2006.08.035
    1. Leaver AM, Renier L, Chevillet MA, Morgan S, Kim HJ, Rauschecker JP. Dysregulation of limbic and auditory networks in tinnitus. Neuron (2011) 69:33–43.10.1016/j.neuron.2010.12.002
    1. De Ridder D, Vanneste S, Weisz N, Londero A, Schlee W, Elgoyhen AB, et al. An integrative model of auditory phantom perception: tinnitus as a unified percept of interacting separable subnetworks. Neurosci Biobehav Rev (2014) 44:16–32.10.1016/j.neubiorev.2013.03.021
    1. Salvi RJ, Hamernik RP, Henderson D. Auditory nerve activity and cochlear morphology after noise exposure. Arch Otorhinolaryngol (1979) 224:111–6.10.1007/BF00455233
    1. Lonsbury-Martin BL, Martin GK. Effects of moderately intense sound on auditory sensitivity in rhesus monkeys: behavioral and neural observations. J Neurophysiol (1981) 46(3):563–86
    1. Saunders JC, James R, Bock GR, Chen CS. Effects of priming for audiogenic seizure on auditory evoked-responses in cochlear nucleus and inferior colliculus of Balc/c mice. Exp Neurol (1972) 37:388–94.10.1016/0014-4886(72)90082-9
    1. Henry KR, Saleh M. Recruitment deafness: functional effect of priming-induced audiogenic seizures in mice. J Comp Physiol Psychol (1973) 84:430–5.10.1037/h0035264)
    1. Gerken GM, Saunders SS, Paul RE. Hypersensibility to electrical-stimulation of auditory nuclei follows hearing-loss in cats. Hear Res (1984) 13:249–59.10.1016/0378-5955(84)90078-9
    1. Gerken GM, Saunders SS, Simhadrisumithra R, Bhat KH. Behavioral thresholds for electrical-stimulation applied to auditory brain-stem nuclei in cat are altered by injurious and noninjurious sound. Hear Res (1985) 20:221–31.10.1016/0378-5955(85)90027-9
    1. Popelar J, Hartmann R, Syka J, Klinke R. Middle latency responses to acoustical and electrical stimulation of the cochlea in cats. Hear Res (1995) 92:63–77.10.1016/0378-5955(95)00199-9
    1. Popelar J, Syka J, Berndt H. Effect of noise on auditory evoked responses in awake guinea pigs. Hear Res (1987) 26:239–47.10.1016/0378-5955(87)90060-8
    1. Salvi RJ, Saunders SS, Gratton MA, Arehole S, Powers N. Enhanced evoked response amplitudes in the inferior colliculus of the chinchilla following acoustic trauma. Hear Res (1990) 50:245–57.10.1016/0378-5955(90)90049-U
    1. Salvi R, Powers N, Saunders S, Boettcher F, Clock A. Enhancement of evoked response amplitude and single unit activity after noise exposure. In: Dancer A, Henderson D, Salvi RJ, Hamernik R, editors. Noise-Induced Hearing Loss. St. Louis, MO: Mosby-Year Book, Inc; (1992). p. 156–71
    1. Salvi RJ, Lockwood AH, Burkard RF. Neural plasticity and tinnitus. In: Tyler R, editor. Tinnitus Handbook. San Diego, CA: Singular Publishing Group, Inc; (2000). p. 123–48
    1. Salvi RJ, Wang J, Ding D. Auditory plasticity and hyperactivity following cochlear damage. Hear Res (2000) 147:261–74.10.1016/S0378-5955(00)00136-2
    1. Wang J, Ding D, Salvi RJ. Functional reorganization in chinchilla inferior colliculus associated with chronic and acute cochlear damage. Hear Res (2002) 168:238–49.10.1016/S0378-5955(02)00360-X
    1. Mitzdorf U. Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev (1985) 65(1):37–100
    1. Mitzdorf U. Properties of the evoked potential generator: current source density analysis of evoked-potentials in the cat cortex. Int J Neurosci (1987) 33:33–59.10.3109/00207458708985928
    1. Logothetis NK. The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philos Trans R Soc Lond B Biol Sci (2002) 357:1003–37.10.1098/rstb.2002.1114
    1. Boettcher FA, Salvi RJ. Functional changes in the ventral cochlear nucleus following acute acoustic overstimulation. J Acoust Soc Am (1993) 94:2123–34.10.1121/1.407484
    1. Helfert RH, Snead CR, Altschuler RA. The ascending auditory pathways. In: Altschuker RA, Bobbin RP, Clopton BM, Hoffman D, editors. Neurobiology of Hearing Series: Neurobiology of Hearing: The Central Auditory System. New York, NY: Raven Press; (1991). p. 1–26
    1. Cai S, Ma W-L, Young E. Encoding intensity in ventral cochlear nucleus following acoustic trauma: implications for loudness recruitment. J Assoc Res Otolaryngol (2009) 10:5–22.10.1007/s10162-008-0142-y
    1. Dehmel S, Pradhan S, Koehler S, Bledsoe S, Shore S. Noise overexposure alters long-term somatosensory-auditory processing in the dorsal cochlear nucleus-possible basis for tinnitus-related hyperactivity? J Neurosci (2012) 32:1660–71.10.1523/JNEUROSCI.4608-11.2012
    1. Brozoski TJ, Bauer CA, Caspary DM. Elevated fusiform cell activity in the dorsal cochlear nucleus of chinchillas with psychophysical evidence of tinnitus. J Neurosci (2002) 22:2383–90.
    1. Salvi RJ, Wang J, Powers NL. Plasticity and reorganization in the auditory brainstem: implications for tinnitus. In: Reich G, Vernon J, editors. Proceedings of the Fifth International Tinnitus Seminar, Portland, Oregon, June 12-15, 1995. Portland, OR: American Tinnitus Association (1996). p. 457–66
    1. Salvi RJ, Wang J, Powers N. Rapid functional reorganization in the inferior colliculus and cochlear nucleus after acute cochlear damage. In: Salvi RJ, Henderson D, Fiorino F, Colletti V, editors. Auditory System Plasticity and Regeneration. New York, NY: Thieme Medical Publishers; (1996). p. 275–96
    1. Wang J, Salvi RJ, Powers N. Plasticity of response properties of inferior colliculus neurons following acute cochlear damage. J Neurophysiol (1996) 75:171–83.
    1. Syka J, Rybalko N, Popelar J. Enhancement of the auditory-cortex evoked – responses is awake guinea-pigs after noise exposure. Hear Res (1994) 78:158–68.10.1016/0378-5955(94)90021-3
    1. Syka J, Rybalko N. Threshold shifts and enhancement of cortical evoked responses after noise exposure in rats. Hear Res (2000) 139:59–68.10.1016/S0378-5955(99)00175-6
    1. Noreña AJ, Moffat G, Blanc JL, Pezard L, Cazals Y. Neural changes in the auditory cortex of awake guinea pigs after two tinnitus inducers: salicylate and acoustic trauma. Neuroscience (2010) 166:1194–209.10.1016/j.neuroscience.2009.12.063
    1. Popelár J, Nwabueze-Ogbo FC, Syka J. Changes in neuronal activity of the inferior colliculus in rat after temporal inactivation of the auditory cortex. Physiol Res (2003) 52:615–28.
    1. Winer JA, Larue DT. Evolution of GABAergic circuitry in the mammalian medial geniculate body. Proc Natl Acad Sci U S A (1996) 93:3083–7.10.1073/pnas.93.7.3083
    1. Winer JA, Saint Marie RL, Larue DT, Oliver DL. GABAergic feedforward projections from the inferior colliculus to the medial geniculate body. Proc Natl Acad Sci U S A (1996) 93:8005–10.10.1073/pnas.93.15.8005
    1. Peruzzi D, Bartlett E, Smith PH, Oliver DL. A monosynaptic GABAergic input from the inferior colliculus to the medial geniculate body in rat. J Neurosci (1997) 17:3766–77.
    1. Bartlett EL, Smith PH. Anatomic, intrinsic, and synaptic properties of dorsal and ventral division neurons in rat medial geniculate body. J Neurophysiol (1999) 81(5):1999–2016.
    1. Suga N, Gao E, Zhang Y, Ma X, Olsen JF. The corticofugal system for hearing: recent progress. Proc Natl Acad Sci U S A (2000) 97:11807–14.10.1073/pnas.97.22.11807
    1. Zhang Y, Suga N. Modulation of responses and frequency tuning of thalamic and collicular neurons by cortical activation in mustached bats. J Neurophysiol. (2000) 84(1):325–33
    1. Liu X, Yan Y, Wang Y, Yan J. Corticofugal modulation of initial neural processing of sound information from the ipsilateral ear in the mouse. PLoS One (2010) 5:e14038.10.1371/journal.pone.0014038
    1. Tang J, Yang W, Suga N. Modulation of thalamic auditory neurons by the primary auditory cortex. J Neurophysiol (2012) 108:935–42.10.1152/jn.00251.2012
    1. Popelar J, Grecova J, Rybalko N, Syka J. Comparison of noise-induced changes of auditory brainstem and middle latency response amplitudes in rats. Hear Res (2008) 245:82–91.10.1016/j.heares.2008.09.002
    1. Roberts LE, Eggermont JJ, Caspary DM, Shore SE, Melcher JR, Kaltenbach JA. Ringing ears: the neuroscience of tinnitus. J Neurosci (2010) 30:14972–9.10.1523/JNEUROSCI.4028-10.2010
    1. Eggermont JJ, Roberts LE. The neuroscience of tinnitus: understanding abnormal and normal auditory perception. Front Syst Neurosci (2012) 6:53.10.3389/fnsys.2012.00053
    1. Liberman MC, Dodds LW. Single-neuron labeling and chronic cochlear patology 2. Stereocilia damage and alterations of spontaneous discharges rates. Hear Res (1984) 16:43–53.10.1016/0378-5955(84)90024-8
    1. Liberman MC, Dodds LW. Single-neuron labeling and chronic cochlear patology 3. Stereocilia damage and alterations of threshold tuning curves. Hear Res (1984) 16:55–74.10.1016/0378-5955(84)90024-8
    1. Liberman MC, Kiang NY. Single-neuron labeling and chronic cochlear patology 4. Stereocilia damage and alterations in rate-level and phase-level functions. Hear Res (1984) 16:75–90.10.1016/0378-5955(84)90024-8
    1. Stypulkowski PH. Mechanisms of salicylate ototoxicity. Hear Res (1990) 46:113–45.10.1016/0378-5955(90)90144-E
    1. Wake M, Takeno S, Ibrahim D, Harrison R, Mount R. Carboplatin ototoxicity in animal model. J Laryngol Otol (1993) 107:585–9.10.1017/S0022215100123771
    1. Takeno S, Harrison RV, Mount RJ, Wake M, Harada Y. Induction of selective inner hair cell damage by carboplatin. Scanning Microsc (1994) 8:97–106.
    1. Trautwein P, Hofstetter P, Wang J, Salvi R, Nostrant A. Selective inner hair cell loss does not alter distortion product otoacoustic emissions. Hear Res (1996) 96:71–82.10.1016/0378-5955(96)00040-8
    1. Wang J, Powers NL, Hofstetter P, Trautwein P, Ding D, Salvi R. Effects of selective inner hair cell loss on auditory nerve fiber threshold, tuning and spontaneous and driven discharge rate. Hear Res (1997) 107:67–82.10.1016/S0378-5955(97)00020-8
    1. Wang J, Ding D, Salvi RJ. Carboplatin-induced early cochlear lesion in chinchillas. Hear Res (2003) 181:65–72.10.1016/S0378-5955(03)00176-X
    1. Hofstetter P, Ding D, Powers N, Salvi RJ. Quantitative relationship of carboplatin dose to magnitude of inner and outer hair cell loss and the reduction in distortion product otoacoustic emission amplitude in chinchillas. Hear Res (1997) 112:199–215.10.1016/S0378-5955(97)00123-8
    1. Hofstetter P, Ding D, Salvi R. Magnitude and pattern of inner and outer hair cell loss in chinchilla as a function of carboplatin dose. Audiology (1997) 36:301–11.10.3109/00206099709071981
    1. Ding DL, Wang J, Salvi R, Henderson D, Hu BH, McFadden SL, et al. Selective loss of inner hair cells and type-I ganglion neurons in carboplatin-treated chinchillas. Mechanisms of damage and protection. Ann N Y Acad Sci (1999) 884:152–70.10.1111/j.1749-6632.1999.tb08640.x
    1. Salvi RJ, Ding D, Wang J, McFadden SL, Sun W. Functional changes in peripheral and central auditory pathways flowing selective inner hair cell loss. In: Simmons DD, Palmer C, editors. Seminar in Hearing; New Frontiers in the Amelioration of Hearing Loss: Part – Hair Cell Development, Regeneration, Protection, and Rescue. (Vol. 24), New York, NY: Thieme; (2003). p. 135–44
    1. Hofstetter P, Ding D, Salvi R. Induction of spontaneous otoacoustic emissions in chinchillas from carboplatin-induced inner hair cell loss. Hear Res (2000) 150:132–6.10.1016/S0378-5955(00)00201-X
    1. Lobarinas E, Salvi R, Ding D. Insensitivity of the audiogram to carboplatin induced inner hair cell loss in chinchillas. Hear Res (2013) 302:113–20.10.1016/j.heares.2013.03.012
    1. Qiu C, Salvi R, Ding D, Burkard R. Inner hair cell loss leads to enhanced response amplitudes in auditory cortex of unanesthetized chinchillas: evidence for increased system gain. Hear Res (2000) 139:153–71.10.1016/S0378-5955(99)00171-9
    1. Jastreboff PJ, Brennan JF, Coleman JK, Sasaki CT. Phantom auditory sensation in rats: an animal model for tinnitus. Behav Neurosci (1988) 102:811–22.10.1037/0735-7044.102.6.811
    1. Day RO, Graham GG, Bieri D, Brown M, Cairns D, Harris G, et al. Concentration-response relationships for salicylate-induced ototoxicity in normal volunteers. Br J Clin Pharmacol (1989) 28:695–702.10.1111/j.1365-2125.1989.tb03562.x
    1. Brien JA. Ototoxicity associated with salicylate – a brief review. Drug Safety (1993) 9:143–8.10.2165/00002018-199309020-00006
    1. Bauer CA, Brozoski TJ, Rojas R, Boley J, Wyder M. Behavioral model of chronic tinnitus in rats. Otolaryngol Head Neck Surg (1999) 121:457–62.10.1016/S0194-5998(99)70237-8
    1. Cazals Y. Auditory sensori-neural alterations induced by salicylate. Prog Neurobiol (2000) 62:583–631.10.1016/S0301-0082(00)00027-7
    1. Guitton MJ, Caston J, Ruel J, Johnson RM, Pujol R, Puel JL. Salicylate induces tinnitus through activation of cochlear NMDA receptors. J Neurosci (2003) 23:3944–52.
    1. Lobarinas E, Sun W, Cushing R, Salvi RJ. A novel behavioral paradigm for assessing tinnitus using schedule-induced polydipsia avoidance conditioning (SIP-AC). Hear Res (2004) 190:109–14.10.1016/S0378-5955(04)00019-X
    1. Yang G, Lobarinas E, Zhang LY, Turner J, Stolzberg D, Salvi R, et al. Salicylate induced tinnitus: behavioral measures and neural activity in auditory cortex of awake rats. Hear Res (2007) 226:244–53.10.1016/j.heares.2006.06.013
    1. Lobarinas E, Sun W, Stolzberg D, Lu J, Salvi R. Human brain imaging and animal models of tinnitus. Sem Hear (2008) 29:333–49.10.1055/s-0028-1095893
    1. Stolzberg D, Salvi RJ, Allman BL. Salicylate toxicity model of tinnitus. Front Syst Neurosci (2012) 6:28.10.3389/fnsys.2012.00028
    1. Stolzberg D, Hayes SH, Kashanian N, Radziwon K, Salvi RJ, Allman BL. A novel behavioral assay for the assessment of acute tinnitus in rats optimized for simultaneous recording of oscillatory neural activity. J Neurosci Methods (2013) 219:224–32.10.1016/j.jneumeth.2013.07.021
    1. Sheppard A, Hayes SH, Chen GD, Ralli M, Salvi R. Review of salicylate-induced hearing loss, neurotoxicity, tinnitus and neuropathophysiology. Acta Otorhinolaryngol Ital (2014) 34:79–93.
    1. Sun W. Research on biological mechanisms of hyperacusis using animal models. ASHA Lead (2009) 14:5–6
    1. Sun W, Lu J, Stolzberg D, Gray L, Deng A, Lobarinas E, et al. Salicylate increases the gain of the central auditory system. Neuroscience (2009) 159:325–34.10.1016/j.neuroscience.2008.12.024
    1. Zhang C, Flowers E, Li J-X, Wang Q, Sun W. Loudness perception affected by high doses of salicylate – a behavioral model of hyperacusis. Behav Brain Res (2014) 271:16–22.10.1016/j.bbr.2014.05.045
    1. Wier CC, Pasanen EG, McFadden D. Partial dissociation of spontaneous otoacoustic emissions and distortion products during aspirin use in humans. J Acoust Soc Am (1988) 84:230–7.10.1121/1.396970
    1. Kujawa SG, Fallon M, Bobbin RP. Intracochlear salicylate reduces low-intensity acoustic and cochlear microphonic distortion products. Hear Res (1992) 64:73–80.10.1016/0378-5955(92)90169-N
    1. Ruel J, Chabbert C, Nouvian R, Bendris R, Eybalin M, Leger CL, et al. Salicylate enables cochlear arachidonic-acid-sensitive NMDA receptor responses. J Neurosci (2008) 28:7313–23.10.1523/JNEUROSCI.5335-07.2008
    1. Ralli M, Lobarinas E, Fetoni AR, Stolzberg D, Paludetti G, Salvi R. Comparison of salicylate- and quinine-induced tinnitus in rats: development, time course, and evaluation of audiologic correlates. Otol Neurotol (2010) 31:823–31.10.1097/MAO.0b013e3181de4662
    1. Stolzberg D, Chen GD, Allman BL, Salvi RJ. Salicylate-induced peripheral auditory changes and tonotopic reorganization of auditory cortex. Neuroscience (2011) 180:157–64.10.1016/j.neuroscience.2011.02.005
    1. Oliver D, He DZ, Klocker N, Ludwig J, Schulte U, Waldegger S, et al. Intracellular anions as the voltage sensor of prestin, the outer hair cell motor protein. Science (2001) 292:2340–3.10.1126/science.1060939
    1. Liberman MC, Gao JG, He DZ, Wu XD, Jia SP, Zuo J. Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature (2002) 419:300–4.10.1038/nature01059
    1. Müller M, Klinke R, Arnold W, Oestreicher E. Auditory nerve fibre responses to salicylate revisited. Hear Res (2003) 183:37–43.10.1016/S0378-5955(03)00217-X
    1. Drexl M, Lagarde MM, Zuo J, Lukashkin AN, Russell IJ. The role of prestin in the generation of electrically evoked otoacoustic emissions in mice. J Neurophysiol (2008) 99:1607–15.10.1152/jn.01216.2007
    1. Lagarde MM, Drexl M, Lukashkin AN, Zuo J, Russell IJ. Prestin’s role in cochlear frequency tuning and transmission of mechanical responses to neural excitation. Curr Biol (2008) 18:200–2.10.1016/j.cub.2008.01.006
    1. Jeanmonod D, Magnin M, Morel A. Low-threshold calcium spike bursts in the human thalamus – common physiopathology for sensory, motor and limbic positive symptoms. Brain (1996) 119:363–75.10.1093/brain/119.2.363
    1. Mühlau M, Rauschecker JP, Oestreicher E, Gaser C, Röttinger M, Wohlschläger AM, et al. Structural brain changes in tinnitus. Cereb Cortex (2006) 16:1283–8.10.1093/cercor/bhj070
    1. Vanneste S, Plazier M, der Loo Ev, de Heyning PV, Congedo M, De Ridder D. The neural correlates of tinnitus-related distress. Neuroimage (2010) 52:470–80.10.1016/j.neuroimage.2010.04.029
    1. Stolzberg D, Chrostowski M, Salvi RJ, Allman BL. Intracortical circuits amplify sound-evoked activity in primary auditory cortex following systemic injection of salicylate in the rat. J Neurophysiol (2012) 108:200–14.10.1152/jn.00946.2011
    1. Barth DS, Di S. 3-Dimensional analysis of auditory evoked-potentials in the rat neocortex. J Neurophysiol (1990) 64:1527–36.
    1. Prieto JJ, Winer JA. Layer VI in cat primary auditory cortex: Golgi study and sublaminar origins of projection neurons. JComp Neurol (1999) 404:332–58.10.1002/(SICI)1096-9861(19990215)404:3<332::AID-CNE5>;2-R
    1. Winer JA, Prieto JJ. Layer V in cat primary auditory cortex (AI): cellular architecture and identification of projection neurons. J Comp Neurol (2001) 434:379–412.10.1002/cne.1183
    1. Szymanski FD, Garcia-Lazaro JA, Schnupp JW. Current source density profiles of stimulus-specific adaptation in rat auditory cortex. J Neurophysiol (2009) 102:1483–90.10.1152/jn.00240.2009
    1. Szymanski FD, Rabinowitz NC, Magri C, Panzeri S, Schnupp JW. The laminar and temporal structure of stimulus information in the phase of field potentials of auditory cortex. J Neurosci (2011) 31:15787–801.10.1523/JNEUROSCI.1416-11.2011
    1. Stolzberg D, Lu J, Schlee W, Weisz N, Sun W, Salvi R. Salicylate-induced tinnitus: spectral changes in spontaneous ensemble activity in auditory cortex of Awake Rats. ARO Midwinter Meeting (2008).
    1. Lu J, Lobarinas E, Deng A, Goodey R, Stolzberg D, Salvi RJ, et al. GABAergic neural activity involved in salicylate-induced auditory cortex gain enhancement. Neuroscience (2011) 189:187–98.10.1016/j.neuroscience.2011.04.073
    1. Zhang X, Yang P, Cao Y, Qin L, Sato Y. Salicylate induced neural changes in the primary auditory cortex of awake cats. Neuroscience (2011) 172:232–45.10.1016/j.neuroscience.2010.10.073
    1. Happel MF, Jeschke M, Ohl FW. Spectral integration in primary auditory cortex attributable to temporally precise convergence of thalamocortical and intracortical input. J Neurosci (2010) 30:11114–27.10.1523/JNEUROSCI.0689-10.2010
    1. Rizzardo R, Savastano M, Maron MB, Mangialaio M, Salvadori L. Psychological distress in patients with tinnitus. J Otolaryngol (1998) 27:21–5
    1. Andersson G, Freijd A, Baguley DM, Idrizbegovic E. Tinnitus distress, anxiety, depression, and hearing problems among cochlear implant patients with tinnitus. J Am Acad Audiol (2009) 20:315–9.10.3766/jaaa.20.5.5
    1. Cima RF, Crombez G, Vlaeyen JW. Catastrophizing and fear of tinnitus predict quality of life in patients with chronic tinnitus. Ear Hear (2011) 32:634–41.10.1097/AUD.0b013e31821106dd
    1. Zald DH, Pardo JV. The neural correlates of aversive auditory stimulation. Neuroimage (2002) 16:746–53.10.1006/nimg.2002.1115
    1. Maudoux A, Lefebvre P, Cabay J-E, Demertzi A, Vanhaudenhuyse A, Laureys S, et al. Auditory resting-state network connectivity in tinnitus: a functional MRI study. PLoS One (2012) 7(5):e36222.10.1371/journal.pone.0036222
    1. Maudoux A, Lefebvre P, Cabay JE, Demertzi A, Vanhaudenhuyse A, Laureys S, et al. Connectivity graph analysis of the auditory resting state network in tinnitus. Brain Res (2012) 1485:10–21.10.1016/j.brainres.2012.05.006
    1. Seydell-Greenwald A, Leaver AM, Turesky TK, Morgan S, Kim HJ, Rauschecker JP. Functional MRI evidence for a role of ventral prefrontal cortex in tinnitus. Brain Res (2012) 1485:22–39.10.1016/j.brainres.2012.08.052
    1. Crippa A, Lanting CP, van Dijk P, Roerdink JB. A diffusion tensor imaging study on the auditory system and tinnitus. Open Neuroimag J (2010) 4:16–25.10.2174/1874440001004010016
    1. Kim HS, Wan X, Mathers DA, Puil E. Selective GABA-receptor actions of amobarbital on thalamic neurons. Br J Pharmacol (2004) 143:485–94.10.1038/sj.bjp.0705974
    1. De Ridder D, Fransen H, Francois O, Sunaert S, Kovacs S, Van De Heyning P. Amygdalohippocampal involvement in tinnitus and auditory memory. Acta Otolaryngol (2006) 126:50–3.10.1080/03655230600895580
    1. Brennan JF, Jastreboff PJ. Generalization of conditioned suppresion during salicylate-induced phantom auditory-perception in rats. Acta Neurobiol Exp (1991) 51:15–27.
    1. Kizawa K, Kitahara T, Horii A, Maekawa C, Kuramasu T, Kawashima T, et al. Behavioral assessment and identification of a molecular marker in a salicylate-induced tinnitus in rats. Neuroscience (2010) 165:1323–32.10.1016/j.neuroscience.2009.11.048
    1. Hildebrandt H, Hoffmann NA, Illing R-B. Synaptic reorganization in the adult rat’s ventral cochlear nucleus following its total sensory deafferentation. PLoS One (2011) 6:e23686.10.1371/journal.pone.0023686
    1. Middleton JW, Kiritani T, Pedersen C, Turner JG, Shepherd GM, Tzounopoulos T. Mice with behavioral evidence of tinnitus exhibit dorsal cochlear nucleus hyperactivity because of decreased GABAergic inhibition. Proc Natl Acad Sci U S A (2011) 108:7601–6.10.1073/pnas.1100223108
    1. Asako M, Holt AG, Griffith RD, Buras ED, Altschuler RA. Deafness-related decreases in glycine-immunoreactive labeling in the rat cochlear nucleus. J Neurosci Res (2005) 81:102–9.10.1002/jnr.20542
    1. Wang H, Brozoski TJ, Turner JG, Ling L, Parrish JL, Hughes LF, et al. Plasticity at glycinergic synapses in dorsal cochlear nucleus of rats with behavioral evidence of tinnitus. Neuroscience (2009) 164:747–59.10.1016/j.neuroscience.2009.08.026
    1. Suneja SK, Benson CG, Potashner SJ. Glycine receptors in adult guinea pig brain stem auditory nuclei: regulation after unilateral cochlear ablation. Exp Neurol (1998) 154:473–88.10.1006/exnr.1998.6946
    1. Suneja SK, Potashner SJ, Benson CG. Plastic changes in glycine and GABA release and uptake in adult brain stem auditory nuclei after unilateral middle ear ossicle removal and cochlear ablation. Exp Neurol (1998) 151:273–88.10.1006/exnr.1998.6812
    1. Potashner SJ, Suneja SK, Benson CG. Altered glycinergic synaptic activities in guinea pig brain stem auditory nuclei after unilateral cochlear ablation. Hear Res (2000) 147:125–36.10.1016/S0378-5955(00)00126-X
    1. Bledsoe SC, Nagase S, Miller JM, Altschuler RA. Deafness-induced plasticity in the mature central auditory system. Neuroreport (1995) 7:225–9.10.1097/00001756-199512290-00054
    1. Milbrandt JC, Holder TM, Wilson MC, Salvi RJ, Caspary DM. GAD levels and muscimol binding in rat inferior colliculus following acoustic trauma. Hear Res (2000) 147:251–60.10.1016/S0378-5955(00)00135-0
    1. Wang H, Brozoski TJ, Caspary DM. Inhibitory neurotransmission in animal models of tinnitus: maladaptive plasticity. Hear Res (2011) 279:111–7.10.1016/j.heares.2011.04.004
    1. Dong S, Rodger J, Mulders WH, Robertson D. Tonotopic changes in GABA receptor expression in guinea pig inferior colliculus after partial unilateral hearing loss. Brain Res (2010) 1342:24–32.10.1016/j.brainres.2010.04.067
    1. Yang S, Weiner BD, Zhang LS, Cho S-J, Bao S. Homeostatic plasticity drives tinnitus perception in an animal model. Proc Natl Acad Sci U S A (2011) 108:14974–9.10.1073/pnas.1107998108
    1. Kotak VC, Sanes DH. Synaptically-evoked prolonged depolarizations in the developing auditory-system. J Neurophysiol (1995) 74:1611–20.
    1. Vale C, Sanes DH. Afferent regulation of inhibitory synaptic transmission in the developing auditory midbrain. J Neurosci (2000) 20:1912–21.
    1. Kotak VC, Takesian AE, Sanes DH. Hearing loss prevents the maturation of GABAergic transmission in the auditory cortex. Cereb Cortex (2008) 18:2098–108.10.1093/cercor/bhm233
    1. Sarro EC, Kotak VC, Sanes DH, Aoki C. Hearing loss alters the subcellular distribution of presynaptic GAD and postsynaptic GABA(A) receptors in the auditory cortex. Cereb Cortex (2008) 18:2855–67.10.1093/cercor/bhn044
    1. Wang H-T, Luo B, Zhou K-Q, Xu T-L, Chen L. Sodium salicylate reduces inhibitory postsynaptic currents in neurons of rat auditory cortex. Hear Res (2006) 215:77–83.10.1016/j.heares.2006.03.004
    1. Su Y-Y, Luo B, Wang H-T, Chen L. Differential effects of sodium salicylate on current-evoked firing of pyramidal neurons and fast-spiking interneurons in slices of rat auditory cortex. Hear Res (2009) 253:60–6.10.1016/j.heares.2009.03.007
    1. Isaacson Jeffry S, Scanziani M. How inhibition shapes cortical activity. Neuron (2011) 72:231–43.10.1016/j.neuron.2011.09.027
    1. Atallah Bassam V, Bruns W, Carandini M, Scanziani M. Parvalbumin-expressing interneurons linearly transform cortical responses to visual stimuli. Neuron (2012) 73:159–70.10.1016/j.neuron.2011.12.013
    1. Wilson NR, Runyan CA, Wang FL, Sur M. Division and subtraction by distinct cortical inhibitory networks in vivo. Nature (2012) 488:343–8.10.1038/nature11347
    1. Moore AK, Wehr M. Parvalbumin-expressing inhibitory interneurons in auditory cortex are well-tuned for frequency. J Neurosci (2013) 33:13713–23.10.1523/JNEUROSCI.0663-13.2013
    1. Pi H-J, Hangya B, Kvitsiani D, Sanders JI, Huang ZJ, Kepecs A. Cortical interneurons that specialize in disinhibitory control. Nature (2013) 503:521–4.10.1038/nature12676
    1. Potashner SJ, Suneja SK, Benson CG. Regulation of D-aspartate release and uptake in adult brain stem auditory nuclei after unilateral middle ear ossicle removal and cochlear ablation. Exp Neurol (1997) 148:222–35.10.1006/exnr.1997.6641
    1. Godfrey DA, Godfrey MA, Ding D-L, Chen K, Salvi RJ. Amino acid concentrations in chinchilla cochlear nucleus at different times after carboplatin treatment. Hear Res (2005) 206:64–73.10.1016/j.heares.2005.03.004
    1. Illing R-B, Kraus KS, Meidinger MA. Reconnecting neuronal networks in the auditory brainstem following unilateral deafening. Hear Res (2005) 206:185–99.10.1016/j.heares.2005.01.016
    1. Godfrey DA, Jin Y-M, Liu X, Godfrey MA. Effects of cochlear ablation on amino acid levels in the rat cochlear nucleus and superior olive. Hear Res (2014) 309:44–54.10.1016/j.heares.2013.11.005
    1. Dong S, Mulders WH, Rodger J, Robertson D. Changes in neuronal activity and gene expression in guinea-pig auditory brainstem after unilateral partial hearing loss. Neuroscience (2009) 159:1164–74.10.1016/j.neuroscience.2009.01.043
    1. Dong S, Mulders WH, Rodger J, Woo S, Robertson D. Acoustic trauma evokes hyperactivity and changes in gene expression in guinea-pig auditory brainstem. Eur J Neurosci (2010) 31:1616–28.10.1111/j.1460-9568.2010.07183.x
    1. Foerster CR, Illing RB. Redistribution of NMDA receptors in the cochlear nucleus following cochleotomy. Neuroreport (1998) 9:3531–5.10.1097/00001756-199810260-00036
    1. Rubio ME. Redistribution of synaptic AMPA receptors at glutamatergic synapses in the dorsal cochlear nucleus as an early response to cochlear ablation in rats. Hear Res (2006) 21(6–217):154–67.10.1016/j.heares.2006.03.007
    1. Whiting B, Moiseff A, Rubio ME. Cochlear nucleus neurons redistribute synaptic AMPA and glycine receptors in response to monaural conductive hearing loss. Neuroscience (2009) 163:1264–76.10.1016/j.neuroscience.2009.07.049
    1. Gulley RL, Wenthold RJ, Neises GR. Remodeling of neuronal membranes as an early response to deafferentation. A freeze-fracture study. J Cell Biol (1977) 75:837–50.10.1083/jcb.75.3.837
    1. Redd EE, Pongstaporn T, Ryugo DK. The effects of congenital deafness on auditory nerve synapses and globular bushy cells in cats. Hear Res (2000) 147:160–74.10.1016/S0378-5955(00)00129-5
    1. Vale C, Sanes DH. The effect of bilateral deafness on excitatory and inhibitory synaptic strength in the inferior colliculus. Eur J Neurosci (2002) 16:2394–404.10.1046/j.1460-9568.2002.02302.x
    1. Kotak VC, Fujisawa S, Lee FA, Karthikeyan O, Aoki C, Sanes DH. Hearing loss raises excitability in the auditory cortex. J Neurosci (2005) 25:3908–18.10.1523/JNEUROSCI.5169-04.2005
    1. Suneja SK, Potashner SJ, Benson CG. AMPA receptor binding in adult guinea pig brain stem auditory nuclei after unilateral cochlear ablation. Exp Neurol (2000) 165:355–69.10.1006/exnr.2000.7471
    1. Pilati N, Ison MJ, Barker M, Mulheran M, Large CH, Forsythe ID, et al. Mechanisms contributing to central excitability changes during hearing loss. Proc Natl Acad Sci U S A (2012) 109:8292–7.10.1073/pnas.1116981109
    1. Li S, Choi V, Tzounopoulos T. Pathogenic plasticity of Kv7.2/3 channel activity is essential for the induction of tinnitus. Proc Natl Acad Sci U S A (2013) 110:9980–5.10.1073/pnas.1302770110
    1. Lobarinas E, Dalby-Brown W, Stolzberg D, Mirza NR, Allman BL, Salvi R. Effects of the potassium ion channel modulators BMS-204352 maxipost and its R-enantiomer on salicylate-induced tinnitus in rats. Physiol Behav (2011) 104(5):873–9.10.1016/j.physbeh.2011.05.022
    1. Yang S, Su W, Bao S. Long-term, but not transient, threshold shifts alter the morphology and increase the excitability of cortical pyramidal neurons. J Neurophysiol (2012) 108(6):1567–74
    1. Calford MB, Rajan R, Irvine DR. Rapid changes in the frequency tuning of neurons in cat auditory cortex resulting from pure-tone-induced temporary threshold shift. Neuroscience (1993) 55:953–64.10.1016/0306-4522(93)90310-C
    1. Rajan R. Receptor organ damage causes loss of cortical surround inhibition without topographic map plasticity. Nat Neurosci (1998) 1:138–43.10.1038/388
    1. Fritz J, Shamma S, Elhilali M, Klein D. Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nat Neurosci (2003) 6:1216–23.10.1038/nn1141
    1. Dean I, Harper NS, McAlpine D. Neural population coding of sound level adapts to stimulus statistics. Nat Neurosci (2005) 8:1684–9.10.1038/nn1541
    1. Fritz J, Elhilali M, Shamma S. Active listening: task-dependent plasticity of spectrotemporal receptive fields in primary auditory cortex. Hear Res (2005) 206:159–76.10.1016/j.heares.2005.01.015
    1. Fritz JB, Elhilali M, Shamma SA. Differential dynamic plasticity of a1 receptive fields during multiple spectral tasks. J Neurosci (2005) 25:7623–35.10.1523/JNEUROSCI.1318-05.2005
    1. Dean I, Robinson BL, Harper NS, McAlpine D. Rapid neural adaptation to sound level statistics. J Neurosci (2008) 28:6430–8.10.1523/JNEUROSCI.0470-08.2008
    1. Yin P, Mishkin M, Sutter M, Fritz JB. Early stages of melody processing: stimulus-sequence and task-dependent neuronal activity in monkey auditory cortical fields A1 and R. J Neurophysiol (2008) 100:3009–29.10.1152/jn.00828.2007
    1. Middleton JW, Tzounopoulos T. Imaging the neural correlates of tinnitus: a comparison between animal models and human studies. Front Syst Neurosci (2012) 6:35.10.3389/fnsys.2012.00035
    1. Levay S, Hubel DH, Wiesel TN. Pattern of ocular dominance columns in macaque visual cortex revealed by a reduced silver stain. JComp Neurol (1975) 159:559–75.10.1002/cne.901590408
    1. Hubel DH, Wiesel TN, Levay S. Plasticity of ocular dominance columns in monkey striate cortex. Philos Trans R Soc Lond B Biol Sci (1977) 278:377.10.1098/rstb.1977.0050
    1. Darian-Smith C, Gilbert CD. Axonal sprouting accompanies functional reorganization in adult cat striate cortex. Nature (1994) 368:737–40.10.1038/368737a0
    1. Feldman DE, Brecht M. Map plasticity in somatosensory cortex. Science (2005) 310:810–5.10.1126/science.1115807
    1. Feldman DE. Synaptic mechanisms for plasticity in neocortex. Annu Rev Neurosci (2009) 32:33–55.10.1146/annurev.neuro.051508.135516
    1. Syka J. Plastic changes in the central auditory system after hearing loss, restoration of function, and during learning. Physiol Rev (2002) 82:601–36.
    1. Baccus SA. From a whisper to a roar: adaptation to the mean and variance of naturalistic sounds. Neuron (2006) 51:682–4.10.1016/j.neuron.2006.09.007
    1. Talwar SK, Gerstein GL. Auditory frequency discrimination in the white rat. Hear Res (1998) 126:135–50.10.1016/S0378-5955(98)00162-2
    1. Singh NC, Theunissen FE. Modulation spectra of natural sounds and ethological theories of auditory processing. J Acoust Soc Am (2003) 114:3394–411.10.1121/1.1624067
    1. Carandini M, Heeger DJ. Normalization as a canonical neural computation. Nat Rev Neurosci (2012) 13:51–62.10.1038/nrn3136
    1. Robinson BL, McAlpine D. Gain control mechanisms in the auditory pathway. Curr Opin Neurobiol (2009) 19:402–7.10.1016/j.conb.2009.07.006
    1. Rabinowitz NC, Willmore Ben DB, Schnupp Jan WH, King Andrew J. Contrast gain control in auditory cortex. Neuron (2011) 70:1178–91.10.1016/j.neuron.2011.04.030
    1. Willmore BD, Cooke JE, King AJ. Hearing in noisy environments: noise invariance and contrast gain control. J Physiol (2014) 592(Pt 16):3371–81.10.1113/jphysiol.2014.274886
    1. Olsen SR, Wilson RI. Lateral presynaptic inhibition mediates gain control in an olfactory circuit. Nature (2008) 452:956–60.10.1038/nature06864
    1. Olsen SR, Bhandawat V, Wilson RI. Divisive normalization in olfactory population codes. Neuron (2010) 66:287–99.10.1016/j.neuron.2010.04.009
    1. Katzner S, Busse L, Carandini M. GABAA inhibition controls response gain in visual cortex. J Neurosci (2011) 31:5931–41.10.1523/JNEUROSCI.5753-10.2011
    1. Wehr M, Zador AM. Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature (2003) 426:442–6.10.1038/nature02116
    1. Zhang LI, Tan AY, Schreiner CE, Merzenich MM. Topography and synaptic shaping of direction selectivity in primary auditory cortex. Nature (2003) 424:201–5.10.1038/nature01796
    1. Tan AY, Zhang LI, Merzenich MM, Schreiner CE. Tone-evoked excitatory and inhibitory synaptic conductances of primary auditory cortex neurons. J Neurophysiol (2004) 92:630–43.10.1152/jn.01020.2003
    1. Wu GK, Arbuckle R, Liu BH, Tao HW, Zhang LI. Lateral sharpening of cortical frequency tuning by approximately balanced inhibition. Neuron (2008) 58:132–43.10.1016/j.neuron.2008.01.035
    1. Wu GK, Tao HW, Zhang LI. From elementary synaptic circuits to information processing in primary auditory cortex. Neurosci Biobehav Rev (2011) 35:2094–104.10.1016/j.neubiorev.2011.05.004
    1. Carcea I, Froemke RC. Chapter 3 – cortical plasticity, excitatory-inhibitory balance, and sensory perception. In: Michael M, Merzenich MN, Thomas MV, editors. Progress in Brain Research. (Vol. 207). Elsevier; (2013). p. 65–90
    1. Froemke RC, Carcea I, Barker AJ, Yuan K, Seybold BA, Martins AR, et al. Long-term modification of cortical synapses improves sensory perception. Nat Neurosci (2013) 16:79–88.10.1038/nn.3274
    1. Rasmusson DD, Turnbull BG. Immediate effect of digit amputation on SI cortex in the raccoon – unmasking of inhibitory fields. Brain Res (1983) 288:368–70.10.1016/0006-8993(83)90120-8
    1. Calford MB, Tweedale R. Acute changes in the cutaneous receptive-fields in primary somatosensory cortex after digit denergation in adult flying fox. J Neurophysiol (1991) 65:178–87.
    1. Schmid LM, Rosa MG, Calford MB. Retinal detachment induces massive immediate in visual-cortex. Neuroreport (1995) 6:1349–53.10.1097/00001756-199506090-00030
    1. Gilbert CD, Das A, Ito M, Kapadia M, Westheimer G. Spatial integration and cortical dynamics. Proc Natl Acad Sci U S A (1996) 93:615–22.10.1073/pnas.93.2.615
    1. Gilbert CD. Adult cortical dynamics. Physiol Rev (1998) 78:467–85.
    1. Scholl B, Wehr M. Disruption of balanced cortical excitation and inhibition by acoustic trauma. J Neurophysiol (2008) 100(2):646–56.10.1152/jn.90406.2008
    1. Salvi RJ, Henderson D, Fiorino F, Colletti V. Auditory System Plasticity and Regeneration. New York, NY: Thieme Medical Publishers, Inc; (1996).
    1. Caspary DM, Backoff PM, Finlayson PG, Palombi PS. Inhibitory inputs modulate discharge rate within frequency receptive-fields of anteroventral cochlear nucleus neurons. J Neurophysiol (1994) 72:2124–33.
    1. Ehret G, Merzenich MM. Complex sound analysis (frequency resolution, filtering and spectral integration) by single units of the inferior colliculus of the cat. Brain Res (1988) 472:139–63.10.1016/0165-0173(88)90018-5
    1. Suga N, Zhang YF, Yan J. Sharpening of frequency tuning by inhibition in the thalamic auditory nucleus of the mustached bat. J Neurophysiol (1997) 77:2098–114.
    1. Davis KA, Young ED. Pharmacological evidence of inhibitory and disinhibitory neuronal circuits in dorsal cochlear nucleus. J Neurophysiol (2000) 83:926–40.
    1. Wang J, Caspary D, Salvi RJ. GABA-A antagonist causes dramatic expansion of tuning in primary auditory cortex. Neuroreport (2000) 11:1137–40.10.1097/00001756-200004070-00045
    1. Wang J, McFadden SL, Caspary D, Salvi R. Gamma-aminobutyric acid circuits shape response properties of auditory cortex neurons. Brain Res (2002) 944:219–31.10.1016/S0006-8993(02)02926-8
    1. Pollak GD. The dominant role of inhibition in creating response selectivities for communication calls in the brainstem auditory system. Hear Res (2013) 305:86–101.10.1016/j.heares.2013.03.001
    1. Young ED, Voigt HF. Response properties of type-II and type-III units in dorsal cochlear nucleus hearing research. Hear Res (1982) 6:153–69
    1. Caspary DM, Pazara KE, Kossl M, Faingold CL. Strychnine alters the fusiform cell output from the dorsal cochlear nucleus. Brain Res (1987) 417:273–82.10.1016/0006-8993(87)90452-5
    1. Alkhatib A, Biebel UW, Smolders JW. Reduction of inhibition in the inferior colliculus after inner hair cell loss. Neuroreport (2006) 17:1493–7.10.1097/
    1. Xie R, Gittleman JX, Pollak GD. Rethinking tuning: in vivo whole-cell recordings of the inferior colliculus in awake bats. J Neurosci (2007) 27(35):9469–81.10.1523/JNEUROSCI.2865-07.2007
    1. Noreña AJ. An integrative model of tinnitus based on a central gain controlling neural sensitivity. Neurosci Biobehav Rev (2011) 35:1089–109.10.1016/j.neubiorev.2010.11.003
    1. Smith EC, Lewicki MS. Efficient auditory coding. Nature (2006) 439:978–82.10.1038/nature04485
    1. Simoncelli EP, Olshausen BA. Natural image statistics and neural representation. Annu Rev Neurosci (2001) 24:1193–216.10.1146/annurev.neuro.24.1.1193
    1. Nelken I, Rotman Y, Yosef OB. Responses of auditory-cortex neurons to structural features of natural sounds. Nature (1999) 397:154–7.10.1038/16456
    1. Chechik G, Anderson MJ, Bar-Yosef O, Young ED, Tishby N, Nelken I. Reduction of information redundancy in the ascending auditory pathway. Neuron (2006) 51:359–68.10.1016/j.neuron.2006.06.030
    1. Watkins PV, Barbour DL. Specialized neuronal adaptation for preserving input sensitivity. Nat Neurosci (2008) 11:1259–61.10.1038/nn.2201
    1. Turrigiano GG. Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci (1999) 22:221–7.10.1016/S0166-2236(98)01341-1
    1. Schaette R, Kempter R. Development of tinnitus-related neuronal hyperactivity through homeostatic plasticity after hearing loss: a computational model. Eur J Neurosci (2006) 23:3124–38.10.1111/j.1460-9568.2006.04774.x
    1. Schaette R, Kempter R. Development of hyperactivity after hearing loss in a computational model of the dorsal cochlear nucleus depends on neuron response type. Hear Res (2008) 240:57–72.10.1016/j.heares.2008.02.006
    1. Schaette R, Kempter R. Computational models of neurophysiological correlates of tinnitus. Front Syst Neurosci (2012) 6:34.10.3389/fnsys.2012.00034
    1. Schaette R, McAlpine D. Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J Neurosci (2011) 31:13452–7.10.1523/JNEUROSCI.2156-11.2011
    1. Franklin JL, Fickbohm DJ, Willard AL. Long-term regulation of neuronal calcium currents by prolonged changes of membrane-potential. J Neurosci (1992) 12:1726–35.
    1. Turrigiano G, Abbott LF, Marder E. Activity-dependent changes in the intrinsic-properties of cultured neurons. Science (1994) 264:974–7.10.1126/science.8178157
    1. Turrigiano GG. The self-tuning neuron: synaptic scaling of excitatory synapses. Cell (2008) 135:422–35.10.1016/j.cell.2008.10.008
    1. Turrigiano G. Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harb Perspect Biol (2012) 4(1):a005736.10.1101/cshperspect.a005736
    1. Pinchoff RJ, Burkard RF, Salvi RJ, Coad ML, Lockwood AH. Modulation of tinnitus by voluntary jaw movements. Am J Otol (1998) 19:785–9.
    1. Abel MD, Levine RA. Muscle contractions and auditory perception in tinnitus patients and nonclinical subjects. Cranio (2004) 22:181–91.10.1179/crn.2004.024
    1. Abraham WC, Bear MF. Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci (1996) 19:126–30.10.1016/S0166-2236(96)80018-X
    1. Koehler SD, Shore SE. Stimulus timing-dependent plasticity in dorsal cochlear nucleus is altered in tinnitus. J Neurosci (2013) 33:19647–56.10.1523/JNEUROSCI.2788-13.2013
    1. Kotak VC, Breithaupt AD, Sanes DH. Developmental hearing loss eliminates long-term potentiation in the auditory cortex. Proc Natl Acad Sci U S A (2007) 104:3550–5.10.1073/pnas.0607177104
    1. Lambo ME, Turrigiano GG. Synaptic and intrinsic homeostatic mechanisms cooperate to increase L2/3 pyramidal neuron excitability during a late phase of critical period plasticity. J Neurosci (2013) 33:8810–9.10.1523/JNEUROSCI.4502-12.2013
    1. Formby C, Sherlock LP, Gold SL. Adaptive plasticity of loudness induced by chronic attenuation and enhancement of the acoustic background. J Acoust Soc Am (2003) 114:55–8.10.1121/1.1582860
    1. Plack CJ, Carlyon RP, Viemeister NF. Intensity discrimination under forward and backward-masking: role of referential coding. J Acoust Soc Am (1995) 97:1141–9.10.1121/1.412227
    1. Roehl M, Uppenkamp S. Neural coding of sound intensity and loudness in the human auditory system. J Assoc Res Otolaryngol (2012) 13:369–79.10.1007/s10162-012-0315-6
    1. Zeng FG. An active loudness model suggesting tinnitus as increased central noise and hyperacusis as increased nonlinear gain. Hear Res (2013) 295:172–9.10.1016/j.heares.2012.05.009
    1. Lockwood AH, Salvi RJ, Coad ML, Towsley ML, Wack DS, Murphy BW. The functional neuroanatomy of tinnitus: evidence for limbic system links and neural plasticity. Neurology (1998) 50:114–20.10.1212/WNL.50.1.114
    1. Lanting CP, De Kleine E, Bartels H, Van Dijk P. Functional imaging of unilateral tinnitus using fMRI. Acta Otolaryngol (2008) 128:415–21.10.1080/00016480701793743
    1. Melcher JR, Levine RA, Bergevin C, Norris B. The auditory midbrain of people with tinnitus: abnormal sound-evoked activity revisited. Hear Res (2009) 257:63–74.10.1016/j.heares.2009.08.005
    1. Attias J, Urbach D, Gold S, Shemesh Z. Auditory event related potentials in chronic tinnitus patients with noise induced hearing loss. Hear Res (1993) 71:106–13.10.1016/0378-5955(93)90026-W
    1. Attias J, Pratt H, Haran IR, Bresloff I, Horowitz G, Polyakov A, et al. Detailed analysis of auditory brainstem responses in patients with noise-induced tinnitus. Audiology (1996) 35:259–70.10.3109/00206099609071946
    1. Gu J, Herrmann B, Levine R, Melcher J. Brainstem auditory evoked potentials suggest a role for the ventral cochlear nucleus in tinnitus. J Assoc Res Otolaryngol (2012) 13:819–33.10.1007/s10162-012-0344-1
    1. Engineer ND, Riley JR, Seale JD, Vrana WA, Shetake JA, Sudanagunta SP, et al. Reversing pathological neural activity using targeted plasticity. Nature (2011) 470:101–U114.10.1038/nature09656
    1. Westcott M. Acoustic shock injury (ASI). Acta Otolaryngol Suppl (2006) 126:54–8.10.1080/03655230600895531
    1. Schecklmann M, Landgrebe M, Langguth B, TRI Database Study Group . Phenotypic characteristics of hyperacusis in tinnitus. PLoS One (2014) 9:e86944.10.1371/journal.pone.0086944
    1. Dauman R, Bouscau-Faure F. Assessment and amelioration of hyperacusis in tinnitus patients. Acta Otolaryngol (2005) 125:503–9.
    1. Goldstein B, Shulman A. Tinnitus – hyperacusis and the loudness discomfort level test – a preliminary report. Int Tinnitus J (1996) 2:83–9.
    1. Hébert S, Fournier P, Noreña A. The auditory sensitivity is increased in tinnitus ears. J Neurosci (2013) 33:2356–64.10.1523/JNEUROSCI.3461-12.2013
    1. Ortmann M, Müller N, Schlee W, Weisz N. Rapid increases of gamma power in the auditory cortex following noise trauma in humans. Eur J Neurosci (2011) 33:568–575
    1. Fries P, Reynolds JH, Rorie AE, Desimone R. Modulation of oscillatory neuronal synchronization by selective visual attention. Science (2001) 291:1560–3.10.1126/science.1055465
    1. Fries P, Nikolic D, Singer W. The gamma cycle. Trends Neurosci (2007) 30:309–16.10.1016/j.tins.2007.05.005
    1. Fries P, Womelsdorf T, Oostenveld R, Desimone R. The effects of visual stimulation and selective visual attention on rhythmic neuronal synchronization in macaque area V4. J Neurosci (2008) 28:4823–35.10.1523/JNEUROSCI.4499-07.2008
    1. Tiesinga PH, Sejnowski TJ. Mechanisms for phase shifting in cortical networks and their role in communication through coherence. Front Hum Neurosci (2010) 2(4):196.10.3389/fnhum.2010.00196

Source: PubMed

3
購読する