Tinnitus: animal models and findings in humans

Jos J Eggermont, Larry E Roberts, Jos J Eggermont, Larry E Roberts

Abstract

Chronic tinnitus (ringing of the ears) is a medically untreatable condition that reduces quality of life for millions of individuals worldwide. Most cases are associated with hearing loss that may be detected by the audiogram or by more sensitive measures. Converging evidence from animal models and studies of human tinnitus sufferers indicates that, while cochlear damage is a trigger, most cases of tinnitus are not generated by irritative processes persisting in the cochlea but by changes that take place in central auditory pathways when auditory neurons lose their input from the ear. Forms of neural plasticity underlie these neural changes, which include increased spontaneous activity and neural gain in deafferented central auditory structures, increased synchronous activity in these structures, alterations in the tonotopic organization of auditory cortex, and changes in network behavior in nonauditory brain regions detected by functional imaging of individuals with tinnitus and corroborated by animal investigations. Research on the molecular mechanisms that underlie neural changes in tinnitus is in its infancy and represents a frontier for investigation.

Figures

Fig 1
Fig 1
Psychoacoustic properties of tinnitus. a Sound frequencies judged to resemble tinnitus (Likeness Rating) and the center frequency of band pass maskers giving optimal forward suppression of tinnitus (residual Inhibition, RI Depth) track the region of audiometric threshold shift (from Roberts et al. 2008). A likeness rating of 40 denotes a sound beginning to resemble tinnitus. Sound thresholds (broken lines) are considered normal when ≤ 20 dB HL. WN RI depth after a white noise masker. b, c When audiometric notches are present, Likeness Ratings (b) and RI Depth (c) follow this principle. Two individual subjects are shown in (b) from Noreña et al. (2002) and one subject in (c) from Roberts (2007). During RI in (a) and (c, lower panel), tinnitus elimination corresponds to an RI depth of −5.0
Fig 2
Fig 2
A comparison of the responses to a /ba/–/pa/ continuum (ac) and early gap (df) conditions from the same recording site. Dot displays (left column) and PSTH (middle column) are organized vertically according to VOT or gap duration and horizontally for time since the onset of the leading noise burst. Time windows for evaluation of the PSTHs to the trailing stimulus are selected (between dot lines) according to VOT or gap duration and the latency of peak response for the leading noise burst. Compare in the right panels the average normalized maximum firing rate for the vowel (top) and trailing noise burst after the early gap (bottom) obtained before (filled circles) and after (open circles) the acoustic trauma (±SE). The sigmoid curves provide the best statistical fit to the data. Note that fitted curves for both the /ba/–/pa/ continuum and the early gap condition are shifted toward longer VOT or gap duration. FRmax maximum firing rate. From Tomita et al. (2004)
Fig 3
Fig 3
Summary of main results of resting-state functional connectivity studies in tinnitus. The major networks highlighted are default-mode network (DMN, blue), limbic network involved in stress (green), auditory network (red), the visual network (orange), several attention networks (specifically the dorsal attention network and the executive control of attention, purple). Positive correlations between regions that are stronger in tinnitus patients than controls are shown in solid lines; negative correlations are shown as dashed lines. Connections are labeled with letters representing the studies in which they were reported: a Schmidt et al. (2013). b Burton et al. (2012). c Maudoux et al. (2012). d Kim et al. (2012). PCC posterior cingulate cortex; mpfc medial prefrontal cortex; lifg left inferior frontal gyrus; parahipp parahippocampus; aud cortex auditory cortex; fef frontal eye fields. Modified from Husain and Schmidt (2014)

References

    1. Adjamian P, Sereda M, Hall DA. The mechanisms of tinnitus: perspectives from human functional neuroimaging. Hear Res. 2009;253:15–31.
    1. Adjamian P, Sereda M, Zobay O, Hall DA, Palmer AR. Neuromagneticindicators of tinnitus and tinnitus masking in patients with and without hearing loss. JARO. 2012;13:715–731.
    1. Adjamian P, Hall DA, Palmer AR, Allan TW, Langers DRM. Neuroanatomical abnormalities in chronic tinnitus in the human brain. Neurosci Biobehav Rev. 2014;45:119–133.
    1. Andersson G, Lyttkens L, Hirvelè C, Furmark T, Tillfors M, Fredrikson M. Regional cerebral blood flow during tinnitus: a pet case study with lidocaine and auditory stimulation. Acta Otolaryngol. 2000;120:967–972.
    1. Arnold W, Bartenstein P, Oestreicher EWR, Schweiger M. Focal metabolic activation in the predominant left auditory cortex in patients suffering from tinnitus: a pet study with [18 F]deoxyglucose. J ORL Rel Spec. 1996;58:195–199.
    1. Ashton H, Reid K, Marsh R, et al. (2007) High frequency localised "hot spots" in temporal lobes of patients with intractable tinnitus: a quantitative electroencephalographic (QEEG) study. Neurosci Lett 426:23–28
    1. Basura G. Koehler S. Wiler J. Shore S (2014) Bimodal stimulus timing dependent plasticity in primary auditory cortex is altered after noise-induced hearing loss. ARO abstracts PS-220
    1. Bauer CA, Brozoski TJ, Holder TM, Caspary DM (2000) Effects of chronic salicylate on GABAergic activity in rat inferior colliculus. Hear Res 147:175–182
    1. Bauer CA, Turner JG, Caspary DM, Myers KS, Brozoski TJ (2008) Tinnitus and inferior colliculus activity in chinchillas related to three distinct patterns of cochlear trauma. J Neurosci Res 86:2564–2578
    1. Bauer CA, Wisner K, Sybert LT, Brozozki TJ. The cerebellum as a novel tinnitus generator. Hear Res. 2013;295:130–139.
    1. Bharadwaj HM, Verhulst S, Shaheen L, Liberman MC, Shinn-Cunningham BG. Cochlear neuropathy and the coding of supra-threshold sound. Front Syst Neurosci. 2014;8:26.
    1. Bosnyak DJ, Eaton RA, Roberts LE. Distributed auditory cortical representations are modified when nonmusicians are trained at pitch discrimination with 40 hz amplitude modulated tones. Cereb Cortex. 2004;14:1088–1099.
    1. Boyen K, Langers DRM, de Kleine E, van Dijk P. Gray matter in the brain: differences associated with tinnitus and hearing loss. Hear Res. 2013;295:67–78.
    1. Boyen K, de Kleine E, van Dijk P, Langers DRM. Tinnitus-related dissociation between cortical and subcortical neural activity in humans with mild to moderate sensorineural hearing loss. Hear Res. 2014;312:48–59.
    1. Brozoski TJ, Bauer CA. The effect of dorsal cochlear nucleus ablation on tinnitus in rats. Hear Res. 2005;206:227–36.
    1. Brozoski TJ, Ciobanu L, Bauer CA. Central neural activity in rats with tinnitus evaluated with manganese-enhanced magnetic resonance imaging (MEMRI) Hear Res. 2007;228:168–179.
    1. Brozoski TJ, Wisner KW, Sybert LT, Bauer CA. Bilateral dorsal cochlear nucleus lesions prevent acoustic-trauma induced tinnitus in an animal model. J Assoc Res Otolaryngol. 2012;13:55–66.
    1. Burton H. Wineland A. Bhattacharya M. Nicklaus J. Garcia KS. Piccirillo JF. 2012. Altered networks in bothersome tinnitus: a functional connectivity study. BMC Neuroscience 2012, 13:3
    1. Campolo J, Lobarinas E, Richard Salvi R. Does tinnitus “fill in” the silent gaps? Noise Health. 2013;15:398–405.
    1. Cardin JA, Carlén M, Meletis K, Knoblich U, Ahang F, Deisseroth K, Tsai L-H, Moore CI. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature. 2009;459:663–667.
    1. Chang H, Chen K, Kaltenbach JA, Zhang J, Godfrey DA (2002) Effects of acoustic trauma on dorsal cochlear nucleus neuron activity in slices. Hear Res 164:59–68
    1. Chen GD, Jastreboff PJ (1995) Salicylate-induced abnormal activity in the inferior colliculus of rats. Hear Res 82:158–178
    1. Chen G-D, Manohar S, Salvi R. Amygdala hyperactivity and tonotopic shift after salicylate exposure. Brain Res. 2012;1485:63–78.
    1. Chen G, Lee C, Sandridge SA, Butler HM, Manzoor NF, Kaltenbach JA. Behavioral Evidence for Possible Simultaneous Induction of Hyperacusis and Tinnitus Following Intense Sound Exposure. J Assoc Res Otolaryngol. 2013;14:413–424.
    1. Chen G-D. Radziwon KE. Kasanian N. Manohar S. Salvi R (2014) Salicylate-Induced Auditory Perceptual Disorders and Plastic Changes in Non-Classical Auditory Centers in Rats. Neural Plasticity 658741. doi: 10.1155/2014/658741
    1. Dawes P. Fortnum H. Moore DR. Emsley R. Norman P. Cruickshanks K. Davis A. Edmondson-Jones M. McCormack A. Lutman M. Munro K (2014) Hearing in Middle Age: A Population Snapshot of 40- to 69-Year Olds in the United Kingdom. Ear Hear DOI 0196/0202/14/XXXX-0000/0
    1. de Kloet ER, Joëls M, Holsboer F. Stress and the brain: fom adaptation to disease. Nat Rev Neurosci. 2005;6:463–473.
    1. De Ridder D, Elgoyhen AB, Romo R, Langguth B. Phantom percepts: tinnitus and pain as persisting aversive memory networks. Proc Natl Acad Sci U S A. 2011;108:8075–8080.
    1. Dehmel S, Pradhan S, Koehler S, Bledsoe S, Shore S. Noise overexposure alters long-term somatosensory-auditory processing in the dorsal cochlear nucleus–possible basis for tinnitus-related hyperactivity? J Neurosci. 2012;32:1660–1671.
    1. Del Bo L, Forti S, Ambrosetti U, Costanzo S, Mauro D, Ugazio G, Langguth B, Mancuso A. Tinnitus aurium in persons with normal hearing: 55 years later. Otolaryngol Head Neck Surg. 2008;139:391–394.
    1. Deng L, Ding D, Su J, Manohar S, Salvi R. Salicylate selectively kills cochlear spiral ganglion neurons by paradoxically up-regulating superoxide. Neurotox Res. 2013;24:307–319.
    1. Denker M, Roux S, Lindén H, Diesmann M, Riehle A, Grün S. The local field potential reflects surplus spike synchrony. Cereb Cortex. 2011;21:2681–2695.
    1. Eggermont JJ. Neural correlates of gap detection in three auditory cortical fields in the cat. J Neurophysiol. 1999;81:2570–2581.
    1. Eggermont JJ. The Neuroscience of tinnitus. Oxford: Oxford University Press; 2012.
    1. Eggermont JJ. Hearing loss, hyperacusis, and tinnitus: what is modeled in animal research? Hear Res. 2013;295:140–149.
    1. Eggermont JJ, Kenmochi M (1998) Salicylate and quinine selectively increase spontaneous firing rates in secondary auditory cortex. Hear Res 117:149–160
    1. Eggermont JJ, Roberts LE. The neuroscience of tinnitus. Trends Neurosci. 2004;27:676–682.
    1. Estes WK, Skinner BF. Some quantitative properties of anxiety. J Exp Psychol. 1941;29:390–400.
    1. Evans EF, Borerwe TA (1982) Ototoxic effects of salicylates on the responses of single cochlear nerve fibres and on cochlear potentials. Br J Audiol 16:101–108
    1. Evans EF, Wilson JP, Borerwe TA (1981) Animal models of tinnitus. CIBA Found Symp 85:108–138
    1. Feldman DE. Synaptic mechanisms for plasticity in neocortex. Annu Rev Neurosci. 2009;32:33–55.
    1. Feldman DE (2012) The spike-time dependence of plasticity. Neuron:556–571
    1. Finlayson PG, Kaltenbach JA (2009) Alterations in the spontaneous discharge patterns of single units in the dorsal cochlear nucleus following intense sound exposure. Hear Res 256:104–117
    1. Fournier P, Hébert S. Gap detection deficits in humans with tinnitus as assessed with the acoustic startle paradigm: does tinnitus fill in the gap? Hear Res. 2013;295:16–23.
    1. Furman AC, Kujawa SG, Liberman MC. Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. J Neurophysiol. 2013;110:577–586.
    1. Gander PE, Bosnyak DJ, Roberts LE. Evidence for modality-specific but not frequency-specific modulation of human primary auditory cortex by attention. Hear Res. 2010;268:213–226.
    1. Gander PE, Bosnyak DJ, Roberts LE. Acoustic experience but not attention modifies neural population phase expressed in human primary auditory cortex. Hear Res. 2010;269:81–94.
    1. Geven LI, de Kleine E, Willemsen ATM, van Dijk P. Asymmetry in primary auditory cortex activity in tinnitus patients and controls. Neuroscience. 2014;256:117–125.
    1. Gilani VM, Ruzbahani M, Mahdi P, Amali A, Khoshk MHN, Sameni J, Yazdi AK, Emami H. Temporal processing evaluation in tinnitus patients: results on analysis of gap in noise and duration pattern test. Iran J Otorhinolaryngol. 2013;25:221–225.
    1. Gu JW, Halpin CF, Nam EC, Levine RA, Melcher JR. Tinnitus, diminished sound level tolerance, and elevated auditory activity in humans with clinically normal hearing sensitivity. J Neurophysiol. 2010;104:3361–3370.
    1. Gu JW, Herrmann BS, Levine RA, Melcher JR. Brainstem auditory evoked potentials suggest a role for the ventral cochlear nucleus in tinnitus. J Assoc Res Otolaryngol. 2012;13:819–833.
    1. Guitton MJ, Caston J, Ruel J, Johnson RM, Pujol R, Puel J. Salicylate induces tinnitus through activation of cochlear NMDA receptors. J Neurosci. 2003;23:3944–3952.
    1. Hébert S, Paiement P, Lupien SJ. A physiological correlate for the intolerance to both internal and external sounds. Hear Res. 2004;190:1–9.
    1. Hébert S, Canlon B, Hasson D. Emotional exhaustion as a predictor of tinnitus. Psychother Psychosom. 2012;81:324–326.
    1. Hébert S, Fournier P, Noreña A. The auditory sensitivity is increased in tinnitus ears. J Neurosci. 2013;33:2356–2364.
    1. Heffner HE, Heffner RS (2012) Behavioral Tests for Tinnitus in Animals. In: Eggermont JJ. Zeng F-G. Ray RR. Popper AN (eds) Springer Handbook of Auditory Research 47, Tinnitus. Springer, New York, pp 21–58
    1. Heller MF, Bergman M. Tinnitus aurium in normally hearing persons. Ann ORL. 1953;62:73–83.
    1. Hickox AE, Liberman MC. Is noise-induced cochlear neuropathy key to the generation of hyperacusis or tinnitus? J Neurophysiol. 2014;111:552–564.
    1. Hoare DJ, Searchfield GD, El Refaie A, Henry JA. Sound therapy for tinnitus management: practicable options. J Am Acad Audiol. 2014;25(1):62–75.
    1. Hu SS, Mei L, Chen JY, Huang ZW, Wu H. Expression of immediate-early genes in the inferior colliculus and auditory cortex in salicylate-induced tinnitus in rat. Eur J Histochem. 2014;58:2294.
    1. Husain FT, Schmidt SA. Using resting state functional connectivity to unreavel networks of tinnitus. Hear Res. 2014;307:153–62.
    1. Husain FT, Medina RE, Davis CW, Szymko-Bennett Y, Simonyan K, Pajor NM, Horwitz B. Neuroanatomical changes due to hearing loss and chronic tinnitus: a combined VBM and DTI study. Brain Res. 2011;1369:74–88.
    1. Jastreboff PJ. Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neurosci Res. 1990;8:228–251.
    1. Jastreboff PJ, Brennan JF, Coleman JK, Sasaki CT. Phantom auditory sensation in rats: an animal model for tinnitus. Behav Neurosci. 1988;102:811–822.
    1. Jastreboff PJ, Brennan JF, Sasaki CT. An animal model for tinnitus. Laryngoscope. 1988;98:280–286.
    1. Jia X, Tanabe S, Kohn A. Gamma and the coordination of spiking activity in early visual cortex. Neuron. 2013;77:762–774.
    1. Joëls M, Baram TZ. The neuro-symphony of stress. Nat Rev Neurosci. 2009;10:459–466.
    1. Joëls M, Karst H, Krugers HJ, Lucassen PJ. Chronic stress: implications for neuronal morphology, function and neurogenesis. Front Neuroendocrinol. 2007;28:72–96.
    1. Kaltenbach JA, Zhang J, Afman CE. Plasticity of spontaneous neural activity in the dorsal cochlear nucleus after intense sound exposure. Hear Res. 2000;147:282–292.
    1. Kim JY, Kim YH, Lee S, Seo JH, Song HJ, Cho JH, Chang Y. Alteration of functional connectivity in tinnitus brain revealed by resting-state fMRI? a pilot study. Int J Audiol. 2012;51:413–417.
    1. Knipper M, Zimmermann U, Müller M. Molecular aspects of tinnitus. Hear Res. 2010;266:60–69.
    1. Koehler SD, Shore SE. Stimulus timing-dependent plasticity in dorsal cochlear nucleus is altered in tinnitus. J Neurosci. 2013;33:19647–19656.
    1. Kraus KS, Canlon B. Neuronal connectivity and interactions between the auditory and limbic systems. effects of noise and tinnitus. Hear Res. 2012;288:34–46.
    1. Kraus KS, Ding D, Jiang H, Lobarinas E, Sun W, Salvi RJ. Relationship between noise-induced hearing-loss, persistent tinnitus and growth-associated protein-43 expression in the rat cochlear nucleus: does synaptic plasticity in ventral cochlear nucleus suppress tinnitus? Neuroscience. 2011;194:309–325.
    1. Kujawa SG, Liberman MC. Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci. 2009;29:14077–14085.
    1. Landgrebe M, Langguth B, Rosengarth K, Braun S, Koch A, Kleinjung T, May A, de Ridder D, Hajak G. Structural brain changes in tinnitus: grey matter decrease in auditory and non-auditory brain areas. Neuroimage. 2009;46:213–218.
    1. Langers DM, de Kleine E, van Dijk P. Tinnitus does not require macroscopic tonotopic map reorganization. Front Syst Neurosci. 2012;6:2.
    1. Lanting CP, De Kleine E, Van Dijk P. Neural activity underlying tinnitus generation: results from pet and fMRI. Hear Res. 2009;255:1–13.
    1. Lanting CP, De Kleine E, Eppinga RN, van Dijk P. Neural correlates of human somatosensory integration in tinnitus. Hear Res. 2010;267:78–88.
    1. Leaver AM, Renier L, Chevillet MA, Morgan S, Kim HJ, Rauschecker JP. Dysregulation of limbic and auditory networks in tinnitus. Neuron. 2011;69:33–43.
    1. Lee J, Lisberger SG. Gamma synchrony predicts neuron–neuron correlations and correlations with motor behavior in extrastriate visual area MT. J Neurosci. 2013;33:19677–19688.
    1. Liberman MC, Kiang NY (1978) Acoustic trauma in cats. Cochlear pathology and auditory-nerve activity. Acta Otolaryngol Suppl 358:1–63
    1. Lin HW, Furman AC, Kujawa SG, Liberman MC. Primary neural degeneration in the Guinea pig cochlea after reversible noise-induced threshold shift. J Assoc Res Otolaryngol. 2011;12:605–616.
    1. Llano DA, Turner J, Caspary DM (2012) Diminished cortical inhibition in an aging mouse model of chronic tinnitus. J Neurosci 32:16141–16148
    1. Llinás R, Urbano FJ, Leznik E, Ramírez RR, van Marle HJ. Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends Neurosci. 2005;28:325–333.
    1. Lobarinas E, Sun W, Cushing R, Salvi R. A novel behavioral paradigm for assessing tinnitus using schedule-induced polydipsia avoidance conditioning (SIP-AC) Hear Res. 2004;190:109–114.
    1. Lockwood AH, Wack DS, Burkard RF, Coad ML, Reyes SA, Arnold SA, Salvi RJ. The functional anatomy of gaze-evoked tinnitus and sustained lateral gaze. Neurology. 2001;56:472–480.
    1. Longenecker RJ, Galazyuk AV. Development of tinnitus in CBA/CaJ mice following sound exposure. J Assoc Res Otolaryngol. 2011;12:647–58.
    1. Lorenz I, Müller N, Schlee W, Hartmann T, Weisz N. Loss of alpha power is related to increased gamma synchronization-a marker of reduced inhibition in tinnitus? Neurosci Lett. 2009;453:225–228.
    1. Lütkenhöner B, Krumbholz K, Seither-Preisler A. Studies of tonotopy based on wave N100 of the auditory evoked field are problematic. Neuroimage. 2003;19(3):935–49.
    1. Ma WL, Young, ED (2006) Dorsal cochlear nucleus response properties following acoustictrauma: response maps and spontaneous activity. Hear Res 216–217:176–188
    1. Ma WL, Hidaka H, May BJ (2006) Spontaneous activity in the inferior colliculus of CBA/J mice after manipulations that induce tinnitus. Hear Res 212:9–21
    1. Mahlke C, Wallhäusser-Franke E. Evidence for tinnitus-related plasticity in the auditory and limbic system, demonstrated by arg3.1 and c-fos immunocytochemistry. Hear Res. 2004;195:17–34.
    1. Manabe Y, Yoshida S, Saito H, Oka H (1997) Effects of lidocaine on salicylate-induced discharge of neurons in the inferior colliculus of the guinea pig. Hear Res 103:192–198
    1. Manzoor NF, Licari F, Klapchar M, Elkin RL, Gao Y, Chen G, Kaltenbach JA. Noise-induced hyperactivity in the inferior colliculus: its relationship with hyperactivity in the dorsal cochlear nucleus. J Neurophysiol. 2012;108:976–988.
    1. Maudoux A, Lefebvre P, Cabay J-E, Demertzi A, Vanhaudenhuyse A, et al. Auditory resting-State Network connectivity in tinnitus: a functional MRI study. PLoS ONE. 2012;7(5):e36222.
    1. Melcher JR, Knudson IM, Levine RA. Subcallosal brain structure: correlation with hearing threshold at supra-clinical frequencies (>8 kHz), but not with tinnitus. Hear Res. 2013;295:79–86.
    1. Meltser I, Canlon B. Protecting the auditory system with glucocorticoids. Hear Res. 2011;281:47–55.
    1. Meltser I, Cederroth CR, Basinou V, Savelyev S, Lundkvist GS, Canlon B. TrkB-mediated protection against circadian sensitivity to noise trauma in the murine cochlea. Curr Biol. 2014;24:658–663.
    1. Middleton JW, KiritaniT, Pedersen C, Turner JG, Shepherd GM, Tzounopoulos T (2011) Mice with behavioral evidence of tinnitus exhibit dorsal cochlear nucleus hyperactivity because of decreased GABAergic inhibition. Proc Natl Acad Sci U S A 108:7601–7606
    1. Mirz F, Pedersen B, Ishizu K, Johannsen P, Ovesen T, Stodkilde-Jorgensen H, Gjedde A. Positron emission tomography of cortical centers of tinnitus. Hear Res. 1999;134:133–144.
    1. Moore BCJ, Vinay S. The relationship between tinnitus pitch and the edge frequency of the audiogram in individuals with hearing impairment and tonal tinnitus. Hear Res. 2010;261:51–56.
    1. Moazami-Goudarzi M, Michels L, Weisz N, Jeanmonod D (2010) Temporo-insular enhancement of EEG low andhigh frequencies in patients with chronic tinnitus.QEEG study of chronic tinnitus patients. BMC Neuroscience11:40
    1. Muhlau M, Rauschecker JP, Oestreicher E, Gaser C, Rottinger M, Wohlschlager AM, Simon F, Etgen T, Conrad B, Sander D. Structural brain changes in tinnitus. Cereb Cortex. 2006;16:1283–1288.
    1. Mulders WH, Robertson D. Hyperactivity in the auditory midbrain after acoustic trauma: dependence on cochlear activity. Neuroscience. 2009;164:733–746.
    1. Mulders WH, Robertson D. Progressive centralization of midbrain hyperactivity after acoustic trauma. Neuroscience. 2011;192:753–760.
    1. Mulders WH, Robertson D. Development of hyperactivity after acoustic trauma in the guinea pig inferior colliculus. Hear Res. 2013;298:104–108.
    1. Müller M, Klinke R, Arnold W, Oestreicher E. Auditory nerve fibre responses to salicylate revisited. Hear Res. 2003;183:37–43.
    1. Noreña AJ, Eggermont JJ. Changes in spontaneous neural activity immediately after an acoustic trauma: implications for neural correlates of tinnitus. Hear Res. 2003;183:137–153.
    1. Noreña AJ, Eggermont JJ. Enriched acoustic environment after noise trauma abolishes neural signs of tinnitus. Neuroreport. 2006;17:559–563.
    1. Noreña A, Micheyl C, Chery-Croze S, Collet L. Psychoacoustic characterization of the tinnitus spectrum: implications for the underlying mechanisms of tinnitus. Audiol Neurootol. 2002;7:358–369.
    1. Numakawa T, Adachi N, Richards M, Chiba S, Kunugi H. Brain derived neurotrophic factor and glucocorticoids: reciprocal influence on the central nervous system. Neuroscience. 2013;239:157–172.
    1. Ochi K, Eggermont JJ (1996) Effects of salicylate on neural activity in cat primary auditory cortex. Hear Res 95:63–76
    1. Osaki Y, Nishimura H, Takasawa M, Imaizumi M, Kawashima T, Iwaki T, Oku N, Hashikawa K, Doi K, Nishimura T, Hatazawa J, Kubo T. Neural mechanism of residual inhibition of tinnitus in cochlear implant users. Neuroreport. 2005;16:1625–1628.
    1. Paltoglou AE, Sumner CJ, Hall DA. Examining the role of frequency specificity in the enhancement and suppression of human cortical activity by auditory selective attention. Hear Res. 2009;257:106–118.
    1. Palva S, Palva JM. Discovering oscillatory interaction networks with M/EEG: challenges and breaktroughs. Trends Cogn Sci. 2012;16:219–230.
    1. Pan T, Tyler PS, Ji H, Coelho C, Gehringer AK, Gogel SA. The relationship between tinnitus pitch and the audiogram. Int J Audiol. 2009;48:277–294.
    1. Pantev C, Roberts LE, Elbert T, Ross B, Wienbruch C. Tonotopic organization of the sources of human auditory steady-state responses. Hear Res. 1996;101:62–74.
    1. Paul AK, Lobarinas E, Simmons R, Wack D, Luisi JC, Spernyak J, Mazurchuk R, Abdel-Nabi H, Salvi R (2009) Metabolic imaging of rat brain during pharmacologically-induced tinnitus. Neuroimage 44:312–318
    1. Paul B, Bruce I, Bosnyak D, Roberts LE (2014) Modulation of Electrocortical Brain Activity by Attention in Normal Hearing and in Tinnitus. Neural Plasticity Article ID 127824,
    1. Peng BG, Chen S, Lin X. Aspirin selectively augmented N-methyl-D-aspartate types of glutamate responses in cultured spiral ganglion neurons of mice. Neurosci Lett. 2003;343:21–24.
    1. Penner MJ. Two-tone forward masking patterns and tinnitus. J Speech Hear Res. 1980;23:779–786.
    1. Plewnia C, Reimold M, Najib A, Brehm B, Reischl G, Plontke SK, Gerloff C. Dose-dependent attenuation of auditory phantom perception (tinnitus) by PET-guided repetitive transcranial magnetic stimulation. Hum Brain Mapp. 2007;28:238–246.
    1. Potashner SJ, Suneja SK, Benson CG (1997) Regulation of D-aspartaterelease and uptake in adult brain stem auditory nuclei after unilateralmiddle ear ossicle removal and cochlear ablation. Exp Neurol 148:222–235
    1. Radziwon K. Stolzberg D. Salvi R (2014) Behavioral Assessment of Salicylate-Induced Hearing Loss and Gap Detection Deficits in Rats. ARO abstract PS - 812
    1. Rajan R. Receptor organ damage causes loss of cortical surround inhibition without topographic map plasticity. Nat Neurosci. 1998;1:138–143.
    1. Rauschecker JP. Auditory cortical plasticity: a comparison with other sensory systems. Trends Neurosci. 1999;22:74–80.
    1. Rauschecker JP, Leaver AM, Mühlau M. Tuning out the noise: limbic-auditory interactions in tinnitus. Neuron. 2010;66:819–826.
    1. Reed CM, Braida LD, Zurek PM. Review of the literature on temporal resolution in listeners with cochlear hearing impairment: a critical assessment of the role of suprathreshold deficits. Trends Amplif. 2009;13:4–43.
    1. Richardson BD, Ling LL, Uteshev VV, Caspary DM. Extrasynaptic GABAA receptors and tonic inhibition in rat auditory thalamus. PLoS ONE. 2011;6(1):e16508.
    1. Roberts LE. Residual Inhibition. In: Langguth B, Hajak G, Kleinjung T, Cacace A, Møller A, editors. Tinnitus: pathophysiology and treatment. prog brain res. Amsterdam: Elsevier; 2007. pp. 487–95.
    1. Roberts LE, Moffat G, Baumann M, Ward LM, Bosnyak DJ. Residual inhibition functions overlap tinnitus spectra and the region of auditory threshold shift. J Assoc Res Otolaryngol. 2008;9:417–435.
    1. Roberts LE, Eggermont JJ, Caspary DM, Shore SE, Melcher JR, Kaltenbach JA. Ringing ears: the neuroscience of tinnitus. J Neurosci. 2010;30:14972–14979.
    1. Roberts LE, Husain FT, Eggermont JJ. Role of attention in the generation and modulation of tinnitus. Neurosci Biobehav Rev. 2013;37:1754–1773.
    1. Ruel J, Chabbert C, Nouvian R, Bendris R, Eybalin M, Leger CL, Bourien J, Mersel M, Puel JL. Salicylate enables cochlear arachidonic-acid-sensitive NMDA receptor responses. J Neurosci. 2008;28:7313–7323.
    1. Rüttiger L, Ciuffani J, Zenner HP, Knipper M. A behavioral paradigm to judge acute sodium salicylate-induced sound experience in rats: a new approach for an animal model on tinnitus. Hear Res. 2003;180:39–50.
    1. Rüttiger L, Singer W, Panford-Walsh R, Matsumoto M, Lee SC, Zuccotti A, Zimmermann U, Jaumann M, Rohbock K, Xiong H, Knipper M. The reduced cochlear output and the failure to adapt the central auditory response causes tinnitus in noise exposed rats. PLoS ONE. 2013;8:e57247.
    1. Sadaghiani S, Hesselmann G, Kleinschmidt A. Distributed and antagonistic contributions of ongoing activity fluctuations to auditory stimulus detection. J Neurosci. 2009;29:13410–13417.
    1. Salvi R, Chen G-D (2014) Possible Contribution of Non-Classical Auditory Centers to Salicylate-Induced and Noise-Induced Tinnitus and Hyperacusis. ARO abstract PS - 811
    1. Sametsky E. Turner J. Larsen D. Ling L. Caspary D (2014) Tinnitus-Related Changes in GABAA Receptor Inhibition in Auditory Thalamus of Rats. ARO abstract PS - 816
    1. Schaette R, Kempter R. Development of tinnitus-related neuronal hyperactivity through homeostatic plasticity after hearing loss: a computational model. Eur J Neurosci. 2006;23:3124–3138.
    1. Schaette R, McAlpine D. Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J Neurosci. 2011;31(38):13452–7.
    1. Schaette R, Turtle C, Munro KJ. Reversible Induction of phantom auditory sensations through simulated unilateral hearing loss. PLoS ONE. 2012;7(6):e35238.
    1. Schecklmann M, Lehner A, Poeppl TB, Kreuzer PM, Hajak G, Landgrebe M, Langguth B. Cluster analysis for identifying sub-types of tinnitus: a positron emission tomography and voxel-based morphometry study. Brain Res. 2012;1485:3–9.
    1. Schecklmann M, Landgrebe M, Langguth B, the TRI Database Study Group Phenotypic characteristics of hyperacusis in tinnitus. PLoS ONE. 2014;9(1):e86944.
    1. Schlee W, Weisz N, Bertrand O, Hartmann T, Elbert T. Using auditory steady state responses to outline the functional connectivity in the tinnitus brain. PLoS ONE. 2008;3:e3720.
    1. Schlee W, Hartmann T, Langguth B, Weisz N. Abnormal resting-state cortical coupling in chronic tinnitus. BMC Neurosci. 2009;10:11.
    1. Schlee W, Mueller N, Hartmann T, Keil J, Lorenz I, Weisz N. Mapping cortical hubs in tinnitus. BMC Biol. 2009;23:7–80.
    1. Schmidt SA, Akrofi K, Carpenter-Thompson JR, Husain FT. Default mode and dorsal attention networks exhibit differential functional connectivity in tinnitus and hearing loss. PLoS ONE. 2013;8(10):e76488.
    1. Scholl B, Wehr M. Disruption of balanced cortical excitation and inhibition by acoustic trauma. J Neurophysiol. 2008;100(2):646–56.
    1. Sedley W, Teki S, Kumar S, Barnes GR, Bamiou DE, Griffiths TD. Single-subject oscillatory gamma responses in tinnitus. Brain. 2012;135:3089–3100.
    1. Seki S, Eggermont JJ. Changes in cat primary auditory cortex after minor -to-moderate pure-tone induced hearing loss. Hear Res. 2002;173:172–186.
    1. Sergeyenko Y, Lall L, Liberman MC, Kujawa SG. Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline. J Neurosci. 2013;33:13686–13694.
    1. Shore SE, Koehler S, Oldakowski M, Hughes LF, Syed S. Dorsal cochlear nucleus responses to somatosensory stimulation are enhanced after noise-induced hearing loss. Eur J Neurosci. 2008;27:155–168.
    1. Shulman A. A final common pathway for tinnitus – the medial temporal lobe system. Int Tinnitus J. 1995;1:115–126.
    1. Singer W, Zuccotti A, Jaumann M, Lee SC, Panford-Walsh R, Xiong H, Zimmermann U, Franz C, Geisler HS, Köpschall I, Rohbock K, Varakina K, Verpoorten S, Reinbothe T, Schimmang T, Rüttiger L, Knipper M. Noise-induced inner hair cell ribbon loss disturbs central arc mobilization: a novel molecular paradigm for understanding tinnitus. Mol Neurobiol. 2013;47(1):261–279.
    1. Stolzberg D, Chen G-D, Allman BL, Salvi RJ. Salicylate-induced peripheral auditory changes and tonotopic reorganization of auditory cortex. Neuroscience. 2011;180:157–164.
    1. Stypulkowski PH. Mechanisms of salicylate ototoxicity. Hear Res. 1990;46:113–146.
    1. Sun W, Lu J, Stolzberg D, Gray L, Deng A, Lobarinas E, Salvi RJ. Salicylate increases the gain of the central auditory system. Neuroscience. 2009;159:325–334.
    1. Sun W, Deng A, Jayaram A, Gibson B. Noise exposure enhances auditory cortex responses related to hyperacusis behavior. Brain Res. 2012;1485:108–116.
    1. Suneja SK, Benson CG, Potashner SJ (1998a) Glycine receptors in adult guinea pig brain stem auditory nuclei: regulation after unilateral cochlear ablation. Exp Neurol 154:473–488
    1. Suneja SK, Potashner SJ, Benson CG (1998b) Plastic changes in glycine and GABA release and uptake in adult brain stem auditory nuclei after unilateral middle ear ossicle removal and cochlear ablation. Exp Neurol 151:273–288
    1. Suneja SK, Potashner SJ, Benson CG (2000) AMPA receptor binding in adult guinea pig brain stem auditory nuclei after unilateral cochlear ablation. Exp Neurol 165:355–369
    1. Tomita M, Noreña AJ, Eggermont JJ. Effects of pure tone exposure on voice onset time representation in cat auditory cortex. Hear Res. 2004;193:39–50.
    1. Tucker DA, Phillips SL, Ruth RA, Clayton WA, Royster E, Todd AD. The effect of silence on tinnitus perception. Otolaryngol Head Neck Surg. 2005;132:20–24.
    1. Turner JG, Brozoski TJ, Bauer CA, Parrish JL, Myers K, Hughes F, Caspary DM. Gap detection deficits in rats with tinnitus: a potential novel screening tool. Behav Neurosci. 2006;120:188–195.
    1. Turrigiano G. Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci. 1999;22:221–227.
    1. Turrigiano G. Homeostatic signaling: the positive side of negative feedback. Curr Opin Neurobiol. 2007;17:318–324.
    1. Tzounopoulos T, Kim Y, Oertel D, Trussell LO. Cell-specific, spike timing-dependent plasticities in the dorsal cochlear nucleus. Nat Neurosci. 2004;7:719–725.
    1. Van de Heyning P, Vermeire K, Diebl M, Nopp P, Anderson I, De Ridder D. Incapacitating unilateral tinnitus in single-sided deafness treated by cochlear implantation. Ann ORL. 2008;117:645–652.
    1. Van der Loo E, Gais S, Congedo M, Vanneste S, Plazier M, Menovsky T, Van de Heyning P, De Ridder D. Tinnitus intensity dependent gamma oscillations of the contralateral auditory cortex. PLoS ONE. 2009;4(10):e7396.
    1. Vanneste S. de Ridder D (2012) The auditory and non-auditory brain areas involved in tinnitus. An emergent property of multiple parallel overlapping networks. Front Syst Neurosci 6:31.
    1. Vanneste S, Plazier M, van der Loo E, van de Heyning P, Congedo M, De Ridder D. The neural correlates of tinnitus-related distress. Neuroimage. 2010;52:470–480.
    1. Vogler DP, Robertson D, Mulders WH. Hyperactivity in the ventral cochlear nucleus after cochlear trauma. J Neurosci. 2011;31:6639–6645.
    1. Vogler DP, Robertson D, Mulders WH. Hyperactivity following unilateral hearing loss in characterized cells in the inferior colliculus. Neuroscience. 2014;265:28–36.
    1. Voisin J, Bidet-Caulet A, Bertrand O, Fonlupt P. Listening in silence activates auditory area: a functional magnetic resonance imaging study. J Neurosci. 2006;26:273–278.
    1. Wallhäusser-Franke E (1997) Salicylate evokes c-fos expression in the brain stem: implications for tinnitus. Neuroreport 8:725–728
    1. Wallhausser-Franke E, Braun S, Langner G (1996) Salicylate alters 2-DG uptake in the auditory system: a model for tinnitus? Neuroreport :1585–1588
    1. Wallhausser-Franke E, Mahlke C, Oliva R, Braun S, Wenz G, Langner G. Expression of c-fos in auditory and non-auditory brain regions of the gerbil after manipulations that induce tinnitus. Exp Brain Res. 2003;153:649–654.
    1. Wang H, Brozoski TJ, Turner JG, Ling L, Parrish JL, Hughes LF, Caspary DM (2009) Plasticity at glycinergic synapses in dorsal cochlear nucleus of rats with behavioral evidence of tinnitus. Neuroscience 164:747–759
    1. Wei L, Ding D, Sun W, Xu-Friedman MA, Salvi R (2010) Effects of sodium salicylate on spontaneous and evoked spike rate in the dorsal cochlear nucleus. Hear Res 267:54–60
    1. Weisz N, Moratti S, Meinzer M, Dohrmann K, Elbert T. Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography. PLoS Med. 2005;2:e153.
    1. Weisz N, Müller S, Schlee W, Dohrmann K, Hartmann T, Elbert T. The neural code of auditory phantom perception. J Neurosci. 2007;27:1479–1484.
    1. Whiting B, Moiseff A, Rubio MA (2009)Cochlear nucleus neurons redistribute synaptic AMPA and glycine receptors in response to monaural conductive hearing lossNeuroscience 163:1264–1276
    1. Wienbruch C, Paul I, Weisz N, Elbert T, Roberts LE. Frequency organization of the 40-Hz auditory steady-state response in normal hearing and in tinnitus. Neuroimage. 2006;33:180–194.
    1. Yang G, Lobarinas E, Zhang L, Turner J, Stolzberg D, Salvi R, Sun W (2007) Salicylate induced tinnitus: behavioral measures and neural activity in auditory cortex of awake rats. Hear Res 226:244–253
    1. Yang S, Weiner BD, Zhang LS, Cho SJ, Bao S. Homeostatic plasticity drives tinnitus perception in an animal model. Proc Natl Acad Sci U S A. 2011;108:14974–14979.
    1. Yurosko C. Salloum R. Santiago L. Sandridge S. Kaltenbach J (2014) Induction of Enhanced Acoustic Startle Responses Following Intense Noise Exposure: Dependence on the Degree of Threshold Shift. ARO abstract PS - 827
    1. Zeng C, Yang Z, Shreve L, Bledsoe SC, Shore SE. Somatosensory projections to cochlear nucleus are upregulated after long-term unilateral deafness. J Neurosci. 2012;32:15791–15801.
    1. Zhang X, Yang P, Cao Y, Qin L, Sato Y (2011) Salicylate induced neural changes in the primary auditory cortex of awake cats. Neuroscience 172:232–245

Source: PubMed

3
購読する