Effect of feeding mode on infant growth and cognitive function: study protocol of the Chilean infant Nutrition randomized controlled Trial (ChiNuT)

Rosario Toro-Campos, Cecilia Algarín, Patricio Peirano, Marcela Peña, Teresa Murguia-Peniche, Steven S Wu, Ricardo Uauy, Rosario Toro-Campos, Cecilia Algarín, Patricio Peirano, Marcela Peña, Teresa Murguia-Peniche, Steven S Wu, Ricardo Uauy

Abstract

Background: A central aim for pediatric nutrition is to develop infant formula compositionally closer to human milk. Milk fat globule membranes (MFGM) have shown to have functional components that are found in human milk, suggesting that addition of bovine sources of MFGM (bMFGM) to infant formula may promote beneficial outcomes potentially helping to narrow the gap between infants who receive human breast milk or infant formula. The objective of the current study is to determine how the addition of bMFGM in infant formula and consumption in early infancy affects physical growth and brain development when compared to infants fed with a standard formula and a reference group of infants fed with mother's own milk.

Methods: Single center, double-blind, and parallel randomized controlled trial. Planned participant enrollment includes: infants exclusively receiving breast milk (n = 200; human milk reference group; HM) and infants whose mothers chose to initiate exclusive infant formula feeding before 4 months of age (n = 340). The latter were randomized to receive one of two study formulas until 12 months of age: 1) cow's milk based infant formula that had docosahexaenoic (DHA) (17 mg/100 kcal) and arachidonic acid (ARA) (25 mg/100 kcal); 1.9 g protein/100 kcal; 1.2 mg Fe/100 kcal (Standard formula; SF) or 2) a similar infant formula with an added source of bovine MFGM (whey protein-lipid concentrate (Experimental formula; EF). Primary outcomes will be: 1) Physical growth (Body weight, length, and head circumference) at 730 days of age; and 2) Cognitive development (Auditory Event-Related Potential) at 730 days of age. Data will be analyzed for all participants allocated to each study feeding group.

Discussion: The results of this study will complement the knowledge regarding addition of bMFGM in infant formula including support of healthy growth and improvement of neurodevelopmental outcomes.

Trial registration: NCT02626143, registered on December 10th 2015.

Keywords: Breast feeding; Chile; Clinical trials; Infant formula; Milk fat globule membrane, MFGM, growth and development.

Conflict of interest statement

Drs. Wu and Murguia Peniche are current employees of Mead Johnson Nutrition Dr. Uauy is the grant holder by Mead Johnson Nutrition. The other authors declare that they have no competing interests.

References

    1. Ben-Shlomo Y, Kuh D. A life course approach to chronic disease epidemiology: conceptual models, empirical challenges and interdisciplinary perspectives. Int J Epidemiol. 2002;31(2):285–293.
    1. Uauy R, Kain J, Mericq V, Rojas J, Corvalán C. Nutrition, child growth, and chronic disease prevention. Ann Med. 2008;40(1):11–20.
    1. Uauy R, Kain J, Corvalan C. How can the developmental origins of health and disease (DOHaD) hypothesis contribute to improving health in developing countries? Am J Clin Nutr. 2011;94(6 Suppl):1759S–1764S.
    1. de Onis M, Garza C, Onyango AW, Rolland-Cachera MF. Pédiatrie lCdndlSfd: [WHO growth standards for infants and young children] Arch Pediatr. 2009;16(1):47–53.
    1. World Health Organization UNICEF. In: WLC-i-P D, editor. Global strategy for infant and young child feeding. Geneva: World Health Organization; 2003.
    1. Binns C, Lee M, Low WY. The long-term public health benefits of breastfeeding. Asia Pac J Public Health. 2016;28(1):7–14.
    1. Committee on Nutrition: Iron fortification of infant formulas American academy of pediatrics. committee on nutrition. Pediatrics. 1999;104(1 Pt 1):119–123.
    1. Life Sciences Research Office . In: Assessment of nutrient requirements of infant formulas. Raiten DJ, Talbot JM, Waters JH, editors. Bethesda, MD: LSRO; 1998. pp. 2116–2118.
    1. SCF . Report of the Scientific Committee on Food on the Revision of Essential Requirements of Infant Formulae and Follow-on Formulae (adopted on 4 April 2003) Brussels: European Commission; 2003.
    1. European Commission: Infant formulae and follow-on formulae and amending Directive 1999/21/EC. In., vol. Regulation (EC) No 2006/141; 2006.
    1. Martin CR, Ling PR, Blackburn GL. Review of infant feeding: key features of breast milk and infant formula. Nutrients. 2016;8(5):279–89.
    1. Timby N, Domellöf M, Lönnerdal B, Hernell O. Supplementation of infant formula with bovine Milk fat globule membranes. Adv Nutr. 2017;8(2):351–355.
    1. Oshida K, Shimizu T, Takase M, Tamura Y, Shimizu T, Yamashiro Y. Effects of dietary sphingomyelin on central nervous system myelination in developing rats. Pediatr Res. 2003;53(4):589–593.
    1. Palmano K, Rowan A, Guillermo R, Guan J, McJarrow P. The role of gangliosides in neurodevelopment. Nutrients. 2015;7(5):3891–3913.
    1. Wang B, Yu B, Karim M, Hu H, Sun Y, McGreevy P, Petocz P, Held S, Brand-Miller J. Dietary sialic acid supplementation improves learning and memory in piglets. Am J Clin Nutr. 2007;85(2):561–569.
    1. Liu H, Radlowski EC, Conrad MS, Li Y, Dilger RN, Johnson RW. Early supplementation of phospholipids and gangliosides affects brain and cognitive development in neonatal piglets. J Nutr. 2014;144(12):1903–1909.
    1. Ten Bruggencate SJ, Frederiksen PD, Pedersen SM, Floris-Vollenbroek EG, De Bos EL, Van Hoffen E, Wejse PL. Dietary milk-fat-globule membrane affects resistance to diarrheagenic Escherichia coli in healthy adults in a randomized, placebo-controlled, double-blind study. J Nutr. 2016;146(2):249–255.
    1. Timby N, Lonnerdal B, Hernell O, Domellof M. Cardiovascular risk markers until 12 mo of age in infants fed a formula supplemented with bovine milk fat globule membranes. Pediatr Res. 2014;76(4):394–400.
    1. Timby N, Domellof E, Hernell O, Lonnerdal B, Domellof M. Neurodevelopment, nutrition, and growth until 12 mo of age in infants fed a low-energy, low-protein formula supplemented with bovine milk fat globule membranes: a randomized controlled trial. Am J Clin Nutr. 2014;99(4):860–868.
    1. Timby N, Hernell O, Vaarala O, Melin M, Lonnerdal B, Domellof M. Infections in infants fed formula supplemented with bovine milk fat globule membranes. J Pediatr Gastroenterol Nutr. 2015;60(3):384–389.
    1. Rosqvist F, Smedman A, Lindmark-Månsson H, Paulsson M, Petrus P, Straniero S, Rudling M, Dahlman I, Risérus U. Potential role of milk fat globule membrane in modulating plasma lipoproteins, gene expression, and cholesterol metabolism in humans: a randomized study. Am J Clin Nutr. 2015;102(1):20–30.
    1. Billeaud C, Puccio G, Saliba E, Guillois B, Vaysse C, Pecquet S, Steenhout P. Safety and tolerance evaluation of milk fat globule membrane-enriched infant formulas: a randomized controlled multicenter non-inferiority trial in healthy term infants. Clin Med Insights Pediatr. 2014;8:51–60.
    1. Choudhury N, Benasich AA. Maturation of auditory evoked potentials from 6 to 48 months: prediction to 3 and 4 year language and cognitive abilities. Clin Neurophysiol : Official J Int Fed Clin Neurophysiol. 2011;122(2):320–338.
    1. Riva V, Cantiani C, Benasich AA, Molteni M, Piazza C, Giorda R, Dionne G, Marino C. From CNTNAP2 to early expressive language in infancy: the mediation role of rapid auditory processing. Cereb Cortex. 2017;28(6):2100–2108.
    1. Ministry of Health. Vigilancia del Estado Nutricional de la población bajo control y de la lactancia materna en el Sistema Público [Surveillance of the Nutritional Status of the population under control and breastfeeding in the Public Health System of Chile]. Chile: Public Health Office; 2016.
    1. Department of Statistics and Health Information (DEIS). Nacimientos inscritos según edad de la madre por región y comuna de residencia de la madre [ Registered births according to age of the mother by region and commune of residence of the mother]. Chile: Ministry of Health; 2016.
    1. Brenna JT, Varamini B, Jensen RG, Diersen-Schade DA, Boettcher JA, Arterburn LM. Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. Am J Clin Nutr. 2007;85(6):1457–1464.
    1. Organization WH . WHO child growth standards and the identification of severe acute malnutrition in infants and children. Switzerland: WHO; 2009.
    1. Ellis KJ, Yao M, Shypailo RJ, Urlando A, Wong WW, Heird WC. Body-composition assessment in infancy: air-displacement plethysmography compared with a reference 4-compartment model. Am J Clin Nutr. 2007;85(1):90–95.
    1. Fomon SJ, Haschke F, Ziegler EE, Nelson SE. Body composition of reference children from birth to age 10 years. Am J Clin Nutr. 1982;35(5 Suppl):1169–1175.
    1. Urlando A, Dempster P, Aitkens S. A new air displacement plethysmograph for the measurement of body composition in infants. Pediatr Res. 2003;53(3):486–492.
    1. Devakumar D, Grijalva-Eternod CS, Roberts S, Chaube SS, Saville NM, Manandhar DS, Costello A, Osrin D, Wells JC. Body composition in Nepalese children using isotope dilution: the production of ethnic-specific calibration equations and an exploration of methodological issues. Peer J. 2015;3:e785.
    1. Tam N, Nolte HW, Noakes TD. Changes in total body water content during running races of 21.1 km and 56 km in athletes drinking ad libitum. Clin J Sport Med. 2011;21(3):218–225.
    1. Iniguez G, Ong K, Bazaes R, Avila A, Salazar T, Dunger D, Mericq V. Longitudinal changes in insulin-like growth factor-I, insulin sensitivity, and secretion from birth to age three years in small-for-gestational-age children. J Clin Endocrinol Metab. 2006;91(11):4645–4649.
    1. Conradie JD, Mbhele BE. Quantitation of serum ferritin by enzyme-linked immunosorbent assay (ELISA) S Afr Med J. 1980;57(8):282–287.
    1. Albers CA, Grieve AJ: Test Review: Bayley, N. (2006). Bayley scales of infant and toddler development– third edition. San Antonio, TX: Harcourt assessment. J Psychoeduc Assess 2007, 25(2):180–190.
    1. Bode MM, D'Eugenio DB, Mettelman BB, Gross SJ. Predictive validity of the Bayley, third edition at 2 years for intelligence quotient at 4 years in preterm infants. J Dev Behav Pediatr. 2014;35(9):570–575.
    1. Farkas C. Manual de administraciοn version en espanol del BAYLEY-III. Proyecto FONDECYT No 1060778. 2007.
    1. Insana SP, Gozal D, Montgomery-Downs HE. Invalidity of one actigraphy brand for identifying sleep and wake among infants. Sleep Med. 2010;11(2):191–196.
    1. Meltzer LJ, Walsh CM, Traylor J, Westin AM. Direct comparison of two new actigraphs and polysomnography in children and adolescents. Sleep. 2012;35(1):159–166.
    1. So K, Adamson TM, Horne RS. The use of actigraphy for assessment of the development of sleep/wake patterns in infants during the first 12 months of life. J Sleep Res. 2007;16(2):181–187.
    1. Ministerio de Sanidad Política Social e Innovación: BISQ (Brief Infant Sleep Questionnaire), breve cuestionario del sueño Adaptado de Sadeh, A, 2004. In Guía de Práctica Clínica sobre Trastornos del Sueño en la Infancia y Adolescencia en Atención Primaria. Edited by Ministerio de Ciencia e Innovación. Madrid: 2011.
    1. Sadeh A. A brief screening questionnaire for infant sleep problems: validation and findings for an internet sample. Pediatrics. 2004;113(6):e570–e577.
    1. Kuhl PK. Early language acquisition: cracking the speech code. Nat Rev Neurosci. 2004;5(11):831–843.
    1. Gervain J, Mehler J. Speech perception and language acquisition in the first year of life. Annu Rev Psychol. 2010;61:191–218.
    1. Werker JF, Lalonde CE. Cross-language speech perception: initial capabilities and developmental change. Dev Psychol. 1988;24(5):672.
    1. Dehaene-Lambertz G, Pena M. Electrophysiological evidence for automatic phonetic processing in neonates. Neuroreport. 2001;12(14):3155–3158.
    1. Pena M, Werker JF, Dehaene-Lambertz G. Earlier speech exposure does not accelerate speech acquisition. J Neurosci. 2012;32(33):11159–11163.
    1. Kuhl PK, Williams KA, Lacerda F, Stevens KN, Lindblom B. Linguistic experience alters phonetic perception in infants by 6 months of age. Science. 1992;255(5044):606–608.
    1. Werker JF, Cohen LB, Lloyd VL, Casasola M, Stager CL. Acquisition of word-object associations by 14-month-old infants. Dev Psychol. 1998;34(6):1289–1309.
    1. Christophe A, Mehler J, Sebastián-Gallés N. Perception of prosodic boundary correlates by newborn infants. Infancy. 2001;2(3):385–394.
    1. Saffran JR, Aslin RN, Newport EL. Statistical learning by 8-month-old infants. Science. 1996;274(5294):1926–1928.
    1. Kabdebon C, Pena M, Buiatti M, Dehaene-Lambertz G. Electrophysiological evidence of statistical learning of long-distance dependencies in 8-month-old preterm and full-term infants. Brain Lang. 2015;148:25–36.
    1. Gervain J, Macagno F, Cogoi S, Pena M, Mehler J. The neonate brain detects speech structure. Proc Natl Acad Sci U S A. 2008;105(37):14222–14227.
    1. Heilmann J, Weismer SE, Evans J, Hollar C. Utility of the MacArthur—bates communicative development inventory in identifying language abilities of late-talking and typically developing toddlers. Am J Speech-Lang Pathol. 2005;14(1):40–51.
    1. Farkas C. Inventario del Desarrollo de Habilidades Comunicativas McArthur-Bates (CDI): propuesta de una versión abreviada. Universitas Psychol. 2011;10(1):245–62.
    1. Quinn PC, Doran MM, Reiss JE, Hoffman JE. Neural markers of subordinate-level categorization in 6- to 7-month-old infants. Dev Sci. 2010;13(3):499–507.
    1. Corvalán C: Estudio de evaluación de impacto nutricional de la utilización de fórmulas sucedáneas de leche maternal (fórmula de inicio) versus leche purita fortificada en parámetros bioquímicos y composición corporal en una cohort de niños menores de 12 meses. Licitación ID: 757L183LLP14 In. Chile: Ministerio de Salud; 2014.
    1. Kain J, Corvalan C, Lera L, Galvan M, Uauy R. Accelerated growth in early life and obesity in preschool Chilean children. Obesity (Silver Spring) 2009;17(8):1603–1608.
    1. Choudhury N, Benasich A. Maturation of auditory evoked potentials from 6 to 48 months: prediction to 3 and 4 year language and cognitive abilities. Clin Neurophysiol. 2010;122:320–338.
    1. Child growth standards. WHO Anthro (versión 3.2.2, January 2011) and macros [].
    1. World Health Organization . Report of the expert consultation of the optimal duration of exclusive breastfeeding, Geneva, Switzerland, 28–30 March 2001. Geneva, Switzerland: World Health Organization (WHO); 2001.
    1. UNICEF . Tracking progress for breastfeeding policies and programmes: global breastfeeding scorecard 2017. Geneva, Switzerland: World Health Organization; 2017.

Source: PubMed

3
購読する