High Intensity Resistance Exercise Training vs. High Intensity (Endurance) Interval Training to Fight Cardiometabolic Risk Factors in Overweight Men 30-50 Years Old

Michael Tuttor, Simon von Stengel, Matthias Kohl, Michael Lell, Michael Scharf, Michael Uder, Andreas Wittke, Wolfgang Kemmler, Michael Tuttor, Simon von Stengel, Matthias Kohl, Michael Lell, Michael Scharf, Michael Uder, Andreas Wittke, Wolfgang Kemmler

Abstract

Cardiovascular and cardiometabolic diseases are leading causes of death worldwide. Exercise favorably affects this problem, however only few invest (enough) time to favorably influence cardiometabolic risk-factors and cardiac morphology/performance. Time-effective, high-intensity, low-volume exercise protocols might increase people's commitment to exercise. To date, most research has focused on high-intensity interval training (HIIT), the endurance type of HIT, while corresponding HIT-resistance training protocols (HIT-RT) are rarely evaluated. In this study we compared the effect of HIIT vs. HIT-RT, predominately on cardiometabolic and cardiac parameters in untrained, overweight-obese, middle-aged men. Eligible, untrained men aged 30-50 years old in full-time employment were extracted from two joint exercise studies that randomly assigned participants to a HIIT, HIT-RT or corresponding control group. HIIT predominately consisted of interval training 90 s-12 min, (2-4 sessions/week), HIT-RT (2-3 sessions/week) was applied as a single set resistance training to muscular failure. Core intervention length of both protocols was 16 weeks. Main inclusion criteria were overweight-obese status (BMI 25-35 kg/m2) and full employment (occupational working time: ≥38.5 h/week). Primary study-endpoint was the Metabolic Syndrome (MetS) Z-Score, secondary study-endpoints were ventricular stroke volume index (SVI) and myocardial mass index (MMI) as determined by Magnetic Resonance Imaging. The Intention to treat (ITT) principle was applied to analyze the summarized data set. Twenty-seven eligible men of the HIT-RT and 30 men of the HIIT group were included in the ITT. Both interventions significantly (p < 0.001) improve the MetS Z-Score, however the effect of HIIT was superior (p = 0.049). In parallel, HIT-RT and HIIT significantly affect SVI and MMI, with the effect of HIIT being much more pronounced (p < 0.001). Although HIIT endurance exercise was superior in favorably affecting cardiometabolic risk and particularly cardiac performance, both exercise methods positively affect cardiometabolic risk factors in this overweight to obese, middle-aged cohort of males with low time resources. Thus, the main practical application of our finding might be that in general overweight-obese people can freely choose their preferred exercise type (HIIT-END or HIT-RT) to improve their cardiometabolic health, while investing an amount of time that should be feasible for everybody. Trial Registrations: NCT01406730, NCT01766791.

Keywords: cardiac parameters; cardiometabolic risk; high intensity interval training; high intensity resistance exercise training; metabolic syndrome; single set resistance exercise training.

Copyright © 2020 Tuttor, von Stengel, Kohl, Lell, Scharf, Uder, Wittke and Kemmler.

References

    1. Alberti K. G., Zimmet P., Shaw J. (2006). Metabolic syndrome–a new world-wide definition. A consensus statement from the international diabetes federation. Diabet. Med. 23, 469–480. 10.1111/j.1464-5491.2006.01858.x
    1. Andreato L. V., Esteves J. V., Coimbra D. R., Moraes A. J. P., de Carvalho T. (2019). The influence of high-intensity interval training on anthropometric variables of adults with overweight or obesity: a systematic review and network meta-analysis. Obes. Rev. 20, 142–155. 10.1111/obr.12766
    1. Bakker E. A., Lee D. C., Sui X., Artero E. G., Ruiz J. R., Eijsvogels T. M. H., et al. . (2017). Association of resistance exercise, independent of and combined with aerobic exercise, with the incidence of metabolic syndrome. Mayo Clin. Proc. 92, 1214–1222. 10.1016/j.mayocp.2017.02.018
    1. Banz W. J., Maher M. A., Thompson W. G., Bassett D. R., Moore W., Ashraf M., et al. (2003). Effects of resistance vs. aerobic training on coronary artery disease risk factors. Exp. Biol. Med. 228, 434–440. 10.1177/153537020322800414
    1. Bartlett J. D., Close G. L., MacLaren D. P., Gregson W., Drust B., Morton J. P. (2011). High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: implications for exercise adherence. J. Sports Sci. 29, 547–553. 10.1080/02640414.2010.545427
    1. Batacan R. B., Jr., Duncan M. J., Dalbo V. J., Tucker P. S., Fenning A. S. (2017). Effects of high-intensity interval training on cardiometabolic health: a systematic review and meta-analysis of intervention studies. Br. J. Sports Med. 51, 494–503. 10.1136/bjsports-2015-095841
    1. Bateman L. A., Slentz C. A., Willis L. H., Shields A. T., Piner L. W., Bales C. W., et al. . (2011). Comparison of aerobic vs. resistance exercise training effects on metabolic syndrome (from the Studies of a Targeted Risk Reduction Intervention Through Defined Exercise - STRRIDE-AT/RT). Am. J. Cardiol. 108, 838–844. 10.1016/j.amjcard.2011.04.037
    1. Börjesson M., Hellenius M. L., Jansson E., Karlson J., Leijon M., Staehle A., et al. (2010). Physical Activity in the Prevention and Treatment of Disease. Stockholm: Swedish Institute of Health.
    1. Buchheit M., Laursen P. B. (2013). High-intensity interval training, solutions to the programming puzzle : part II: anaerobic energy, neuromuscular load and practical applications. Sports Med. 43, 927–954. 10.1007/s40279-013-0066-5
    1. Christensen R. H., Wedell-Neergaard A. S., Lehrskov L. L., Legaard G. E., Dorph E., Larsen M. K., et al. . (2019). Effect of aerobic and resistance exercise on cardiac adipose tissues: secondary analyses from a randomized clinical trial. JAMA Cardiol. 4, 778–787. 10.1001/jamacardio.2019.2074
    1. Clark D. O. (1999). Physical activity and its correlates among urban primary care patients aged 55 years or older. J. Gerontol. B Psychol. Sci. Soc. Sci. 54, S41–S48. 10.1093/geronb/54B.1.S41
    1. Cohen J. (1988). Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NJ: Lawrence Earlbaum Associate.
    1. Costa E. C., Hay J. L., Kehler D. S., Boreskie K. F., Arora R. C., Umpierre D., et al. . (2018). Effects of high-intensity interval training vs. moderate-intensity continuous training on blood pressure in adults with pre- to established hypertension: a systematic review and meta-analysis of randomized trials. Sports Med. 48, 2127–2142. 10.1007/s40279-018-0944-y
    1. Dickhuth H. H., Huonker M., Münzel T., Drexler H., Berg A., Keul J. (1991). Individual anaerobic threshold for evaluation of competitive athletes and patients with left ventricular dysfunction, in Advances in Ergometry, eds Bachl T. G., Löllgen H. (Berlin; Heidelberg; New York, NY: Springer Verlag; ), 173–179.
    1. Earnest C. P., Johannsen N. M., Swift D. L., Gillison F. B., Mikus C. R., Lucia A., et al. . (2014). Aerobic and strength training in concomitant metabolic syndrome and type 2 diabetes. Med. Sci. Sports Exerc. 46, 1293–1301. 10.1249/MSS.0000000000000242
    1. Earnest C. P., Lupo M., Thibodaux J., Hollier C., Butitta B., Lejeune E., et al. . (2013). Interval training in men at risk for insulin resistance. Int. J. Sports Med. 34, 355–363. 10.1055/s-0032-1311594
    1. Expert-Panel (2001). Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA 285, 2486–2497. 10.1001/jama.285.19.2486
    1. Garber C. E., Blissmer B., Deschenes M. R., Franklin B. A., Lamonte M. J., Lee I. M., et al. . (2011). American College of sports medicine position stand. quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med. Sci. Sports Exerc. 43, 1334–1359. 10.1249/MSS.0b013e318213fefb
    1. Gibala M. J. (2007). High-intensity interval training: a time-efficient strategy for health promotion? Curr. Sports Med. Rep. 6, 211–213. 10.1007/s11932-007-0033-8
    1. Gießing J. (2008). HIT-Hochintensitätstraining. Arnsberg: Novagenics-Verlag.
    1. Giessing J., Eichmann B., Steele J., Fisher J. (2016). A comparison of low volume 'high-intensity-training' and high volume traditional resistance training methods on muscular performance, body composition, and subjective assessments of training. Biol. Sport 33, 241–249. 10.5604/20831862.1201813
    1. Hansen D., Dendale P., van Loon L. J., Meeusen R. (2010). The impact of training modalities on the clinical benefits of exercise intervention in patients with cardiovascular disease risk or type 2 diabetes mellitus. Sports Med. 40, 921–940. 10.2165/11535930-000000000-00000
    1. Haykowsky M. J., Timmons M. P., Kruger C., McNeely M., Taylor D. A., Clark A. M. (2013). Meta-analysis of aerobic interval training on exercise capacity and systolic function in patients with heart failure and reduced ejection fractions. Am. J. Cardiol. 111, 1466–1469. 10.1016/j.amjcard.2013.01.303
    1. Huang Y. C., Tsai H. H., Fu T. C., Hsu C. C., Wang J. S. (2019). High-intensity interval training improves left ventricular contractile function. Med. Sci. Sports Exerc. 51, 1420–1428. 10.1249/MSS.0000000000001931
    1. Hwang C. L., Wu Y. T., Chou C. H. (2011). Effect of aerobic interval training on exercise capacity and metabolic risk factors in people with cardiometabolic disorders: a meta-analysis. J. Cardiopulm. Rehabil. Prev. 31, 378–385. 10.1097/HCR.0b013e31822f16cb
    1. Johnson J. L., Slentz C. A., Houmard J. A., Samsa G. P., Duscha B. D., Aiken L. B., et al. . (2007). Exercise training amount and intensity effects on metabolic syndrome (from studies of a targeted risk reduction intervention through defined exercise). Am. J. Cardiol. 100, 1759–1766. 10.1016/j.amjcard.2007.07.027
    1. Kemmler W., Kohl M. S V.S. (2016a). Effects of high intensity resistance training vs. whole-body electromyostimulation on cardiometabolic risk factors in untrained middle aged males. A randomized controlled trial. J. Sports Res. 3, 44–55. 10.18488/journal.90/2016.3.2/90.2.44.55
    1. Kemmler W., Lell M., Scharf M., Fraunberger L., von Stengel S. (2015). Hoch- vs. moderat-intensive laufbelastung – einfluss auf kardiometabolische risikogrößen bei untrainierten männern. Deutsche Medizinische Wochenschrift 140, 7–13. 10.1055/s-0040-100423
    1. Kemmler W., Scharf M., Lell M., Petrasek C., von Stengel S. (2014). High vs. moderate intensity running exercise to impact cardiometabolic risk factors: the randomized controlled RUSH-study. Biomed. Res. Int. 2014:843095. 10.1155/2014/843095
    1. Kemmler W., Teschler M., Weissenfels A., Bebenek M., Frohlich M., Kohl M., et al. . (2016b). Effects of whole-body electromyostimulation vs. high-intensity resistance exercise on body composition and strength: a randomized controlled study. Evid. Based Complement. Altern. Med. 2016:9236809. 10.1155/2016/9236809
    1. Kemmler W., Wittke A., Bebenek M., Fröhlich M., von Stengel S. (2016c). High intensity resistance training methods with and without protein supplementation to fight cardiometabolic risk in middle-aged males a randomized controlled trial. BioMed. Res. Int. 2016:9705287. 10.1155/2016/9705287
    1. Kemmler W. M. T., von Stengel S., Bebenek M., Wittke A. (2014). Effekte unterschiedlicher Krafttrainingsprogramme auf das metabolische Syndrom. die PUSH-Studie. Dtsch. Z. Sportmed. 63:191.
    1. Kessler H. S., Sisson S. B., Short K. R. (2012). The potential for high-intensity interval training to reduce cardiometabolic disease risk. Sports Med. 42, 489–509. 10.2165/11630910-000000000-00000
    1. Lin X., Zhang X., Guo J., Roberts C. K., McKenzie S., Wu W. C., et al. . (2015). Effects of exercise training on cardiorespiratory fitness and biomarkers of cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials. J. Am. Heart Assoc. 4:e002014. 10.1161/JAHA.115.002014
    1. Ramirez-Velez R., Hernandez A., Castro K., Tordecilla-Sanders A., Gonzalez-Ruiz K., Correa-Bautista J. E., et al. . (2016). High intensity interval- vs resistance or combined- training for improving cardiometabolic health in overweight adults (cardiometabolic HIIT-RT study): study protocol for a randomised controlled trial. Trials 17:298. 10.1186/s13063-016-1422-1
    1. Ramirez-Velez R., Tordecilla-Sanders A., Tellez T. L., Camelo-Prieto D., Hernandez-Quinonez P. A., Correa-Bautista J. E., et al. . (2017). Similar cardiometabolic effects of high- and moderate-intensity training among apparently healthy inactive adults: a randomized clinical trial. J. Transl. Med. 15:118. 10.1186/s12967-017-1238-0
    1. Rao G. (2018). Cardiometabolic diseases: a global perspective. J. Cardiol. Cardiovasc. Ther. 12, 1–5. 10.19080/JOCCT.2018.12.555834
    1. Rommel A., Klaes L., Cosler D., Mensink G., Lambert T. (2008). Lebensführung und Sport [lifestyle and exercise], in Beiträge zur Gesundheitsberichterstattung des Bundes (Berlin: Robert-Koch-Institut; ), 73–83.
    1. Rütten A., Abu-Omar K., Meierjürgen R., Lutz A., Adlwarth R. (2009). Was bewegt die Nicht-Beweger? Präv. Gesundheitsf 4, 245–250. 10.1007/s11553-009-0173-1
    1. Rütten A., Abu-Omar K., Lampert T., Ziese T. (2005). Körperliche Aktivität [Physical Activity]. Report, in Gesundheitsberichterstattung des Bundes, ed Rütten A. (Berlin: Robert-Koch-Institut; ), 8–18.
    1. Scharf M., Oezdemir D., Schmid A., Kemmler W., von Stengel S., May M. S., et al. . (2017). Myocardial adaption to HI(R)T in previously untrained men with a randomized, longitudinal cardiac MR imaging study (physical adaptions in untrained on strength and heart trial, PUSH-trial). PLoS ONE 12:e0189204. 10.1371/journal.pone.0189204
    1. Scharf M., Schmid A., Kemmler W., von Stengel S., May M. S., Wuest W., et al. . (2015). Myocardial adaptation to high-intensity (interval) training in previously untrained men with a longitudinal cardiovascular magnetic resonance imaging study (running study and heart trial). Circ. Cardiovasc. Imaging 8:e002566. 10.1161/CIRCIMAGING.114.002566
    1. Sigal R. J., Alberga A. S., Goldfield G. S., Prud'homme D., Hadjiyannakis S., Gougeon R., et al. . (2014). Effects of aerobic training, resistance training, or both on percentage body fat and cardiometabolic risk markers in obese adolescents: the healthy eating aerobic and resistance training in youth randomized clinical trial. JAMA Pediatr. 168, 1006–1014. 10.1001/jamapediatrics.2014.1392
    1. Spence A. L., Naylor L. H., Carter H. H., Buck C. L., Dembo L., Murray C. P., et al. . (2011). A prospective randomised longitudinal MRI study of left ventricular adaptation to endurance and resistance exercise training in humans. J. Physiol. 589(Pt 22), 5443–5452. 10.1113/jphysiol.2011.217125
    1. Steele J., Fisher J., Giessing J., Gentil P. (2017a). Clarity in reporting terminology and definitions of set end points in resistance training. Muscle Nerve 56, 368–374. 10.1002/mus.25557
    1. Steele J., Raubold K., Kemmler W., Fisher J., Gentil P., Giessing J. (2017b). The Effects of 6 months of progressive high effort resistance training methods upon strength, body composition, function, and wellbeing of elderly adults. Biomed Res. Int. 2017:2541090. 10.1155/2017/2541090
    1. Stensvold D., Tjonna A. E., Skaug E. A., Aspenes S., Stolen T., Wisloff U., et al. . (2010). Strength training vs. aerobic interval training to modify risk factors of metabolic syndrome. J. Appl. Physiol. 108, 804–810. 10.1152/japplphysiol.00996.2009
    1. Swain D. P., Franklin B. A. (2006). Comparison of cardioprotective benefits of vigorous vs. moderate intensity aerobic exercise. Am. J. Cardiol. 97, 141–147. 10.1016/j.amjcard.2005.07.130
    1. Tjonna A. E., Lee S. J., Rognmo O., Stolen T. O., Bye A., Haram P. M., et al. . (2008). Aerobic interval training vs. continuous moderate exercise as a treatment for the metabolic syndrome: a pilot study. Circulation 118, 346–354. 10.1161/CIRCULATIONAHA.108.772822
    1. Tuttor M., von Stengel S., Hettchen M., Kemmler W. (2018). Stimulus level during endurance training: effects on lactate kinetics in untrained men. J. Sports Med. 2018:3158949. 10.1155/2018/3158949
    1. Wassermann A. (2005). Schwelle – Laktatleistungsdiagnostik, 2nd Edn. Bayreuth: University of Bayreuth.
    1. Weston K. S., Wisloff U., Coombes J. S. (2013). High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br. J. Sports Med. 48, 1227–1234. 10.1136/bjsports-2013-092576
    1. Wewege M., van den Berg R., Ward R. E., Keech A. (2017). The effects of high-intensity interval training vs. moderate-intensity continuous training on body composition in overweight and obese adults: a systematic review and meta-analysis. Obes. Rev. 18, 635–646. 10.1111/obr.12532
    1. Wilson G. A., Wilkins G. T., Cotter J. D., Lamberts R. R., Lal S., Baldi J. C. (2019). HIIT improves left ventricular exercise response in adults with type 2 diabetes. Med. Sci. Sports Exerc. 51, 1099–1105. 10.1249/MSS.0000000000001897
    1. Wittke A., von Stengel S., Hettchen M., Frohlich M., Giessing J., Lell M., et al. . (2017). Protein supplementation to augment the effects of high intensity resistance training in untrained middle-aged males: the randomized controlled PUSH trial. Biomed Res. Int. 2017:3619398. 10.1155/2017/3619398

Source: PubMed

3
購読する