Oxidized LDL Is Strictly Limited to Hyperthyroidism Irrespective of Fat Feeding in Female Sprague Dawley Rats

Sieglinde Zelzer, Harald Mangge, Sabine Pailer, Herwig Ainoedhofer, Petra Kieslinger, Tatjana Stojakovic, Hubert Scharnagl, Florian Prüller, Daniel Weghuber, Christian Datz, Johannes Haybaeck, Barbara Obermayer-Pietsch, Christian Trummer, Johanna Gostner, Hans-Jürgen Gruber, Sieglinde Zelzer, Harald Mangge, Sabine Pailer, Herwig Ainoedhofer, Petra Kieslinger, Tatjana Stojakovic, Hubert Scharnagl, Florian Prüller, Daniel Weghuber, Christian Datz, Johannes Haybaeck, Barbara Obermayer-Pietsch, Christian Trummer, Johanna Gostner, Hans-Jürgen Gruber

Abstract

Metabolic dysfunctions might play a crucial role in the pathophysiology of thyroid dysfunctions. This study aimed to investigate the impact of a controlled diet (normal versus high fat feeding) on hypothyroid and hyperthyroid Sprague Dawley rats. Female Sprague Dawley rats (n = 66) were grouped into normal diet (n = 30) and high-fat diet (n = 36) groups and subdivided into controls, hypothyroid and hyperthyroid groups, induced through propylthiouracil or triiodothyronine (T3) treatment, respectively. After 12 weeks of treatment metabolic parameters, such as oxidized LDL (oxLDL), malondialdehyde (MDA), 4-hydroxynonenal (HNE), the lipid profile, body weight and food intake parameters were analyzed. Successfully induced thyroid dysfunctions were shown by T3 levels, both under normal and high fat diet. Thyroid dysfunctions were accompanied by changes in calorie intake and body weight as well as in the lipid profile. In detail, hypothyroid rats showed significantly decreased oxLDL levels, whereas hyperthyroid rats showed significantly increased oxLDL levels. These effects were seen under high fat diet and were less pronounced with normal feeding. Taken together, we showed for the first time in female SD rats that only hyper-, but not hypothyroidism, is associated with high atherogenic oxidized LDL irrespective of normal or high-fat diet in Sprague Dawley rats.

Keywords: Sprague Dawley rats; fat feeding; hyperthyroidism; hypothyroidism; metabolic dysfunction; oxidized LDL.

Figures

Figure 1
Figure 1
Box and Whisker Blot of oxidized LDL. Grey bars indicate normal diet and black bars indicate high fat diet. *p < 0.05 compared to appropriate diet control group; ºp < 0.05 compared to normal diet control group.

References

    1. Kratky J., Vitkova H., Bartakova J., Telicka Z., Antosova M., Limanova Z., Jiskra J. Thyroid nodules: Pathophysiological insight on oncogenesis and novel diagnostic techniques. Physiol. Res. 2014;63:S263–S275.
    1. Medici M., Porcu E., Pistis G., Teumer A., Brown S.J., Jensen R.A., Rawal R., Roef G.L., Plantinga T.S., Vermeulen S.H., et al. Identification of novel genetic Loci associated with thyroid peroxidase antibodies and clinical thyroid disease. PLoS Genet. 2014;10:e1004123. doi: 10.1371/journal.pgen.1004123.
    1. Sweeney L.B., Stewart C., Gaitonde D.Y. Thyroiditis: An integrated approach. Am. Fam. Physician. 2014;90:389–396.
    1. Yen P.M. Physiological and molecular basis of thyroid hormone action. Physiol. Rev. 2001;81:1097–1142.
    1. Iwen K.A., Schroder E., Brabant G. Thyroid hormones and the metabolic syndrome. Eur. Thyroid J. 2013;2:83–92. doi: 10.1159/000351249.
    1. Peppa M., Betsi G., Dimitriadis G. Lipid abnormalities and cardiometabolic risk in patients with overt and subclinical thyroid disease. J. Lipids. 2011;2011 doi: 10.1155/2011/575840.
    1. Santi A., Duarte M.M., Moresco R.N., Menezes C., Bagatini M.D., Schetinger M.R., Loro V.L. Association between thyroid hormones, lipids and oxidative stress biomarkers in overt hypothyroidism. Clin. Chem. Lab. Med. 2010;48:1635–1639. doi: 10.1515/CCLM.2010.309.
    1. Tejovathi B., Suchitra M.M., Suresh V., Reddy V.S., Sachan A., Srinivas Rao P.V., Bitla A.R. Association of lipid peroxidation with endothelial dysfunction in patients with overt hypothyroidism. Exp. Clin. Endocrinol. Diabetes. 2013;121:306–309. doi: 10.1055/s-0032-1333298.
    1. Nanda N., Bobby Z., Hamide A. Association of thyroid stimulating hormone and coronary lipid risk factors with lipid peroxidation in hypothyroidism. Clin. Chem. Lab. Med. 2008;46:674–679. doi: 10.1515/CCLM.2008.139.
    1. Villanueva I., Alva-Sanchez C., Pacheco-Rosado J. The role of thyroid hormones as inductors of oxidative stress and neurodegeneration. Oxidative Med. Cell. Longev. 2013;2013:218145. doi: 10.1155/2013/218145.
    1. Venditti P., Balestrieri M., di Meo S., de Leo T. Effect of thyroid state on lipid peroxidation, antioxidant defences, and susceptibility to oxidative stress in rat tissues. J. Endocrinol. 1997;155:151–157. doi: 10.1677/joe.0.1550151.
    1. Costantini F., Pierdomenico S.D., de Cesare D., de Remigis P., Bucciarelli T., Bittolo-Bon G., Cazzolato G., Nubile G., Guagnano M.T., Sensi S., et al. Effect of thyroid function on LDL oxidation. Arterioscler. Thromb. Vasc. Biol. 1998;18:732–737. doi: 10.1161/01.ATV.18.5.732.
    1. Ittermann T., Baumeister S.E., Volzke H., Wasner C., Schminke U., Wallaschofski H., Nauck M., Ludemann J. Are serum TSH levels associated with oxidized low-density lipoprotein? Results from the Study of Health in Pomerania. Clin. Endocrinol. 2012;76:526–532. doi: 10.1111/j.1365-2265.2011.04186.x.
    1. Lampka M., Junik R., Nowicka A., Kopczynska E., Tyrakowski T., Odrowaz-Sypniewska G. Oxidative stress markers during a course of hyperthyroidism. Endokrynol. Pol. 2006;57:218–222.
    1. Messarah M., Boumendjel A., Chouabia A., Klibet F., Abdennour C., Boulakoud M.S., Feki A.E. Influence of thyroid dysfunction on liver lipid peroxidation and antioxidant status in experimental rats. Exp. Toxicol. Pathol. 2010;62:301–310. doi: 10.1016/j.etp.2009.04.009.
    1. Hussein Ael A., Abbas A.M., El Wakil G.A., Elsamanoudy A.Z., El Aziz A.A. Effect of chronic excess iodine intake on thyroid function and oxidative stress in hypothyroid rats. Can. J. Physiol. Pharmacol. 2012;90:617–625. doi: 10.1139/y2012-046.
    1. Rizos C.V., Elisaf M.S., Liberopoulos E.N. Effects of thyroid dysfunction on lipid profile. Open Cardiovasc. Med. J. 2011;5:76–84. doi: 10.2174/1874192401105010076.
    1. Kaliaperumal R., William E., Selvam T., Krishnan S.M. Relationship between lipoprotein (a) and thyroid hormones in hypothyroid patients. J. Clin. Diagn. Res. 2014;8:37–39.
    1. Ragginer C., Bernecker C., Ainoedhofer H., Pailer S., Kieslinger P., Truschnig-Wilders M., Gruber H.J. Treatment with the nitric oxide donor SNP increases triiodothyronine levels in hyper- and hypothyroid Sprague-Dawley rats. Horm. Metab. Res. 2013;45:808–812. doi: 10.1055/s-0033-1349892.
    1. McAllister R.M., Albarracin I., Price E.M., Smith T.K., Turk J.R., Wyatt K.D. Thyroid status and nitric oxide in rat arterial vessels. J. Endocrinol. 2005;185:111–119. doi: 10.1677/joe.1.06022.
    1. Messarah M., Saoudi M., Boumendjel A., Boulakoud M.S., Feki A.E. Oxidative stress induced by thyroid dysfunction in rat erythrocytes and heart. Environ. Toxicol. Pharmacol. 2011;31:33–41. doi: 10.1016/j.etap.2010.09.003.
    1. Weltman N.Y., Ojamaa K., Savinova O.V., Chen Y.F., Schlenker E.H., Zucchi R., Saba A., Colligiani D., Pol C.J., Gerdes A.M. Restoration of cardiac tissue thyroid hormone status in experimental hypothyroidism: A dose-response study in female rats. Endocrinology. 2013;154:2542–2552. doi: 10.1210/en.2012-2087.
    1. Li W., Wang D., Song G., Zuo C., Qiao X., Qin S. The effect of combination therapy of allicin and fenofibrate on high fat diet-induced vascular endothelium dysfunction and liver damage in rats. Lipids Health Dis. 2010;9 doi: 10.1186/1476-511X-9-131.
    1. Bhandari U., Kumar V., Khanna N., Panda B.P. The effect of high-fat diet-induced obesity on cardiovascular toxicity in Wistar albino rats. Hum. Exp. Toxicol. 2011;30:1313–1321. doi: 10.1177/0960327110389499.
    1. Nadal-Casellas A., Proenza A.M., Gianotti M., Llad I. Brown adipose tissue redox status in response to dietary-induced obesity-associated oxidative stress in male and female rats. Stress. 2011;14:174–184.
    1. Zelzer S., Oberreither R., Bernecker C., Stelzer I., Truschnig-Wilders M., Fauler G. Measurement of total and free malondialdehyde by gas-chromatography mass spectrometry—Comparison with high-performance liquid chromatography methology. Free Radic. Res. 2013;47:651–656. doi: 10.3109/10715762.2013.812205.
    1. Luo X.P., Yazdanpanah M., Bhooi N., Lehotay D.C. Determination of aldehydes and other lipid peroxidation products in biological samples by gas chromatography-mass spectrometry. Anal. Biochem. 1995;228:294–298. doi: 10.1006/abio.1995.1353.

Source: PubMed

3
購読する