Erector Spinae Plane Block in Laparoscopic Cholecystectomy, Is There a Difference? A Randomized Controlled Trial

Mohamed Ibrahim, Mohamed Ibrahim

Abstract

Background: The ultrasound (US)-guided erector spinae plane (ESP) block and oblique subcostal transversus abdominis plane (OSTAP) block are used to decrease postoperative pain and subsequently opioids consumption.

Aim: The aim was to test the hypothesis that US-guided ESP blocks can produce more reduction in opioid usage during the first 24 h after laparoscopic cholecystectomy when compared to OSTAP block.

Settings and design: Seventy adult patients (20-60 years old) who were planned to undergo elective laparoscopic cholecystectomy were allocated in three groups in randomized controlled trial.

Materials and methods: The three groups received either port site infiltration, US-guided bilateral ESP block (ESP group), or OSTAP (OSTAP group) with bupivacaine hydrochloride 0.25%.

Statistical analysis: Postoperative 24 h Morphine consumption, visual analogue scale (VAS), the intraoperative fentanyl (μg) and equivalent morphine dose in the recovery unit were recorded and analyzed using one-way analysis of variance.

Results: The mean 24-h morphine consumption was statistically significant between groups (P < 0.001), but it was insignificant between ESP and OSTAP (P = 0.173). Median (range) and interquartile range of intraoperatively consumed fentanyl showed significance between the three groups (P < 0.001). There was insignificance between ESP block Group II and OSTAP block Group III (P = 0.95) by post hoc analysis. The mean values of VAS at both rest and movement of the control group were significantly higher than the ESP block group at 6 and 12 h postoperative.

Conclusion: Bilateral US-guided ESP block was found to be as effective as bilateral US OSTAP block. There was more decrease in intraoperative rescue fentanyl, PACU morphine analgesia, 24-h morphine, and pain assessment score in both groups than the control port-site infiltration group.Clinical trial registration number: NCT03398564.

Keywords: Analgesia; erector spinae plane block; morphine consumption; oblique subcostal transversus abdominis plane.

Conflict of interest statement

There are no conflicts of interest.

Copyright: © 2020 Anesthesia: Essays and Researches.

Figures

Figure 1
Figure 1
Flow chart showing inclusion and exclusion criteria, enrollment, allocation and outcomes
Figure 2
Figure 2
Technique of erector spinae plane block and oblique subcostal transversus abdominis plane block. (a) Longitudinal parasagittal placement of ultrasound probe. (b) Ultrasound anatomy and needle placement craniocaudally till it gently hit the transverse process with deposition of local anesthetic. Right location of needle tip is confirmed by fluid spread (local anesthetic) under erector spinae muscle, separating it from the transverse process. Note: Rhomboid major is absent at this level. (c) Oblique subcostal transversus abdominis plane block, local anesthetic spread between transversus abdominis muscle and beneath the rectus abdominis
Figure 3
Figure 3
Twenty-four hour morphine consumption is shown on the left-hand axis. The upper and lower limits of the box show the limits of the interquartile range between 25th and 75th percentiles (8–12 mg for control group, 5–7.5 mg for erector spinae plane block group, and 6–9 mg for oblique subcostal transversus abdominis plane block group), and the dark middle horizontal line represents the median value (approximately 10, 6, and 8 mg, respectively). The whiskers, extend to the extreme values of the sample
Figure 4
Figure 4
VAS at rest (a) and VAS at movement (b) change over time. ESP = Erector spinae plane, VAS = Visual analog scale. *P<0.05 when comparing ESP block group and OSTAP groups with control group at rest. †P<0.05 when comparing ESP block group and OSTAP groups with control group at movement

References

    1. NHS Institute for Innovation and Improvement. Delivering Quality and Value Focus on: Cholecystectomy. 2006
    1. Wall PD, Melzack R. Pain measurements in persons in pain. In: Wall PD, Melzak R, editors. Textbook of Pain. 4th ed. Edinburgh: Churchill Livingstone; 1999. pp. 409–26.
    1. Bisgaard T, Kehlet H, Rosenberg J. Pain and convalescence after laparoscopic cholecystectomy. Eur J Surg. 2001;167:84–96.
    1. Bisgaard T. Analgesic treatment after laparoscopic cholecystectomy: A critical assessment of the evidence. Anesthesiology. 2006;104:835–46.
    1. McMinn RH. Lasts Anatomy. 9th ed. London: Churchill Livingstone; 1998.
    1. Boddy AP, Mehta S, Rhodes M. The effect of intraperitoneal local anesthesia in laparoscopic cholecystectomy: A systematic review and meta-analysis. Anesth Analg. 2006;103:682–8.
    1. Erol DD, Yilmaz S, Polat C, Arikan Y. Efficacy of thoracic epidural analgesia for laparoscopic cholecystectomy. Adv Ther. 2008;25:45–52.
    1. El-Dawlatly AA, Turkistani A, Kettner SC, Machata AM, Delvi MB, Thallaj A, et al. Ultrasound-guided transversus abdominis plane block: Description of a new technique and comparison with conventional systemic analgesia during laparoscopic cholecystectomy. Br J Anaesth. 2009;102:763–7.
    1. Kadam RV, Field JB. Ultrasound-guided continuous transverse abdominis plane block for abdominal surgery. J Anaesthesiol Clin Pharmacol. 2011;27:333–6.
    1. Niraj G, Searle A, Mathews M, Misra V, Baban M, Kiani S, et al. Analgesic efficacy of ultrasound-guided transversus abdominis plane block in patients undergoing open appendicectomy. Br J Anaesth. 2009;103:601–5.
    1. McDonnell JG, O’Donnell B, Curley G, Heffernan A, Power C, Laffey JG. The analgesic efficacy of transversus abdominis plane block after abdominal surgery: A prospective randomized controlled trial. Anesth Analg. 2007;104:193–7.
    1. McDonnell JG, Curley G, Carney J, Benton A, Costello J, Maharaj CH, et al. The analgesic efficacy of transversus abdominis plane block after cesarean delivery: A randomized controlled trial. Anesth Analg. 2008;106:186–91.
    1. Breazu CM, Ciobanu L, Hadade A, Bartos A, Mitre C, Mircea PA, et al. The efficacy of oblique subcostal transversus abdominis plane block in laparoscopic cholecystectomy – A prospective, placebo controlled study. Rom J Anaesth Intensive Care. 2016;23:12–8.
    1. Shin HJ, Oh AY, Baik JS, Kim JH, Han SH, Hwang JW. Ultrasound-guided oblique subcostal transversus abdominis plane block for analgesia after laparoscopic cholecystectomy: A randomized, controlled, observer-blinded study. Minerva Anestesiol. 2014;80:185–93.
    1. Ibrahim M, Shamaa HE. Efficacy of ultrasound-guided oblique subcostal transversus abdominis plane block after laparoscopic sleeve gastrectomy: A double-blind, randomized, placebo-controlled study. Egypt J Anaesth. 2014;30:285–92.
    1. Forero M, Adhikary SD, Lopez H, Tsui C, Chin KJ. The erector spinae plane block: A novel analgesic technique in thoracic neuropathic pain. Reg Anesth Pain Med. 2016;41:621–7.
    1. Hamilton DL, Manickam B. Erector spinae plane block for pain relief in rib fractures. Br J Anaesth. 2017;118:474–5.
    1. Chin KJ, Malhas L, Perlas A. The erector spinae plane block provides visceral abdominal analgesia in bariatric surgery: A report of 3 cases. Reg Anesth Pain Med. 2017;42:372–6.
    1. David SP, María MR, Elisa JS, Daniel ÁM. Erector spinae plane block for open splenectomy. A case report. J Anest Inten Care Med. 2017;4:1–2.
    1. Scimia P, Basso Ricci E, Droghetti A, Fusco P. The ultrasound-guided continuous erector spinae plane block for postoperative analgesia in video-assisted thoracoscopic lobectomy. Reg Anesth Pain Med. 2017;42:537.
    1. Aldrete JA. Modifications to the postanesthesia score for use in ambulatory surgery. J Perianesth Nurs. 1998;13:148–55.
    1. Sasada M, Smith S. Drugs in Anesthesia and Intensive Care. 3rd ed. Oxford: Oxford University Press; 2003.
    1. Wu CL, Rowlingson AJ, Partin AW, Kalish MA, Courpas GE, Walsh PC, et al. Correlation of postoperative pain to quality of recovery in the immediate postoperative period. Reg Anesth Pain Med. 2005;30:516–22.
    1. Kehlet H. Surgical stress: The role of pain and analgesia. Br J Anaesth. 1989;63:189–95.
    1. Tulgar S, Selvi O, Kapakli MS. Erector spinae plane block for different laparoscopic abdominal surgeries: Case series. Case Rep Anesthesiol. 2018:1–2. ID 3947281.
    1. Peng K, Ji FH, Liu HY, Wu SR. Ultrasound-guided transversus abdominis plane block for analgesia in laparoscopic cholecystectomy: A systematic review and meta-analysis. Med Princ Pract. 2016;25:237–46.
    1. Bonvicini D, Tagliapietra L, Giacomazzi A, Pizzirani E. Bilateral ultrasound-guided erector spinae plane blocks in breast cancer and reconstruction surgery. J Clin Anesth. 2018;44:3–4.
    1. Restrepo-Garces CE, Chin KJ, Suarez P, Diaz A. Bilateral continuous erector spinae plane block contributes to effective postoperative analgesia after major open abdominal surgery: A case report. A A Case Rep. 2017;9:319–21.
    1. Ivanusic J, Konishi Y, Barrington MJ. A cadaveric study investigating the mechanism of action of erector spinae blockade. Reg Anesth Pain Med. 2018;43:567–71.
    1. Adhikary SD, Bernard S, Lopez H, Chin KJ. Erector spinae plane block versus retrolaminar block: A magnetic resonance imaging and anatomical study. Reg Anesth Pain Med. 2018;43:756–62.
    1. Chin KJ, Adhikary S, Sarwani N, Forero M. The analgesic efficacy of pre-operative bilateral erector spinae plane (ESP) blocks in patients having ventral hernia repair. Anaesthesia. 2017;72:452–60.
    1. Chin KJ, McDonnell JG, Carvalho B, Sharkey A, Pawa A, Gadsden J. Essentials of our current understanding: Abdominal wall blocks. Reg Anesth Pain Med. 2017;42:133–83.
    1. Hannig KE, Jessen C, Soni UK, Børglum J, Bendtsen TF. Erector spinae plane block for elective laparoscopic cholecystectomy in the ambulatory surgical setting. Case Rep Anesthesiol. 2018:1–6. ID 5492527.
    1. Muñoz F, Cubillos J, Bonilla AJ, Chin KJ. Erector spinae plane block for postoperative analgesia in pediatric oncological thoracic surgery. Can J Anaesth. 2017;64:880–2.
    1. Forero M, Rajarathinam M, Adhikary S, Chin KJ. Erector spinae plane (ESP) block in the management of post thoracotomy pain syndrome: A case series. Scand J Pain. 2017;17:325–9.

Source: PubMed

3
購読する