Exploration of Reduced Doses and Short-Cycle Therapy for Darunavir/Cobicistat in Patients with HIV Using Population Pharmacokinetic Modeling and Simulations

Gabriel Stillemans, Leila Belkhir, Bernard Vandercam, Anne Vincent, Vincent Haufroid, Laure Elens, Gabriel Stillemans, Leila Belkhir, Bernard Vandercam, Anne Vincent, Vincent Haufroid, Laure Elens

Abstract

Background and objectives: Protease inhibitors such as darunavir are an important therapeutic option in the anti-human immunodeficiency virus arsenal. Current dosage guidelines recommend using cobicistat- or ritonavir-boosted darunavir 800 mg every 24 h (q24h) in protease inhibitor-naïve patients, or ritonavir-boosted darunavir 600 mg q12h in experienced patients. However, darunavir displays a large, poorly characterized, inter-individual pharmacokinetic variability. The objectives of this study were to investigate the pharmacokinetics of darunavir and to elucidate the sources of its inter-individual variability using population pharmacokinetic modeling. Then, to determine the appropriateness of current treatment guidelines and the feasibility of alternative dosing regimens in a representative cohort of adult patients using simulations.

Methods: Sparse pharmacokinetic samples were collected in 127 patients with human immunodeficiency virus type 1 infection, then supplemented with rich sampling data from a subset of 12 individuals. Data were analyzed using the nonlinear mixed-effects modeling software NONMEM. The effect of reduced doses (600 mg q24h and 400 mg q24h) or reduced frequency of administration (800 mg q24h for 5 days followed by 2 days of treatment interruption) was simulated.

Results: Our model adequately described the pharmacokinetics of darunavir. Predictors of individual exposure were CYP3A5*3 and SLCO3A1 rs8027174 genotypes, sex, and alpha-1 acid glycoprotein level. No relationship was apparent between darunavir area under the curve and treatment efficacy or safety. For reduced dose regimens, darunavir concentrations remained above the protein binding-corrected EC50 in the majority of subjects. More stringent pharmacokinetic targets were not reached in a significant proportion of patients.

Conclusions: These results add to the growing body of evidence that darunavir-based therapy could be simplified to reduce costs and toxicity, as well as to improve patient compliance. However, the heterogeneity in pharmacokinetic response should be considered when assessing whether individual patients could benefit from a particular regimen, for instance through the use of population pharmacokinetic models.

Clinical trial registration: ClinicalTrials.gov identifier: NCT03101644, date of registration: 5 April, 2017.

Conflict of interest statement

Gabriel Stillemans, Leila Belkhir, Bernard Vandercam, Anne Vincent, Vincent Haufroid, and Laure Elens have no conflicts of interest that are directly relevant to the content of this article.

Figures

Fig. 1
Fig. 1
Goodness of fit plots. a Population predicted concentrations (PRED) vs observations. b Individual predicted concentrations (IPRED) vs observations. c Conditional weighted residuals (CWRES) vs PRED. d CWRES vs time after dose
Fig. 2
Fig. 2
Normalized distribution prediction error (NPDE). aQQ plot of NPDE. b Histogram of NPDE. Shaded area represents theoretical distribution. c NPDE vs time after dose. Shaded areas represent the prediction intervals associated with the 5th, 50th, and 95th percentiles. d NPDE vs predicted concentrations

References

    1. European AIDS Clinical Society. Guidelines, version 10.0, November 2019. . Accessed 02 Jul 2020.
    1. Saag MS, Benson CA, Gandhi RT, Hoy JF, Landovitz RJ, Mugavero MJ, et al. Antiretroviral drugs for treatment and prevention of HIV infection in adults: 2018 recommendations of the International Antiviral Society–USA Panel. JAMA. 2018;320:379–396. doi: 10.1001/jama.2018.8431.
    1. Ortiz R, DeJesus E, Khanlou H, Voronin E, van Lunzen J, Andrade-Villanueva J, et al. Efficacy and safety of once-daily darunavir/ritonavir versus lopinavir/ritonavir in treatment-naive HIV-1-infected patients at week 48. AIDS. 2008;22:1389–1397. doi: 10.1097/QAD.0b013e32830285fb.
    1. Cahn P, Fourie J, Grinsztejn B, Hodder S, Molina J-M, Ruxrungtham K, et al. Week 48 analysis of once-daily vs. twice-daily darunavir/ritonavir in treatment-experienced HIV-1-infected patients. AIDS. 2011;25:929–939. doi: 10.1097/QAD.0b013e328345ee95.
    1. Arasteh K, Yeni P, Pozniak A, Grinsztejn B, Jayaweera D, Roberts A, et al. Efficacy and safety of darunavir/ritonavir in treatment-experienced HIV type-1 patients in the POWER 1, 2 and 3 trials at week 96. Antivir Ther. 2009;14:859. doi: 10.3851/IMP1301.
    1. Molina J-M, Cohen C, Katlama C, Grinsztejn B, Timerman A, de Pedro RJ, et al. Safety and efficacy of darunavir (TMC114) with low-dose ritonavir in treatment-experienced patients: 24-week results of POWER 3. J Acquir Immun Defic Syndr. 2007;46:24–31. doi: 10.1097/QAI.0b013e3181359cfb.
    1. Haubrich R, Berger D, Chiliade P, Colson A, Conant M, Gallant J, et al. Week 24 efficacy and safety of TMC114/ritonavir in treatment-experienced HIV patients. AIDS. 2007;21:F11–F18. doi: 10.1097/QAD.0b013e3280b07b47.
    1. Madruga JV, Berger D, McMurchie M, Suter F, Banhegyi D, Ruxrungtham K, et al. Efficacy and safety of darunavir–ritonavir compared with that of lopinavir–ritonavir at 48 weeks in treatment-experienced, HIV-infected patients in TITAN: a randomised controlled phase III trial. Lancet. 2007;370:49–58. doi: 10.1016/S0140-6736(07)61049-6.
    1. Koh Y, Nakata H, Maeda K, Ogata H, Bilcer G, Devasamudram T, et al. Novel bis-tetrahydrofuranylurethane-containing nonpeptidic protease inhibitor (PI) UIC-94017 (TMC114) with potent activity against multi-PI-resistant human immunodeficiency virus in vitro. Antimicrob Agents Chemother. 2003;47:3123–3129. doi: 10.1128/AAC.47.10.3123-3129.2003.
    1. Dierynck I, De Wit M, Gustin E, Keuleers I, Vandersmissen J, Hallenberger S, et al. Binding kinetics of darunavir to human immunodeficiency virus type 1 protease explain the potent antiviral activity and high genetic barrier. J Virol. 2007;81:13845–13851. doi: 10.1128/JVI.01184-07.
    1. De Meyer S, Azijn H, Surleraux D, Jochmans D, Tahri A, Pauwels R, et al. TMC114, a novel human immunodeficiency virus type 1 protease inhibitor active against protease inhibitor-resistant viruses, including a broad range of clinical isolates. Antimicrob Agents Chemother. 2005;49:2314–2321. doi: 10.1128/AAC.49.6.2314-2321.2005.
    1. König SK, Herzog M, Theile D, Zembruski N, Haefeli WE, Weiss J. Impact of drug transporters on cellular resistance towards saquinavir and darunavir. J Antimicrob Chemother. 2010;65:2319–2328. doi: 10.1093/jac/dkq324.
    1. Lepist E-I, Phan TK, Roy A, Tong L, MacLennan K, Murray B, et al. Cobicistat boosts the intestinal absorption of transport substrates, including HIV protease inhibitors and GS-7340, in vitro. Antimicrob Agents Chemother. 2012;56:5409–5413. doi: 10.1128/AAC.01089-12.
    1. Hartkoorn RC, Kwan WS, Shallcross V, Chaikan A, Liptrott N, Egan D, et al. HIV protease inhibitors are substrates for OATP1A2, OATP1B1 and OATP1B3 and lopinavir plasma concentrations are influenced by SLCO1B1 polymorphisms. Pharmacogenet Genom. 2010;20:112–120. doi: 10.1097/FPC.0b013e328335b02d.
    1. Pharmaceutical and Medical Devices Agency. Darunavir/cobicistat. Module 2.4. Nonclinical overview. 2013. . Accessed 02 Jul 2020.
    1. Marzolini C, Gibbons S, Khoo S, Back D. Cobicistat versus ritonavir boosting and differences in the drug–drug interaction profiles with co-medications. J Antimicrob Chemother. 2016;71:1755–1758. doi: 10.1093/jac/dkw032.
    1. Stillemans G, Belkhir L, Hesselink DA, Haufroid V, Elens L. Pharmacogenetic associations with cytochrome P450 in antiretroviral therapy: what does the future hold? Expert Opin Drug Metab Toxicol. 2018;14:601–611. doi: 10.1080/17425255.2018.1478964.
    1. Vis P, Sekar V, van Schaick E, Hoetelmans R. Development and application of a population PK model of TMC114 in healthy volunteers and HIV-1-infected patients after administration of TMC114 in combination with low-dose ritonavir. PAGE 2006, Bruges, Belgium, 2006. . Accessed 02 Jul 2020.
    1. Moltó J, Xinarianos G, Miranda C, Pushpakom S, Cedeño S, Clotet B, et al. Simultaneous pharmacogenetics-based population pharmacokinetic analysis of darunavir and ritonavir in HIV-infected patients. Clin Pharmacokinet. 2013;52:543–553. doi: 10.1007/s40262-013-0057-6.
    1. Kakuda T, Sekar V, Vis P, Coate B, Ryan R, Anderson D, et al. Pharmacokinetics and pharmacodynamics of darunavir and etravirine in HIV-1-infected, treatment-experienced patients in the Gender, Race, and Clinical Experience (GRACE) Trial. AIDS Res Treat. 2012;2012:186987.
    1. Dickinson L, Winston A, Boffito M, Khoo S, Back D, Siccardi M. Simulation of the impact of rifampicin on once-daily darunavir/ritonavir pharmacokinetics and dose adjustment strategies: a population pharmacokinetic approach. J Antimicrob Chemother. 2016;71:1041–1045. doi: 10.1093/jac/dkv439.
    1. Arab-Alameddine M, Lubomirov R, Fayet-Mello A, Aouri M, Rotger M, Buclin T, et al. Population pharmacokinetic modelling and evaluation of different dosage regimens for darunavir and ritonavir in HIV-infected individuals. J Antimicrob Chemother. 2014;69:2489–2498. doi: 10.1093/jac/dku131.
    1. Schalkwijk S, ter Heine R, Colbers A, Capparelli E, Best BM, Cressey TR, et al. Evaluating darunavir/ritonavir dosing regimens for HIV-positive pregnant women using semi-mechanistic pharmacokinetic modelling. J Antimicrob Chemother. 2019;74:1348–1356. doi: 10.1093/jac/dky567.
    1. Lanzafame M, Lattuada E, Rigo F, Ferrari A, Hill A, Vento S. Efficacy of a reduced dose of darunavir/ritonavir in a cohort of antiretroviral-naive and -experienced HIV-infected patients: a medium-term follow-up. J Antimicrob Chemother. 2015;70:627–630. doi: 10.1093/jac/dku390.
    1. Molto J, Valle M, Ferrer E, Domingo P, Curran A, Santos JR, et al. Reduced darunavir dose is as effective in maintaining HIV suppression as the standard dose in virologically suppressed HIV-infected patients: a randomized clinical trial. J Antimicrob Chemother. 2014;70:1139–1145.
    1. Molina J-M, Gallien S, Chaix M-L, El Abbassi EM, Madelaine I, Katlama C, et al. Low-dose ritonavir-boosted darunavir in virologically suppressed HIV-1-infected adults: an open-label trial (ANRS 165 Darulight) J Antimicrob Chemother. 2018;73:2129–2136. doi: 10.1093/jac/dky181.
    1. Venter WDF, Moorhouse M, Sokhela S, Serenata C, Akpomiemie G, Qavi A, et al. Low-dose ritonavir-boosted darunavir once daily versus ritonavir-boosted lopinavir for participants with less than 50 HIV RNA copies per mL (WRHI 052): a randomised, open-label, phase 3, non-inferiority trial. Lancet HIV. 2019;6:e428–e437. doi: 10.1016/S2352-3018(19)30081-5.
    1. Lopez-Ruz MA, Navas P, López-Zúñiga MA, Gonzalvo MC, Sampedro A, Pasquau J, et al. Effect of monotherapy with darunavir/ritonavir on viral load in seminal fluid, and quality parameters of semen in HIV-1-positive patients. PLoS One. 2016;11:e0159305. doi: 10.1371/journal.pone.0159305.
    1. López-Ruz MA, López-Zúñiga MA, Gonzalvo MC, Sampedro A, Pasquau J, Hidalgo C, et al. Effect of monotherapy with darunavir/cobicistat on viral load and semen quality of HIV-1 patients. PLoS One. 2018;13:e0196257. doi: 10.1371/journal.pone.0196257.
    1. Gutierrez-Valencia A, Trujillo-Rodriguez M, Fernandez-Magdaleno T, Espinosa N, Viciana P, López-Cortés LF. Darunavir/cobicistat showing similar effectiveness as darunavir/ritonavir monotherapy despite lower trough concentrations. J Int AIDS Soc. 2018;21:e25072. doi: 10.1002/jia2.25072.
    1. Arribas J, Girard P-M, Paton N, Winston A, Marcelin A-G, Elbirt D, et al. Efficacy of protease inhibitor monotherapy vs. triple therapy: meta-analysis of data from 2303 patients in 13 randomized trials. HIV Med. 2016;17:358–367. doi: 10.1111/hiv.12348.
    1. Mena Á, Cid P, Dueñas C, Garcinuño MÁ, Lorenzo JF, Margusino L, et al. Darunavir/cobicistat maintains the effectiveness of darunavir/ritonavir in HIV-infected patients under mono or dual therapy. HIV Clin Trials. 2018;19:197–201. doi: 10.1080/15284336.2018.1513974.
    1. Gianotti N, Galli L, Maserati R, Sighinolfi L, Ripamonti D, Palvarini L, et al. Monotherapy with darunavir/ritonavir or lopinavir/ritonavir versus standard antiretroviral therapy: a randomized clinical trial (2 pm Study) New Microbiol. 2016;39:290–294.
    1. Stöhr W, Dunn DT, Arenas-Pinto A, Orkin C, Clarke A, Williams I, et al. Factors associated with virological rebound in HIV-infected patients receiving protease inhibitor monotherapy. AIDS. 2016;30:2617–2624. doi: 10.1097/QAD.0000000000001206.
    1. Seang S, Schneider L, Nguyen T, Lê MP, Soulie C, Calin R, et al. Darunavir/ritonavir monotherapy at a low dose (600/100 mg/day) in HIV-1-infected individuals with suppressed HIV viraemia. J Antimicrob Chemother. 2018;73:490–493. doi: 10.1093/jac/dkx417.
    1. Nachega JB, Parienti J-J, Uthman OA, Gross R, Dowdy DW, Sax PE, et al. Lower pill burden and once-daily antiretroviral treatment regimens for HIV infection: a meta-analysis of randomized controlled trials. Clin Infect Dis. 2014;58:1297–1307. doi: 10.1093/cid/ciu046.
    1. de Truchis P, Assoumou L, Landman R, Mathez D, Le Dû D, Bellet J, et al. Four-days-a-week antiretroviral maintenance therapy in virologically controlled HIV-1-infected adults: the ANRS 162-4D trial. J Antimicrob Chemother. 2018;73:738–747. doi: 10.1093/jac/dkx434.
    1. Elens L, Veriter S, Di Fazio V, Vanbinst R, Boesmans D, Wallemacq P, et al. Quantification of 8 HIV-protease inhibitors and 2 nonnucleoside reverse transcriptase inhibitors by ultra-performance liquid chromatography with diode array detection. Clin Chem. 2008;55:170–174. doi: 10.1373/clinchem.2008.108647.
    1. Charbe N, Baldelli S, Cozzi V, Castoldi S, Cattaneo D, Clementi E. Development of an HPLC–UV assay method for the simultaneous quantification of nine antiretroviral agents in the plasma of HIV-infected patients. J Pharm Anal. 2016;6:396–403. doi: 10.1016/j.jpha.2016.05.008.
    1. Penchala SD, Fawcett S, Else L, Egan D, Amara A, Elliot E, et al. The development and application of a novel LC-MS/MS method for the measurement of dolutegravir, elvitegravir and cobicistat in human plasma. J Chromatogr B Anal Technol Biomed Life Sci. 2016;1027:174–180. doi: 10.1016/j.jchromb.2016.05.040.
    1. Graffelman J. Exploring diallelic genetic markers: the HardyWeinberg package. J Stat Softw. 2015;64:1–23. doi: 10.18637/jss.v064.i03.
    1. Beal SL, Sheiner LB, Boeckmann A, Bauer R. NONMEM user’s guides. Ellicott City: Icon Development Solutions; 2009.
    1. Lindbom L, Ribbing J, Jonsson EN. Perl-speaks-NONMEM (PsN): a Perl module for NONMEM related programming. Comput Methods Progr Biomed. 2004;75:85–94. doi: 10.1016/j.cmpb.2003.11.003.
    1. R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2014. . Accessed 02 Jul 2020.
    1. Comets E, Brendel K, Mentré F. Computing normalised prediction distribution errors to evaluate nonlinear mixed-effect models: the npde add-on package for R. Comput Methods Progr Biomed. 2008;90:154–166. doi: 10.1016/j.cmpb.2007.12.002.
    1. Gisleskog PO, Karlsson MO, Beal SL. Use of prior information to stabilize a population data analysis. J Pharmacokinet Pharmacodyn. 2002;29:473–505. doi: 10.1023/A:1022972420004.
    1. Sekar V, De Meyer S, Vangeneugden T, Lefebvre E, De Pauw M, van Baelen B, et al. Pharmacokinetic/pharmacodynamic (PK/PD) analyses of TMC114 in the POWER 1 and POWER 2 trials in treatment-experienced HIV-infected patients. In 13th Conference on retroviruses and opportunistic infections; Denver (CO); 5-8 February, 2006. . Accessed 02 Jul 2020.
    1. US Food and Drug Administration. Drug development and drug interactions: table of substrates, inhibitors and inducers. 2020. . Accessed 02 Jul 2020.
    1. Répertoire commenté des médicaments 2019. Centre belge d’information pharmacothérapeutique; 2019. . Accessed 02 Jul 2020.
    1. Morlat P. Prise en charge médicale des personnes vivant avec le VIH: recommandations du groupe d’experts. Annexe pharmacologique. Conseil national du sida et des hépatites virales, Agence nationale de recherches sur le Sida et les hépatites virales; 2018. . Accessed 02 Jul 2020.
    1. Auton A, Abecasis GR, Altshuler DM, Durbin RM, Abecasis GR, Bentley DR, et al. A global reference for human genetic variation. Nature. 2015;526:68–74. doi: 10.1038/nature15393.
    1. Daskapan A, Tran QTD, Cattaneo D, Gervasoni C, Resnati C, Stienstra Y, et al. Darunavir population pharmacokinetic model based on HIV outpatient data. Ther Drug Monit. 2019;41:59–65. doi: 10.1097/FTD.0000000000000576.
    1. Dickinson L, Gurjar R, Stöhr W, Bonora S, Owen A, D’Avolio A, et al. Population pharmacokinetics and pharmacogenetics of ritonavir-boosted darunavir in the presence of raltegravir or tenofovir disoproxil fumarate/emtricitabine in HIV-infected adults and the relationship with virological response: a sub-study of the NEAT001/ANRS143 randomized trial. J Antimicrob Chemother. 2020;75:628–639. doi: 10.1093/jac/dkz479.
    1. Lê MP, Chaix M-L, Chevret S, Bertrand J, Raffi F, Gallien S, et al. Pharmacokinetic modelling of darunavir/ritonavir dose reduction (800/100 to 400/100 mg once daily) in a darunavir/ritonavir-containing regimen in virologically suppressed HIV-infected patients: ANRS 165 DARULIGHT sub-study. J Antimicrob Chemother. 2018;73:2120–2128. doi: 10.1093/jac/dky193.
    1. Ter Heine R, Mulder JW, Van Gorp ECM, Wagenaar JFP, Beijnen JH, Huitema ADR. Intracellular and plasma steady-state pharmacokinetics of raltegravir, darunavir, etravirine and ritonavir in heavily pre-treated HIV-infected patients: plasma and intracellular pharmacokinetics of new antiretroviral drugs. Br J Clin Pharmacol. 2010;69:475–483. doi: 10.1111/j.1365-2125.2010.03634.x.
    1. Colombo S, Buclin T, Decosterd L, Telenti A, Furrer H, Lee B, et al. Orosomucoid (α1-acid glycoprotein) plasma concentration and genetic variants: effects on human immunodeficiency virus protease inhibitor clearance and cellular accumulation. Clin Pharmacol Ther. 2006;80:307–318. doi: 10.1016/j.clpt.2006.06.006.
    1. Belkhir L, Elens L, Zech F, Panin N, Vincent A, Yombi JC, et al. Interaction between darunavir and etravirine is partly mediated by CYP3A5 polymorphism. PLoS One. 2016;11:e0165631. doi: 10.1371/journal.pone.0165631.
    1. Brochot A, Kakuda T, Van De Casteele T, Opsomer M, Tomaka F, Vermeulen A, et al. Model-based once-daily darunavir/ritonavir dosing recommendations in pediatric HIV-1-infected patients aged ≥ 3 to < 12 years. CPT Pharmacometr Syst Pharmacol. 2015;4:406–414. doi: 10.1002/psp4.44.
    1. Metsu D, Toutain PL, Chatelut E, Delobel P, Gandia P. Antiretroviral unbound concentration during pregnancy: piece of interest in the puzzle? J Antimicrob Chemother. 2017;72:2407–2409. doi: 10.1093/jac/dkx176.
    1. Crauwels H, Osiyemi O, Zorrilla C, Bicer C, Brown K. Reduced exposure to darunavir and cobicistat in HIV-1-infected pregnant women receiving a darunavir/cobicistat-based regimen. HIV Med. 2019;20:337–343. doi: 10.1111/hiv.12721.

Source: PubMed

3
購読する