Abdominal aortic aneurysms

Natzi Sakalihasan, Jean-Baptiste Michel, Athanasios Katsargyris, Helena Kuivaniemi, Jean-Olivier Defraigne, Alain Nchimi, Janet T Powell, Koichi Yoshimura, Rebecka Hultgren, Natzi Sakalihasan, Jean-Baptiste Michel, Athanasios Katsargyris, Helena Kuivaniemi, Jean-Olivier Defraigne, Alain Nchimi, Janet T Powell, Koichi Yoshimura, Rebecka Hultgren

Abstract

An abdominal aortic aneurysm (AAA) is a localized dilatation of the infrarenal aorta. AAA is a multifactorial disease, and genetic and environmental factors play a part; smoking, male sex and a positive family history are the most important risk factors, and AAA is most common in men >65 years of age. AAA results from changes in the aortic wall structure, including thinning of the media and adventitia due to the loss of vascular smooth muscle cells and degradation of the extracellular matrix. If the mechanical stress of the blood pressure acting on the wall exceeds the wall strength, the AAA ruptures, causing life-threatening intra-abdominal haemorrhage - the mortality for patients with ruptured AAA is 65-85%. Although AAAs of any size can rupture, the risk of rupture increases with diameter. Intact AAAs are typically asymptomatic, and in settings where screening programmes with ultrasonography are not implemented, most cases are diagnosed incidentally. Modern functional imaging techniques (PET, CT and MRI) may help to assess rupture risk. Elective repair of AAA with open surgery or endovascular aortic repair (EVAR) should be considered to prevent AAA rupture, although the morbidity and mortality associated with both techniques remain non-negligible.

References

    1. Slaney, G. in The Cause and Management of Aneurysm (eds Greenhalgh, R. M., Mannick, J. A.) 1–19 (Saunders, 1990).
    1. Johnston, K. W. et al. Suggested standards for reporting on arterial aneurysms. J. Vasc. Surg. 13, 452–458 (1991).
    1. McGregor, J. C., Pollock, J. G. & Anton, H. C. The value of ultrasonography in the diagnosis of abdominal aortic aneurysm. Scott. Med. J. 20, 133–137 (1975).
    1. Rogers, I. S. et al. Distribution, determinants, and normal reference values of thoracic and abdominal aortic diameters by computed tomography (from the Framingham Heart Study). Am. J. Cardiol. 111, 1510–1516 (2013).
    1. Steinberg, C. R., Archer, M. & Steinberg, I. Measurement of the abdominal aorta after intravenous aortography in health and arteriosclerotic peripheral vascular disease. Am. J. Roentgenol. Radium Ther. Nucl. Med. 95, 703–708 (1965).
    1. Moll, F. L. et al. Management of abdominal aortic aneurysms clinical practice guidelines of the European society for vascular surgery. Eur. J. Vasc. Endovasc. Surg. 41 (Suppl. 1), 1–58 (2011).
    1. Michel, J. B. et al. Novel aspects of the pathogenesis of aneurysms of the abdominal aorta in humans. Cardiovasc. Res. 90, 18–27 (2011).
    1. Biancari, F., Catania, A. & D’Andrea, V. Elective endovascular versus open repair for abdominal aortic aneurysm in patients aged 80 years and older: systematic review and meta-analysis. Eur. J. Vasc. Endovasc. Surg. 42, 571–576 (2011).
    1. Sampson, U. K. A. et al. Estimation of global and regional incidence and prevalence of abdominal aortic aneurysms 1990 to 2010. Glob. Heart 9, 159–170 (2014).
    1. Svensjö, S., Bjorck, M. & Wanhainen, A. Current prevalence of abdominal aortic aneurysm in 70-year-old women. Br. J. Surg. 100, 367–372 (2013).
    1. Oliver-Williams, C. et al. Lessons learned about prevalence and growth rates of abdominal aortic aneurysms from a 25-year ultrasound population screening programme. Br. J. Surg. 105, 68–74 (2018). This study on the population-based screening programme of 81,000 men invited in Gloucestershire, UK, in 1990 shows a decreasing prevalence from 5% to 1.3% in 25 years and demonstrates that 28% of patients with subaneurysmal aortas (25–29 mm) develop large AAAs within 15 years.
    1. Grondal, N., Sogaard, R. & Lindholt, J. S. Baseline prevalence of abdominal aortic aneurysm, peripheral arterial disease and hypertension in men aged 65–74 years from a population screening study (VIVA trial). Br. J. Surg. 102, 902–906 (2015).
    1. Dahl, M. et al. A population-based screening study for cardiovascular diseases and diabetes in Danish postmenopausal women: acceptability and prevalence. BMC Cardiovasc. Disord. 18, 20 (2018).
    1. Zommorodi, S., Leander, K., Roy, J., Steuer, J. & Hultgren, R. Understanding abdominal aortic aneurysm epidemiology: socioeconomic position affects outcome. J. Epidemiol. Community Health. (2018). This nationwide population-based study of >41,000 individuals with intact AAAs or ruptured AAAs in Sweden during 2001–2015 presents contemporary temporal trends on untreated and treated patients with intact and ruptured AAAs. The decreasing numbers of patients with ruptured AAAs in parallel with more patients with diagnosed intact AAAs possibly reflect the introduction of screening in men.
    1. Lederle, F. A., Nelson, D. B. & Joseph, A. M. Smokers’ relative risk for aortic aneurysm compared with other smoking-related diseases: a systematic review. J. Vasc. Surg. 38, 329–334 (2003).
    1. Hultgren, R., Granath, F. & Swedenborg, J. Different disease profiles for women and men with abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 33, 556–560 (2007).
    1. Norman, P. E., Semmens, J. B., Lawrence-Brown, M. M. & Holman, C. D. Long term relative survival after surgery for abdominal aortic aneurysm in western Australia: population based study. BMJ 317, 852–856 (1998).
    1. Kent, K. C. et al. Analysis of risk factors for abdominal aortic aneurysm in a cohort of more than 3 million individuals. J. Vasc. Surg. 52, 539–548 (2010).
    1. Bengtsson, H. & Bergqvist, D. Ruptured abdominal aortic aneurysm: a population-based study. J. Vasc. Surg. 18, 74–80 (1993).
    1. Villard, C. & Hultgren, R. Abdominal aortic aneurysm: sex differences. Maturitas 109, 63–69 (2018).
    1. Hultgren, R., Vishnevskaya, L. & Wahlgren, C. M. Women with abdominal aortic aneurysms have more extensive aortic neck pathology. Ann. Vasc. Surg. 27, 547–552 (2013).
    1. Ulug, P., Sweeting, M. J., von Allmen, R. S., Thompson, S. G. & Powell, J. T. Morphological suitability for endovascular repair, non-intervention rates, and operative mortality in women and men assessed for intact abdominal aortic aneurysm repair: systematic reviews with meta-analysis. Lancet 389, 2482–2491 (2017). This systematic review and meta-analysis of reports from 2009 to 2016 summarize the lower proportion of women eligible for EVAR (34% versus 54%) and the poorer outcomes in women treated for AAA with EVAR and open repair surgery.
    1. Khashram, M., Pitama, S., Williman, J. A., Jones, G. T. & Roake, J. A. Survival disparity following abdominal aortic aneurysm repair highlights inequality in ethnic and socio-economic status. Eur. J. Vasc. Endovasc. Surg. 54, 689–696 (2017).
    1. Deery, S. E. et al. Racial disparities in outcomes after intact abdominal aortic aneurysm repair. J. Vasc. Surg. 67, 1059–1067 (2018).
    1. Ravi, P. et al. Racial/ethnic disparities in perioperative outcomes of major procedures: results from the National Surgical Quality Improvement Program. Ann. Surg. 262, 955–964 (2015).
    1. Williams, T. K. et al. Disparities in outcomes for hispanic patients undergoing endovascular and open abdominal aortic aneurysm repair. Ann. Vasc. Surg. 27, 29–37 (2013).
    1. Bobadilla, J. L. & Kent, K. C. Screening for abdominal aortic aneurysms. Adv. Surg. 46, 101–109 (2012).
    1. Larsson, E., Granath, F., Swedenborg, J. & Hultgren, R. A population-based case-control study of the familial risk of abdominal aortic aneurysm. J. Vasc. Surg. 49, 47–50 (2009).
    1. Sakalihasan, N. et al. Family members of patients with abdominal aortic aneurysms are at increased risk for aneurysms: analysis of 618 probands and their families from the Liege AAA Family Study. Ann. Vasc. Surg. 28, 787–797 (2014).
    1. Biros, E. et al. Differential gene expression in human abdominal aortic aneurysm and aortic occlusive disease. Oncotarget 6, 12984–12996 (2015). In this genomic observational study in human occlusive atherothrombosis of the aorta versus AAA tissue, the authors report that the network of adaptive immunity is overexpressed in AAAs compared with atherothrombotic occlusive tissue. This observation underscores the importance of adventitial immune responses in AAA.
    1. Hernesniemi, J. A., Vanni, V. & Hakala, T. The prevalence of abdominal aortic aneurysm is consistently high among patients with coronary artery disease. J. Vasc. Surg. 62, 232–240 (2015).
    1. Tang, W. et al. Lifetime risk and risk factors for abdominal aortic aneurysm in a 24-year prospective study: the ARIC study (atherosclerosis risk in communities). Arterioscler. Thromb. Vasc. Biol. 36, 2468–2477 (2016).
    1. Lederle, F. A. The strange relationship between diabetes and abdominal aortic aneurysm. Eur. J. Vasc. Endovasc. Surg. 43, 254–256 (2012).
    1. Sweeting, M. J., Thompson, S. G., Brown, L. C. & Powell, J. T. Meta-analysis of individual patient data to examine factors affecting growth and rupture of small abdominal aortic aneurysms. Br. J. Surg. 99, 655–665 (2012).
    1. Golledge, J. et al. Association between metformin prescription and growth rates of abdominal aortic aneurysms. Br. J. Surg. 104, 1486–1493 (2017).
    1. Ulug, P. et al. Meta-analysis of the current prevalence of screen-detected abdominal aortic aneurysm in women. Br. J. Surg. 103, 1097–1104 (2016).
    1. Tweed, J. O., Hsia, S. H., Lutfy, K. & Friedman, T. C. The endocrine effects of nicotine and cigarette smoke. Trends Endocrinol. Metab. 23, 334–342 (2012).
    1. Beckman, J. A. & Creager, M. A. in Vascular Medicine: A Companion to Braunwald’s Heart Disease (eds Creager, M. A., Dzau, V. J., Loscalzo, J.) 560–569 (Elsevier Saunders, 2006).
    1. Kuivaniemi, H. et al. Familial abdominal aortic aneurysms: collection of 233 multiplex families. J. Vasc. Surg. 37, 340–345 (2003).
    1. Majumder, P. P., St Jean, P. L., Ferrell, R. E., Webster, M. W. & Steed, D. L. On the inheritance of abdominal aortic aneurysm. Am. J. Hum. Genet. 48, 164–170 (1991).
    1. Verloes, A., Sakalihasan, N., Koulischer, L. & Limet, R. Aneurysms of the abdominal aorta: familial and genetic aspects in three hundred thirteen pedigrees. J. Vasc. Surg. 21, 646–655 (1995).
    1. Wahlgren, C. M., Larsson, E., Magnusson, P. K., Hultgren, R. & Swedenborg, J. Genetic and environmental contributions to abdominal aortic aneurysm development in a twin population. J. Vasc. Surg. 51, 3–7; discussion 7 (2010).
    1. Joergensen, T. M. et al. High heritability of liability to abdominal aortic aneurysms: a population based twin study. J. Vasc. Surg. 64, 537 (2016).
    1. Akai, A. et al. Family history of aortic aneurysm is an independent risk factor for more rapid growth of small abdominal aortic aneurysms in Japan. J. Vasc. Surg. 61, 287–290 (2015).
    1. van de Luijtgaarden, K. M. et al. Familial abdominal aortic aneurysm is associated with more complications after endovascular aneurysm repair. J. Vasc. Surg. 59, 275–282 (2014).
    1. Ryer, E. J. et al. Patients with familial abdominal aortic aneurysms are at increased risk for endoleak and secondary intervention following elective endovascular aneurysm repair. J. Vasc. Surg. 62, 1119–1124 (2015).
    1. Shibamura, H. et al. Genome scan for familial abdominal aortic aneurysm using sex and family history as covariates suggests genetic heterogeneity and identifies linkage to chromosome 19q13. Circulation 109, 2103–2108 (2004).
    1. Hinterseher, I., Tromp, G. & Kuivaniemi, H. Genes and abdominal aortic aneurysm. Ann. Vasc. Surg. 25, 388–412 (2011).
    1. Jones, G. T. et al. Meta-analysis of genome-wide association studies for abdominal aortic aneurysm identifies four new disease-specific risk loci. Circ. Res. 120, 341–353 (2017). This paper describes the results from the largest genetic association study for AAA with a total of 10,204 AAA cases and 107,766 controls.
    1. Toghill, B. J. et al. SMYD2 promoter DNA methylation is associated with abdominal aortic aneurysm (AAA) and SMYD2 expression in vascular smooth muscle cells. Clin. Epigenet. 10, 29 (2018).
    1. Boddy, A. M. et al. Basic research studies to understand aneurysm disease. Drug News Perspect. 21, 142–148 (2008).
    1. Telomeres Mendelian Randomization Collaboration. Association between telomere length and risk of cancer and non-neoplastic diseases: a Mendelian randomization study. JAMA Oncol. 3, 636–651 (2017).
    1. Chaer, R. A. et al. Synchronous and metachronous thoracic aneurysms in patients with abdominal aortic aneurysms. J. Vasc. Surg. 56, 1261–1265 (2012).
    1. Kuivaniemi, H., Ryer, E. J., Elmore, J. R. & Tromp, G. Understanding the pathogenesis of abdominal aortic aneurysms. Expert Rev. Cardiovasc. Ther. 13, 975–987 (2015).
    1. Brownstein, A. J. et al. Genes associated with thoracic aortic aneurysm and dissection: an update and clinical implications. Aorta 5, 11–20 (2017).
    1. Tromp, G., Weinsheimer, S., Ronkainen, A. & Kuivaniemi, H. Molecular basis and genetic predisposition to intracranial aneurysm. Ann. Med. 46, 597–606 (2014).
    1. Gadson, P. et al. Differential response of mesoderm- and neural crest-derived smooth muscle to TGF-β1: regulation of c-myb and α1 (I) procollagen genes. Exp. Cell Res. 230, 169–180 (1997).
    1. Meijer, C. A. et al. Doxycycline for stabilization of abdominal aortic aneurysms: a randomized trial. Ann. Intern. Med. 159, 815–823 (2013).
    1. Sillesen, H. et al. Randomized clinical trial of mast cell inhibition in patients with a medium-sized abdominal aortic aneurysm. Br. J. Surg. 102, 894–901 (2015).
    1. Brady, A. R., Thompson, S. G., Fowkes, F. G., Greenhalgh, R. M. & Powell, J. T. Abdominal aortic aneurysm expansion: risk factors and time intervals for surveillance. Circulation 110, 16–21 (2004).
    1. Brown, L. C. & Powell, J. T. Risk factors for aneurysm rupture in patients kept under ultrasound surveillance. UK Small Aneurysm Trial Participants. Ann. Surg. 230, 287–289 (1999).
    1. Chaikof, E. L. et al. The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. J. Vasc. Surg. 67, 2–77 (2018).
    1. Lindquist Liljeqvist, M., Hultgren, R., Siika, A., Gasser, T. C. & Roy, J. Gender, smoking, body size, and aneurysm geometry influence the biomechanical rupture risk of abdominal aortic aneurysms as estimated by finite element analysis. J. Vasc. Surg. 65, 1014–1021 (2017).
    1. Iyer, V., Rowbotham, S., Biros, E., Bingley, J. & Golledge, J. A systematic review investigating the association of microRNAs with human abdominal aortic aneurysms. Atherosclerosis 261, 78–89 (2017).
    1. Lindquist Liljeqvist, M., Hultgren, R., Gasser, T. C. & Roy, J. Volume growth of abdominal aortic aneurysms correlates with baseline volume and increasing finite element analysis-derived rupture risk. J. Vasc. Surg. 63, 1434–1442 (2016).
    1. Limet, R., Sakalihassan, N. & Albert, A. Determination of the expansion rate and incidence of rupture of abdominal aortic aneurysms. J. Vasc. Surg. 14, 540–548 (1991). In this study, the authors clearly indicate that the evolution of the disease process can be adequately described by an exponential model and strongly suggest that exponential, rather than the classic linear, expansion rate should be calculated to assess the relative change in the size of an aneurysm. The authors also reveal that rupture of the aneurysm is related not only to the aneurysm size but also to the rate of expansion.
    1. Sakalihasan, N., Delvenne, P., Nusgens, B. V., Limet, R. & Lapiere, C. M. Activated forms of MMP2 and MMP9 in abdominal aortic aneurysms. J. Vasc. Surg. 24, 127–133 (1996).
    1. Sakalihasan, N., Heyeres, A., Nusgens, B. V., Limet, R. & Lapiere, C. M. Modifications of the extracellular matrix of aneurysmal abdominal aortas as a function of their size. Eur. J. Vasc. Surg. 7, 633–637 (1993).
    1. Matyal, R. et al. Impact of gender and body surface area on outcome after abdominal aortic aneurysm repair. Am. J. Surg. 209, 315–323 (2015).
    1. Pasternak, B., Inghammar, M. & Svanström, H. Fluoroquinolone use and risk of aortic aneurysm and dissection: nationwide cohort study. BMJ 360, k678 (2018).
    1. Lederle, F. A. et al. Rupture rate of large abdominal aortic aneurysms in patients refusing or unfit for elective repair. JAMA 287, 2968–2972 (2002). This unique cohort study is based on prospectively collected trial data on patients with AAAs >55 mm who were non-eligible for repair; of the 198 patients enrolled, 45 experienced a ruptured AAA during the study period. Although it has a small sample size, this is one of few studies in the field and shows a close association between increased diameter and rupture risk.
    1. Michel, J. B. Contrasting outcomes of atheroma evolution: intimal accumulation versus medial destruction. Arterioscler. Thromb. Vasc. Biol. 21, 1389–1392 (2001).
    1. Sakalihasan, N., Limet, R. & Defawe, O. D. Abdominal aortic aneurysm. Lancet 365, 1577–1589 (2005).
    1. Folkesson, M. et al. Proteolytically active ADAM10 and ADAM17 carried on membrane microvesicles in human abdominal aortic aneurysms. Thromb. Haemost. 114, 1165–1174 (2015).
    1. Vollmar, J. F., Paes, E., Pauschinger, P., Henze, E. & Friesch, A. Aortic aneurysms as late sequelae of above-knee amputation. Lancet 2, 834–835 (1989). In this study, the authors observe that AAAs are more frequent in patients with above-knee amputations than in a specific control group of men of >65 years of age. The authors also observe that the largest convexity of the AAA is always developed on the opposite side of the amputation. This observation is seminal for the role of reflection waves in the development of AAAs.
    1. Haller, S. J. et al. Intraluminal thrombus is associated with early rupture of abdominal aortic aneurysm. J. Vasc. Surg. 67, 1051–1058 (2018).
    1. Talvitie, M., Lindquist Liljeqvist, M., Siika, A., Hultgren, R. & Roy, J. Localized hyperattenuations in the intraluminal thrombus may predict rupture of abdominal aortic aneurysms. J. Vasc. Interv. Radiol. 29, 144–145 (2018).
    1. Piechota-Polanczyk, A. et al. The abdominal aortic aneurysm and intraluminal thrombus: current concepts of development and treatment. Front. Cardiovasc. Med. 2, 19 (2015).
    1. Touat, Z. et al. Renewal of mural thrombus releases plasma markers and is involved in aortic abdominal aneurysm evolution. Am. J. Pathol. 168, 1022–1030 (2006).
    1. Martinez-Pinna, R. et al. From tissue iron retention to low systemic haemoglobin levels, new pathophysiological biomarkers of human abdominal aortic aneurysm. Thromb. Haemost. 112, 87–95 (2014).
    1. Burillo, E. et al. ApoA-I/HDL-C levels are inversely associated with abdominal aortic aneurysm progression. Thromb. Haemost. 113, 1335–1346 (2015).
    1. Zhang, Y. et al. Aortic aneurysm and chronic disseminated intravascular coagulation: a retrospective study of 235 patients. Front. Med. 11, 62–67 (2017).
    1. Fontaine, V. et al. Role of leukocyte elastase in preventing cellular re-colonization of the mural thrombus. Am. J. Pathol. 164, 2077–2087 (2004).
    1. Dobrin, P. B., Baker, W. H. & Gley, W. C. Elastolytic and collagenolytic studies of arteries. Implications for the mechanical properties of aneurysms. Arch. Surg. 119, 405–409 (1984).
    1. Busuttil, R. W., Rinderbriecht, H., Flesher, A. & Carmack, C. Elastase activity: the role of elastase in aortic aneurysm formation. J. Surg. Res. 32, 214–217 (1982).
    1. Michel, J. B. Anoikis in the cardiovascular system: known and unknown extracellular mediators. Arterioscler. Thromb. Vasc. Biol. 23, 2146–2154 (2003).
    1. Wang, Q. et al. Receptor-interacting protein kinase 3 contributes to abdominal aortic aneurysms via smooth muscle cell necrosis and inflammation. Circ. Res. 116, 600–611 (2015).
    1. Michel, J.-B., Martin-Ventura, J. L., Nicoletti, A. & Ho-Tin-Noé, B. Pathology of human plaque vulnerability: mechanisms and consequences of intraplaque haemorrhages. Atherosclerosis 234, 311–319 (2014).
    1. Houard, X. et al. Topology of the fibrinolytic system within the mural thrombus of human abdominal aortic aneurysms. J. Pathol. 212, 20–28 (2007).
    1. Sangiorgi, G. et al. Plasma levels of metalloproteinases-3 and -9 as markers of successful abdominal aortic aneurysm exclusion after endovascular graft treatment. Circulation 104, I288–I295 (2001).
    1. Lindholt, J. S., Jorgensen, B., Fasting, H. & Henneberg, E. W. Plasma levels of plasmin-antiplasmin-complexes are predictive for small abdominal aortic aneurysms expanding to operation-recommendable sizes. J. Vasc. Surg. 34, 611–615 (2001).
    1. Coscas, R. et al. Free DNA precipitates calcium phosphate apatite crystals in the arterial wall in vivo. Atherosclerosis 259, 60–67 (2017).
    1. Lindholt, J. S. Aneurysmal wall calcification predicts natural history of small abdominal aortic aneurysms. Atherosclerosis 197, 673–678 (2008).
    1. Buijs, R. V. C. et al. Calcification as a risk factor for rupture of abdominal aortic aneurysm. Eur. J. Vasc. Endovasc. Surg. 46, 542–548 (2013).
    1. Michel, J. B. et al. Topological determinants and consequences of adventitial responses to arterial wall injury. Arterioscler. Thromb. Vasc. Biol. 27, 1259–1268 (2007). In this opinion review, the authors explain how the lumen injuries of the arterial wall influence the adventitial response, in relation to the principle of outward hydraulic convection of transformed blood components from the arterial lumen towards the adventitia through the wall.
    1. Ho-Tin-Noé, B. & Michel, J.-B. Initiation of angiogenesis in atherosclerosis: smooth muscle cells as mediators of the angiogenic response to atheroma formation. Trends Cardiovasc. Med. 21, 183–187 (2011).
    1. Delbosc, S. et al. Porphyromonas gingivalis participates in pathogenesis of human abdominal aortic aneurysm by neutrophil activation. Proof of concept in rats. PLOS ONE 6, e18679 (2011).
    1. Clement, M. et al. Control of the T follicular helper–germinal center B cell axis by CD8+ regulatory T cells limits atherosclerosis and tertiary lymphoid organ development. Circulation 131, 560–570 (2015).
    1. Martinez-Pinna, R. et al. Proteomic analysis of intraluminal thrombus highlights complement activation in human abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 33, 2013–2020 (2013).
    1. Crawford, J. L., Stowe, C. L., Safi, H. J., Hallman, C. H. & Crawford, E. S. Inflammatory aneurysms of the aorta. J. Vasc. Surg. 2, 113–124 (1985).
    1. Stella, A. et al. The cellular component in the parietal infiltrate of inflammatory abdominal aortic aneurysms (IAAA). Eur. J. Vasc. Surg. 5, 65–70 (1991).
    1. Kasashima, S. et al. A new clinicopathological entity of IgG4-related inflammatory abdominal aortic aneurysm. J. Vasc. Surg. 49, 1264–1271 (2009).
    1. Raparia, K. et al. Inflammatory aortic aneurysm: possible manifestation of IgG4-related sclerosing disease. Int. J. Clin. Exp. Pathol. 6, 469–475 (2013).
    1. Galis, Z. S. & Khatri, J. J. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ. Res. 90, 251–262 (2002).
    1. Pincemail, J. et al. On the potential increase of the oxidative stress status in patients with abdominal aortic aneurysm. Redox Rep. 17, 139–144 (2012).
    1. Delbosc, S. et al. Impaired high-density lipoprotein anti-oxidant capacity in human abdominal aortic aneurysm. Cardiovasc. Res. 100, 307–315 (2013).
    1. DiDonato, J. A. et al. Function and distribution of apolipoprotein A1 in the artery wall are markedly distinct from those in plasma. Circulation 128, 1644–1655 (2013). In this experimental study, the authors report how HDL macromolecules are modified by their convection through a highly oxidative arterial wall (atherothrombosis), leading to oxidation of APOA1 and its dissociation from its lipid cargo. In this context, free APOA1 is quickly filtered by the glomeruli and metabolized in the kidney, leading to a potential decrease in circulating HDL as observed in AAAs.
    1. Ashton, H. A. et al. Fifteen-year follow-up of a randomized clinical trial of ultrasonographic screening for abdominal aortic aneurysms. Br. J. Surg. 94, 696–701 (2007).
    1. Powell, J. T. et al. Final 12-year follow-up of surgery versus surveillance in the UK Small Aneurysm Trial. Br. J. Surg. 94, 702–708 (2007). The landmark study, the UK-Small aneurysm trial, randomizes 1,090 patients with AAA <55 mm to surveillance or treatment in 1991–1995. The 12-year follow-up confirms that there are no benefits in long-term survival in early treatment of small aneurysms versus surveillance and timely treatment when AAA expands above 55 mm.
    1. Wanhainen, A. et al. Outcome of the Swedish Nationwide Abdominal Aortic Aneurysm Screening Program. Circulation 134, 1141–1148 (2016).
    1. Fielding, J. W., Black, J., Ashton, F., Slaney, G. & Campbell, D. J. Diagnosis and management of 528 abdominal aortic aneurysms. BMJ 283, 355–359 (1981).
    1. Marston, W. A., Ahlquist, R., Johnson Jr. G. & Meyer, A. A. Misdiagnosis of ruptured abdominal aortic aneurysms. J. Vasc. Surg. 16, 17–22 (1992).
    1. Wilmink, A. B. M., Forshaw, M., Quick, C. R. G., Hubbard, C. S. & Day, N. E. Accuracy of serial screening for abdominal aortic aneurysms by ultrasound. J. Med. Screen 9, 125–127 (2002).
    1. Rudd, J. H. The role of 18F-FDG PET in aortic dissection. J. Nucl. Med. 51, 667–668 (2010).
    1. Barwick, T. D. et al. 18F-FDG PET-CT uptake is a feature of both normal diameter and aneurysmal aortic wall and is not related to aneurysm size. Eur. J. Nucl. Med. Mol. Imaging 41, 2310–2318 (2014).
    1. Marini, C. et al. Direct relationship between cell density and FDG uptake in asymptomatic aortic aneurysm close to surgical threshold: an in vivo and in vitro study. Eur. J. Nucl. Med. Mol. Imaging 39, 91–101 (2012).
    1. Palombo, D. et al. A positron emission tomography/computed tomography (PET/CT) evaluation of asymptomatic abdominal aortic aneurysms: another point of view. Ann. Vasc. Surg. 26, 491–499 (2012).
    1. Tegler, G., Ericson, K., Sorensen, J., Bjorck, M. & Wanhainen, A. Inflammation in the walls of asymptomatic abdominal aortic aneurysms is not associated with increased metabolic activity detectable by 18-fluorodeoxglucose positron-emission tomography. J. Vasc. Surg. 56, 802–807 (2012).
    1. Sakalihasan, N. et al. Positron emission tomography (PET) evaluation of abdominal aortic aneurysm (AAA). Eur. J. Vasc. Endovasc. Surg. 23, 431–436 (2002). This is the first pilot study on the functional imaging of metabolic activity in the aneurysmal aortic wall.
    1. Defawe, O. D., Hustinx, R., Defraigne, J. O., Limet, R. & Sakalihasan, N. Distribution of F-18 fluorodeoxyglucose (F-18 FDG) in abdominal aortic aneurysm: high accumulation in macrophages seen on PET imaging and immunohistology. Clin. Nucl. Med. 30, 340–341 (2005).
    1. Truijers, M., Kurvers, H. A., Bredie, S. J., Oyen, W. J. & Blankensteijn, J. D. In vivo imaging of abdominal aortic aneurysms: increased FDG uptake suggests inflammation in the aneurysm wall. J. Endovasc. Ther. 15, 462–467 (2008).
    1. Kotze, C. W. et al. Increased metabolic activity in abdominal aortic aneurysm detected by 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT). Eur. J. Vasc. Endovasc. Surg. 38, 93–99 (2009).
    1. Sarda-Mantel, L. et al. 99mTc-annexin-V functional imaging of luminal thrombus activity in abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 26, 2153–2159 (2006).
    1. Reeps, C. et al. Quantitative assessment of glucose metabolism in the vessel wall of abdominal aortic aneurysms: correlation with histology and role of partial volume correction. Int. J. Cardiovasc. Imaging 29, 505–512 (2013).
    1. Courtois, A. et al. 18F-FDG uptake assessed by PET/CT in abdominal aortic aneurysms is associated with cellular and molecular alterations prefacing wall deterioration and rupture. J. Nucl. Med. 54, 1740–1747 (2013).
    1. Nchimi, A. et al. MR imaging of iron phagocytosis in intraluminal thrombi of abdominal aortic aneurysms in humans. Radiology 254, 973–981 (2010).
    1. Emeto, T. I. et al. Use of nanoparticles as contrast agents for the functional and molecular imaging of abdominal aortic aneurysm. Front. Cardiovasc. Med. 4, 16 (2017). This article provides a comprehensive overview of all imaging techniques and agents that are currently in use or being considered to evaluate the risk of rupture in AAA.
    1. Nchimi, A., Couvreur, T., Meunier, B. & Sakalihasan, N. Magnetic resonance imaging findings in a positron emission tomography-positive thoracic aortic aneurysm. Aorta 1, 198–201 (2013).
    1. Nguyen, V. L. et al. Quantification of abdominal aortic aneurysm wall enhancement with dynamic contrast-enhanced MRI: feasibility, reproducibility, and initial experience. J. Magn. Reson. Imaging 39, 1449–1456 (2014).
    1. Nguyen, V. L. et al. Suitability of pharmacokinetic models for dynamic contrast-enhanced MRI of abdominal aortic aneurysm vessel wall: a comparison. PLOS ONE 8, e75173 (2013).
    1. Nchimi, A. et al. Multimodality imaging assessment of the deleterious role of the intraluminal thrombus on the growth of abdominal aortic aneurysm in a rat model. Eur. Radiol. 26, 2378–2386 (2016).
    1. English, S. J. et al. Increased 18F-FDG uptake is predictive of rupture in a novel rat abdominal aortic aneurysm rupture model. Ann. Surg. 261, 395–404 (2015). This study shows that rupture occurs focally in a rat model of AAA and that the point of rupture is detectable by an increased metabolic activity on 18 F-FDG–PET.
    1. Timur, U. T. et al. 18)F-FDG PET scanning of abdominal aortic aneurysms and correlation with molecular characteristics: a systematic review. EJNMMI Res. 5, 76 (2015).
    1. Lee, H. et al. Correlation of FDG PET/CT findings with long-term growth and clinical course of abdominal aortic aneurysm. Nucl. Med. Mol. Imaging 52, 46–52 (2018).
    1. Xu, X. Y. et al. High levels of 18F-FDG uptake in aortic aneurysm wall are associated with high wall stress. Eur. J. Vasc. Endovasc. Surg. 39, 295–301 (2010).
    1. Khosla, S. et al. Meta-analysis of peak wall stress in ruptured, symptomatic and intact abdominal aortic aneurysms. Br. J. Surg. 101, 1350–1357 (2014).
    1. Vande Geest, J. P., Schmidt, D. E., Sacks, M. S. & Vorp, D. A. The effects of anisotropy on the stress analyses of patient-specific abdominal aortic aneurysms. Ann. Biomed. Eng. 36, 921–932 (2008).
    1. Vande Geest, J. P., Di Martino, E. S., Bohra, A., Makaroun, M. S. & Vorp, D. A. A biomechanics-based rupture potential index for abdominal aortic aneurysm risk assessment: demonstrative application. Ann. NY Acad. Sci. 1085, 11–21 (2006).
    1. Speelman, L. et al. The influence of wall stress on AAA growth and biomarkers. Eur. J. Vasc. Endovasc. Surg. 39, 410–416 (2010).
    1. Li, Z. Y. et al. Association between aneurysm shoulder stress and abdominal aortic aneurysm expansion: a longitudinal follow-up study. Circulation 122, 1815–1822 (2010).
    1. Erhart, P. et al. Prediction of rupture sites in abdominal aortic aneurysms after finite element analysis. J. Endovasc. Ther. 23, 115–120 (2016).
    1. Barrett, H. E. et al. On the influence of wall calcification and intraluminal thrombus on prediction of abdominal aortic aneurysm rupture. J. Vasc. Surg. 67, 1234–1246 (2017).
    1. Chung, T. K., da Silva, E. S. & Raghavan, S. M. L. Does elevated wall tension cause aortic aneurysm rupture? Investigation using a subject-specific heterogeneous model. J. Biomech. 64, 164–171 (2017).
    1. Erhart, P. et al. Finite element analysis of abdominal aortic aneurysms: predicted rupture risk correlates with aortic wall histology in individual patients. J. Endovasc. Ther. 21, 556–564 (2014).
    1. Malkawi, A. et al. Increased expression of lamin A/C correlate with regions of high wall stress in abdominal aortic aneurysms. Aorta 3, 152–166 (2015).
    1. Georgakarakos, E., Ioannou, C., Kostas, T. & Katsamouris, A. Inflammatory response to aortic aneurysm intraluminal thrombus may cause increased 18F-FDG uptake at sites not associated with high wall stress: comment on “high levels of 18F-FDG uptake in aortic aneurysm wall are associated with high wall stress”. Eur. J. Vasc. Endovasc. Surg. 39, 795; author reply 795–796 (2010).
    1. Nchimi, A. et al. Multifactorial relationship between 18F-fluoro-deoxy-glucose positron emission tomography signaling and biomechanical properties in unruptured aortic aneurysms. Circ. Cardiovasc. Imaging 7, 82–91 (2014). In this study, 18 F-FDG uptake on PET and wall-stress estimates are shown to be potential predictors of events in patients with AAAs. Both techniques correlate, albeit weakly, hinting at potentially complementary approaches to the risk of rupture.
    1. Conlisk, N. et al. Exploring the biological and mechanical properties of abdominal aortic aneurysms using USPIO MRI and peak tissue stress: a combined clinical and finite element study. J. Cardiovasc. Transl Res. 10, 489–498 (2017).
    1. Glover, M. J., Kim, L. G., Sweeting, M. J., Thompson, S. G. & Buxton, M. J. Cost-effectiveness of the National Health Service Abdominal Aortic Aneurysm Screening Programme in England. Br. J. Surg. 101, 976–982 (2014).
    1. Svensjö, S., Mani, K., Björck, M., Lundkvist, J. & Wanhainen, A. Screening for abdominal aortic aneurysm in 65-year-old men remains cost-effective with contemporary epidemiology and management. Eur. J. Vasc. Endovasc. Surg. 47, 357–365 (2014).
    1. Lederle, F. A. The last (randomized) word on screening for abdominal aortic aneurysms. JAMA Intern. Med. 176, 1767–1768 (2016).
    1. Johansson, M. et al. Benefits and harms of screening men for abdominal aortic aneurysm in Sweden: a registry-based cohort study. Lancet 391, 2441–2447 (2018).
    1. IMPROVE Trial Investigators. Comparative clinical effectiveness and cost effectiveness of endovascular strategy v open repair for ruptured abdominal aortic aneurysm: three year results of the IMPROVE randomised trial. BMJ 359, j4859 (2017). This randomized prospective trial of 613 patients evaluates the possible effects on the outcome and cost-effectiveness of EVAR versus open repair surgery in patients admitted with suspected ruptured AAAs. The mortality at 3 years in EVAR-treated patients is lower than that in patients who received open repair surgery (42% versus 54%, OR 0.62). QOL is better in patients who receive EVAR, and length of hospital stay is lower, resulting in lower average costs than in open repair surgery.
    1. Campbell, B., Wilkinson, J., Marlow, M. & Sheldon, M. Long-term evidence for new high-risk medical devices. Lancet 391, 2194–2195 (2018).
    1. Nordanstig, J. The Swedvasc Annual Report 2014 [Swedish]. Uppsala Clinical Research Center (2015).
    1. Ozdemir, B. A. et al. Association of hospital structures with mortality from ruptured abdominal aortic aneurysm. Br. J. Surg. 102, 516–524 (2015).
    1. Karthikesalingam, A. et al. Thresholds for abdominal aortic aneurysm repair in England and the United States. N. Engl. J. Med. 375, 2051–2059 (2016).
    1. Beck, A. W. et al. Variations in abdominal aortic aneurysm care: a report from the International Consortium of Vascular Registries. Circulation 134, 1948–1958 (2016).
    1. Williamson, A. J. & Babrowski, T. Current endovascular management of complex pararenal aneurysms. J. Cardiovasc. Surg. 59, 336–341 (2018).
    1. Katsargyris, A. & Verhoeven, E. L. Endovascular strategies for infrarenal aneurysms with short necks. J. Cardiovasc. Surg. 54 (Suppl. 1), 21–26 (2013).
    1. AbuRahma, A. F. et al. Aortic neck anatomic features and predictors of outcomes in endovascular repair of abdominal aortic aneurysms following vs not following instructions for use. J. Am. Coll. Surg. 222, 579–589 (2016).
    1. Katsargyris, A., Oikonomou, K., Klonaris, C., Topel, I. & Verhoeven, E. L. Comparison of outcomes with open, fenestrated, and chimney graft repair of juxtarenal aneurysms: are we ready for a paradigm shift? J. Endovasc. Ther. 20, 159–169 (2013).
    1. Böckler, D. et al. Multicenter Nellix EndoVascular Aneurysm Sealing system experience in aneurysm sac sealing. J. Vasc. Surg. 62, 290–298 (2015).
    1. Zerwes, S. & Hyhlik-Dürr, A. Commentary: polymerization and its similarity with building solid evidence. J. Endovasc. Ther. 25, 207–208 (2018).
    1. Thompson, M. M. et al. Endovascular aneurysm sealing: early and midterm results from the EVAS FORWARD global registry. J. Endovasc. Ther. 23, 685–692 (2016).
    1. Buck, D. B., van Herwaarden, J. A., Schermerhorn, M. L. & Moll, F. L. Endovascular treatment of abdominal aortic aneurysms. Nat. Rev. Cardiol. 11, 112–123 (2014).
    1. Prinssen, M. et al. A randomized trial comparing conventional and endovascular repair of abdominal aortic aneurysms. N. Engl. J. Med. 351, 1607–1618 (2004).
    1. Blankensteijn, J. D. et al. Two-year outcomes after conventional or endovascular repair of abdominal aortic aneurysms. N. Engl. J. Med. 352, 2398–2405 (2005).
    1. De Bruin, J. L. et al. Long-term outcome of open or endovascular repair of abdominal aortic aneurysm. N. Engl. J. Med. 362, 1881–1889 (2010).
    1. EVAR Trial Participants. Comparison of endovascular aneurysm repair with open repair in patients with abdominal aortic aneurysm (EVAR trial 1), 30-day operative mortality results: randomised controlled trial. Lancet 364, 843–848 (2004).
    1. United Kingdom EVAR Trial Investigators. Endovascular repair of aortic aneurysm in patients physically ineligible for open repair. N. Engl. J. Med. 362, 1872–1880 (2010).
    1. Lederle, F. A. et al. Outcomes following endovascular versus open repair of abdominal aortic aneurysm: a randomized trial. JAMA 302, 1535–1542 (2009).
    1. EVAR Trial Participants. Endovascular versus open repair of abdominal aortic aneurysm in 15-years’ follow-up of the UK endovascular aneurysm repair trial 1 (EVAR trial 1): a randomised controlled trial. Lancet 388, 2366–2374 (2016).
    1. EVAR Trial Participants. Endovascular aneurysm repair versus open repair in patients with abdominal aortic aneurysm (EVAR trial 1): randomised controlled trial. Lancet 365, 2179–2186 (2005).
    1. Becquemin, J. P. et al. A randomized controlled trial of endovascular aneurysm repair versus open surgery for abdominal aortic aneurysms in low- to moderate-risk patients. J. Vasc. Surg. 53, 1167–1173 (2011).
    1. Berg, P., Kaufmann, D., van Marrewijk, C. J. & Buth, J. Spinal cord ischaemia after stent-graft treatment for infra-renal abdominal aortic aneurysms. Analysis of the Eurostar database. Eur. J. Vasc. Endovasc. Surg. 22, 342–347 (2001).
    1. Szilagyi, D. E., Hageman, J. H., Smith, R. F. & Elliott, J. P. Spinal cord damage in surgery of the abdominal aorta. Surgery 83, 38–56 (1978).
    1. Regnier, P. et al. Sexual dysfunction after abdominal aortic aneurysm surgical repair: current knowledge and future directions. Eur. J. Vasc. Endovasc. Surg. 55, 267–280 (2018).
    1. Powell, J. T. et al. Meta-analysis of individual-patient data from EVAR-1, DREAM, OVER and ACE trials comparing outcomes of endovascular or open repair for abdominal aortic aneurysm over 5 years. Br. J. Surg. 104, 166–178 (2017).
    1. Golledge, J. & Powell, J. T. Medical management of abdominal aortic aneurysm. Eur. J. Vasc. Endovasc. Surg. 34, 267–273 (2007).
    1. Baxter, B. T., Terrin, M. C. & Dalman, R. L. Medical management of small abdominal aortic aneurysms. Circulation 117, 1883–1889 (2008).
    1. Yoshimura, K. et al. Current status and perspectives on pharmacologic therapy for abdominal aortic aneurysm. Curr. Drug Targets 19, 1265–1275 (2017). This article provides new insights into the pharmacological management of AAAs.
    1. Golledge, J., Norman, P. E., Murphy, M. P. & Dalman, R. L. Challenges and opportunities in limiting abdominal aortic aneurysm growth. J. Vasc. Surg. 65, 225–233 (2017).
    1. Sénémaud, J. et al. Translational relevance and recent advances of animal models of abdominal aortic aneurysm. Arterioscler. Thromb. Vasc. Biol. 37, 401–410 (2017).
    1. Yoshimura, K. et al. Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase. Nat. Med. 11, 1330–1338 (2005).
    1. Huffman, M. D. et al. Functional importance of connective tissue repair during the development of experimental abdominal aortic aneurysms. Surgery 128, 429–438 (2000).
    1. Allaire, E. et al. Vascular smooth muscle cell endovascular therapy stabilizes already developed aneurysms in a model of aortic injury elicited by inflammation and proteolysis. Ann. Surg. 239, 417–427 (2004).
    1. Schneider, F. et al. Bone marrow mesenchymal stem cells stabilize already-formed aortic aneurysms more efficiently than vascular smooth muscle cells in a rat model. Eur. J. Vasc. Endovasc. Surg. 45, 666–672 (2013).
    1. Yamawaki-Ogata, A. et al. Therapeutic potential of bone marrow-derived mesenchymal stem cells in formed aortic aneurysms of a mouse model. Eur. J. Cardiothorac. Surg. 45, e156–e165 (2014).
    1. Brophy, C., Tilson, J. E. & Tilson, M. D. Propranolol delays the formation of aneurysms in the male blotchy mouse. J. Surg. Res. 44, 687–689 (1988).
    1. Juvonen, J. et al. Demonstration of Chlamydia pneumoniae in the walls of abdominal aortic aneurysms. J. Vasc. Surg. 25, 499–505 (1997).
    1. Mosorin, M. et al. Use of doxycycline to decrease the growth rate of abdominal aortic aneurysms: a randomized, double-blind, placebo-controlled pilot study. J. Vasc. Surg. 34, 606–610 (2001).
    1. Kokje, V. B., Hamming, J. F. & Lindeman, J. H. Editor’s choice — pharmaceutical management of small abdominal aortic aneurysms: a systematic review of the clinical evidence. Eur. J. Vasc. Endovasc. Surg. 50, 702–713 (2015).
    1. Chaikof, E. L. et al. The care of patients with an abdominal aortic aneurysm: the Society for Vascular Surgery practice guidelines. J. Vasc. Surg. 50 (Suppl. 4), 2–49 (2009).
    1. ESC Committee for Practice Guidelines. 2014 ESC guidelines on the diagnosis and treatment of aortic diseases: document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. Eur. Heart J. 35, 2873–2926 (2014).
    1. UK Aneurysm Growth Study Investigators. Impact of abdominal aortic aneurysm screening on quality of life. Br. J. Surg. 105, 203–208 (2018).
    1. Howell, S. J. Abdominal aortic aneurysm repair in the United Kingdom: an exemplar for the role of anaesthetists in perioperative medicine. Br. J. Anaesth. 119, i15–i22 (2017).
    1. Soulez, G. et al. Pain and quality of life assessment after endovascular versus open repair of abdominal aortic aneurysms in patients at low risk. J. Vasc. Interv. Radiol. 16, 1093–1100 (2005).
    1. Reise, J. A. et al. Patient preference for surgical method of abdominal aortic aneurysm repair: postal survey. Eur. J. Vasc. Endovasc. Surg. 39, 55–61 (2010).
    1. Kolh, P. Quality of life after abdominal aortic aneurysm repair: similar long-term results with endovascular and open techniques. Eur. J. Vasc. Endovasc. Surg. 36, 290–291 (2008).
    1. Aljabri, B. et al. Patient-reported quality of life after abdominal aortic aneurysm surgery: a prospective comparison of endovascular and open repair. J. Vasc. Surg. 44, 1182–1187 (2006).
    1. Peach, G., Holt, P., Loftus, I., Thompson, M. M. & Hinchliffe, R. Questions remain about quality of life after abdominal aortic aneurysm repair. J. Vasc. Surg. 56, 520–527 (2012).
    1. Jones, S. M. et al. Type IIIb endoleak is an important cause of failure following endovascular aneurysm repair. J. Endovasc. Ther. 21, 723–727 (2014).
    1. de Bruin, J. L. et al. Quality of life from a randomized trial of open and endovascular repair for abdominal aortic aneurysm. Br. J. Surg. 103, 995–1002 (2016).
    1. Coughlin, P. A. et al. Meta-analysis of prospective trials determining the short- and mid-term effect of elective open and endovascular repair of abdominal aortic aneurysms on quality of life. Br. J. Surg. 100, 448–455 (2013).
    1. Kayssi, A., DeBord Smith, A., Roche-Nagle, G. & Nguyen, L. L. Health-related quality-of-life outcomes after open versus endovascular abdominal aortic aneurysm repair. J. Vasc. Surg. 62, 491–498 (2015).
    1. Sidloff, D. A. et al. Sex differences in mortality after abdominal aortic aneurysm repair in the UK. Br. J. Surg. 104, 1656–1664 (2017).
    1. Trenner, M., Kuehnl, A., Reutersberg, B., Salvermoser, M. & Eckstein, H.-H. Nationwide analysis of risk factors for in-hospital mortality in patients undergoing abdominal aortic aneurysm repair. Br. J. Surg. 105, 379–387 (2018).
    1. Daugherty, A. et al. Recommendation on design, execution, and reporting of animal atherosclerosis studies: a scientific statement from the American Heart Association. Arterioscler. Thromb. Vasc. Biol. 37, e131–e157 (2017).
    1. Stackelberg, O., Bjorck, M., Larsson, S. C., Orsini, N. & Wolk, A. Fruit and vegetable consumption with risk of abdominal aortic aneurysm. Circulation 128, 795–802 (2013).
    1. Stackelberg, O. et al. Obesity and abdominal aortic aneurysm. Br. J. Surg. 100, 360–366 (2013).
    1. Lu, G. et al. A novel chronic advanced stage abdominal aortic aneurysm murine model. J. Vasc. Surg. 66, 232–242 (2017).
    1. Martinod, K. & Wagner, D. D. Thrombosis: tangled up in NETs. Blood 123, 2768–2776 (2014).
    1. Kurvers, H. et al. Discontinuous, staccato growth of abdominal aortic aneurysms. J. Am. Coll. Surg. 199, 709–715 (2004).
    1. Woon, C. Y. L., Sebastian, M. G., Tay, K.-H. & Tan, S.-G. Extra-anatomic revascularization and aortic exclusion for mycotic aneurysms of the infrarenal aorta and iliac arteries in an Asian population. Am. J. Surg. 195, 66–72 (2008).
    1. Kan, C. D., Lee, H. L. & Yang, Y. J. Outcome after endovascular stent graft treatment for mycotic aortic aneurysm: a systematic review. J. Vasc. Surg. 46, 906–912 (2007).
    1. Sorelius, K., Mani, K., Bjorck, M. & Wanhainen, A. Endovascular treatment of mycotic aortic aneurysms: a paradigm shift. J. Cardiovasc. Surg. 58, 870–874 (2017).
    1. Lin, C. H. & Hsu, R. B. Primary infected aortic aneurysm: clinical presentation, pathogen, and outcome. Acta Cardiol. Sin. 30, 514–521 (2014).
    1. Oderich, G. S. et al. Infected aortic aneurysms: aggressive presentation, complicated early outcome, but durable results. J. Vasc. Surg. 34, 900–908 (2001).
    1. Kan, C. D., Yen, H. T., Kan, C. B. & Yang, Y. J. The feasibility of endovascular aortic repair strategy in treating infected aortic aneurysms. J. Vasc. Surg. 55, 55–60 (2012).
    1. Sorelius, K. et al. Endovascular treatment of mycotic aortic aneurysms: a European multicenter study. Circulation 130, 2136–2142 (2014).
    1. Hsu, R. B., Chang, C. I., Wu, I. H. & Lin, F. Y. Selective medical treatment of infected aneurysms of the aorta in high risk patients. J. Vasc. Surg. 49, 66–70 (2009).
    1. Vallejo, N. et al. The changing management of primary mycotic aortic aneurysms. J. Vasc. Surg. 54, 334–340 (2011).
    1. Kan, C. D., Lee, H. L., Luo, C. Y. & Yang, Y. J. The efficacy of aortic stent grafts in the management of mycotic abdominal aortic aneurysm-institute case management with systemic literature comparison. Ann. Vasc. Surg. 24, 433–440 (2010).
    1. Sorelius, K. et al. Nationwide study of the treatment of mycotic abdominal aortic aneurysms comparing open and endovascular repair. Circulation 134, 1822–1832 (2016).
    1. Makrygiannis, G. et al. Extending abdominal aortic aneurysm detection to older age groups: preliminary results from the liège screening programme. Ann. Vasc. Surg. 36, 55–63 (2016).
    1. Nienaber, C. A. et al. Aortic dissection. Nat. Rev. Dis. Primers 2, 16053 (2003).
    1. Meilhac, O. et al. Pericellular plasmin induces smooth muscle cell anoikis. FASEB J. 17, 1301–1303 (2003).
    1. Lindquist Liljeqvist, M. et al. Neutrophil elastase-derived fibrin degradation products indicate presence of abdominal aortic aneurysms and correlate with intraluminal thrombus volume. Thromb. Haemost. 118, 329–339 (2018).
    1. Folkesson, M. et al. Presence of NGAL/MMP-9 complexes in human abdominal aortic aneurysms. Thromb. Haemost. 98, 427–433 (2007).
    1. Mayranpaa, M. I. et al. Mast cells associate with neovessels in the media and adventitia of abdominal aortic aneurysms. J. Vasc. Surg. 50, 386–388 (2009).
    1. Dubost, C., Allary, M. & Oeconomos, N. Resection of an aneurysm of the abdominal aorta: reestablishment of the continuity by a preserved human arterial graft, with result after five months. AMA Arch. Surg. 64, 405–408 (1952).
    1. Schafer, P. W. & Hardin, C. A. The use of temporary polythene shunts to permit occlusion, resection, and frozen homologus graft replacement of vital vessel segments; a laboratory and clinical study. Surgery 31, 186–199 (1952).
    1. DeBakey, M. E. & Cooley, D. A. Surgical treatment of aneurysm of abdominal aorta by resection and restoration of continuity with homograft. Surg. Gynecol. Obstet. 97, 257–266 (1953).
    1. Volodos, N. L. The first steps in endovascular aortic repair: how it all began. J. Endovasc. Ther. 20 (Suppl. 1), 3–23 (2013).
    1. Parodi, J. C., Palmaz, J. C. & Barone, H. D. Transfemoral intraluminal graft implantation for abdominal aortic aneurysms. Ann. Vasc. Surg. 5, 491–499 (1991).
    1. Feezor, R. J. et al. Perioperative differences between endovascular repair of thoracic and abdominal aortic diseases. J. Vasc. Surg. 45, 86–89 (2007).
    1. Resch, T. & Dias, N. Treatment of endoleaks: techniques and outcome. J. Cardiovasc. Surg. 53 (Suppl. 1), 91–99 (2012).
    1. Wu, Z., Xu, L., Qu, L. & Raithel, D. Seventeen years’ experience of late open surgical conversion after failed endovascular abdominal aortic aneurysm repair with 13 variant devices. Cardiovasc. Interv. Radiol. 38, 53–59 (2015).
    1. Klonaris, C. et al. Late open conversion after failed endovascular aortic aneurysm repair. J. Vasc. Surg. 59, 291–297 (2014).
    1. Conrad, M. F. et al. Secondary intervention after endovascular abdominal aortic aneurysm repair. Ann. Surg. 250, 383–389 (2009).
    1. Katsargyris, A. et al. Fenestrated stent-grafts for salvage of prior endovascular abdominal aortic aneurysm repair. Eur. J. Vasc. Endovasc. Surg. 46, 49–56 (2013).
    1. Adam, D. J., Fitridge, R. A., Berce, M., Hartley, D. E. & Anderson, J. L. Salvage of failed prior endovascular abdominal aortic aneurysm repair with fenestrated endovascular stent grafts. J. Vasc. Surg. 44, 1341–1344 (2006).
    1. Veith, F. J. et al. Nature and significance of endoleaks and endotension: summary of opinions expressed at an international conference. J. Vasc. Surg. 35, 1029–1035 (2002).
    1. Monastiriotis, S. et al. Evolution of type II endoleaks based on different ultrasound-identified patterns. J. Vasc. Surg. 67, 1074–1081 (2018).
    1. Pineda, D. M., Calligaro, K. D., Tyagi, S., Troutman, D. A. & Dougherty, M. J. Late type II endoleaks after endovascular aneurysm repair require intervention more frequently than early type II endoleaks. J. Vasc. Surg. 67, 449–452 (2018).
    1. Liaw, J. V. P. et al. Update: complications and management of infrarenal EVAR. Eur. J. Radiol. 71, 541–551 (2009).
    1. Maleux, G. et al. Incidence, etiology, and management of type III endoleak after endovascular aortic repair. J. Vasc. Surg. 66, 1056–1064 (2017).
    1. Zarins, C. K. et al. Stent graft migration after endovascular aneurysm repair: importance of proximal fixation. J. Vasc. Surg. 38, 1264–1272; discussion 1272 (2003).
    1. Katsargyris, A., Oikonomou, K., Nagel, S., Giannakopoulos, T. & Lg Verhoeven, E. Endostaples: are they the solution to graft migration and type I endoleaks? J. Cardiovasc. Surg. 56, 363–368 (2015).
    1. Picel, A. C. & Kansal, N. Essentials of endovascular abdominal aortic aneurysm repair imaging: postprocedure surveillance and complications. AJR Am. J. Roentgenol. 203, W358–W372 (2014).
    1. François, F., Picard, E., Nicaud, P., Albat, B. & Thévenet, A. Femorofemoral crossover bypass for noninfective complications of aortoiliac surgery. Ann. Vasc. Surg. 5, 46–49 (1991).
    1. Kilic, A. et al. Management of infected vascular grafts. Vasc. Med. 21, 53–60 (2016).
    1. Debus, E. S. & Diener, H. Reconstructions following graft infection: an unsolved challenge. Eur. J. Vasc. Endovasc. Surg. 53, 151–152 (2017).
    1. Klonaris, C. et al. Neoaortoiliac system procedure to treat infected aortic grafts. Ann. Vasc. Surg. 44, 419.e19–419.e25 (2017).
    1. Schanzer, A. et al. Predictors of abdominal aortic aneurysm sac enlargement after endovascular repair. Circulation 123, 2848–2855 (2011).
    1. Antoniou, G. A. et al. Late rupture of abdominal aortic aneurysm after previous endovascular repair: a systematic review and meta-analysis. J. Endovasc. Ther. 22, 734–744 (2015).
    1. Hallett, J. W. et al. Graft-related complications after abdominal aortic aneurysm repair: reassurance from a 36-year population-based experience. J. Vasc. Surg. 25, 277–284; discussion 285–286 (1997).
    1. Locati, P., Socrate, A. M. & Costantini, E. Paraanastomotic aneurysms of the abdominal aorta: a 15-year experience review. Cardiovasc. Surg. 8, 274–279 (2000).
    1. Allen, R. C., Schneider, J., Longenecker, L., Smith, R. B. 3rd & Lumsden, A. B. Paraanastomotic aneurysms of the abdominal aorta. J. Vasc. Surg. 18, 422–424 (1993).
    1. van Herwaarden, J. A. et al. Endovascular repair of paraanastomotic aneurysms after previous open aortic prosthetic reconstruction. Ann. Vasc. Surg. 18, 280–286 (2004).
    1. Bosanquet, D. C. et al. Systematic review and meta-regression of factors affecting midline incisional hernia rates: analysis of 14,618 patients. PLOS ONE 10, e0138745 (2015).

Source: PubMed

3
購読する