Zinc as a Gatekeeper of Immune Function

Inga Wessels, Martina Maywald, Lothar Rink, Inga Wessels, Martina Maywald, Lothar Rink

Abstract

After the discovery of zinc deficiency in the 1960s, it soon became clear that zinc is essential for the function of the immune system. Zinc ions are involved in regulating intracellular signaling pathways in innate and adaptive immune cells. Zinc homeostasis is largely controlled via the expression and action of zinc "importers" (ZIP 1-14), zinc "exporters" (ZnT 1-10), and zinc-binding proteins. Anti-inflammatory and anti-oxidant properties of zinc have long been documented, however, underlying mechanisms are still not entirely clear. Here, we report molecular mechanisms underlying the development of a pro-inflammatory phenotype during zinc deficiency. Furthermore, we describe links between altered zinc homeostasis and disease development. Consequently, the benefits of zinc supplementation for a malfunctioning immune system become clear. This article will focus on underlying mechanisms responsible for the regulation of cellular signaling by alterations in zinc homeostasis. Effects of fast zinc flux, intermediate "zinc waves", and late homeostatic zinc signals will be discriminated. Description of zinc homeostasis-related effects on the activation of key signaling molecules, as well as on epigenetic modifications, are included to emphasize the role of zinc as a gatekeeper of immune function.

Keywords: homeostatic zinc signal; immune function; signaling pathways; zinc deficiency; zinc flux; zinc wave.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Figure 1
Figure 1
Different Types of Zinc Signals: (A) Zinc Flux, as observed after receptor triggering (e.g., binding of lipopolysaccharide (LPS) to Toll like receptor (TLR)4), is generated within seconds. (B) A Zinc Wave, as is induced via immunoglobulin receptors and involving calcium flux, can be observed within a few minutes. (C) Homeostatic Zinc Signals, for example as observed after LPS stimulation of dendritic cells, take a few hours to be established and involve the expression of zinc transport and binding proteins. For explanations see the text. Abbreviations: ER: endoplasmic reticulum; ERK: extracellular signal-regulated kinase; MT: metallothionein; PLC: phospholipase c; R: receptor; Slp76, SH2 domain-containing leukocyte protein, 76 kD. Modified after [62,96,105].
Figure 2
Figure 2
Zinc in Toll like receptor 4-induced signaling. For explanation, see text. Abbreviations: A20: zinc finger protein; AP-1: Activator protein 1; ERK: extracellular Signal-regulated Kinase; IFN: interferon; IRAK: Interleukin-1 receptor-associated kinase; IκB: Inhibitor of NFκB; IKK: IκB kinase; IRF: interferon related factor; JAK: JNK janus kinase; JNK: c-Jun N-terminal Kinase; LPS: Lipopolysaccharide; MAPK: mitogen activated protein kinases MEK: MAPK/Erk kinase; MKK: MAPK kinase; MKP: MAPK phosphatase; MyD88: Myeloid differentiation primary response gene; NFkB: nuclear factor (NF)κB; PI3K: phosphatidyl-inositol-3-phosphate; RIP: receptor interacting protein; STAT: Signal transducers and activators of transcription; TAB: TAK-binding protein; TAK: TGF β-activated kinase; TBK: Tank-binding kinase 1; TIRAP: toll-interleukin 1 receptor (TIR) domain containing adaptor protein; TLR: Toll like receptor; TRAF: TNF receptor-associated factor; TRAM: TRIF-related adaptor molecule; TRIF: Toll-interleukin-1 receptor (TIR) domain-containing adaptor-inducing interferon. Altered from [97,176,178].
Figure 3
Figure 3
Zinc in TCR-induced signaling. For explanation, see text. Abbreviations: AP-1: Activator protein 1; CREB: cAMP response element-binding protein; Csk: C-terminal Src kinase; ER: endoplasmic reticulum; Lck: lymphocyte-specific protein tyrosine kinase; LAT: linker for activation of T cells; MAPK: mitogen activated protein kinases; MHC: major histocompatibility complex; MKP: MAP kinase phosphatase; NFAT: Nuclear factor of activated T cells; p50/p56: nuclear factor NF-kappa-B subunit p50/p65; PKA: protein kinase A; PKC: protein kinase C; Ras: Rat sarcoma; TCR: T cell receptor; ZAP: z-chain-associated protein kinase; Zip: Zrt-like, Irt-like proteins. Modified after [109,170].
Figure 4
Figure 4
Influence of zinc and zinc deficiency on various organ systems as well as on the immune system. Zinc deficiency is causally associated with multiple immunological dysfunctions that lead to the manifestation of various diseases indicated in this figure. For a detailed explanation see the text. Modified after [5]. ↑ = upregulted/enhanced.
Figure 5
Figure 5
Influence of zinc status on the overall immune function. Adequate zinc homeostasis is essential for a well-functioning immune system. Zinc deficiency as well as zinc excess lead to malfunction of the adaptive and innate immune system, eventually resulting in the development of numerous immune diseases.

References

    1. Raulin J. Chemical studies on vegetation. Ann. Sci. Nat. 1869;11:93–99.
    1. Todd W.R., Elvehjem C.A., Hart E.B. Zinc in the nutrition of the rat. Am. J. Physiol. 1980;107:146–156. doi: 10.1111/j.1753-4887.1980.tb05879.x.
    1. Prasad A.S. Impact of the discovery of human zinc deficiency on health. J. Am. Coll. Nutr. 2009;28:257–265. doi: 10.1080/07315724.2009.10719780.
    1. World Health Organization (WHO) The World Health Report. 83. World Health Organization; Geneva, Switzerland: 2002.
    1. Rink L. Zinc in Human Health. IOS Press; Amsterdam, The Netherlands: 2011. p. 596.
    1. Haase H., Mocchegiani E., Rink L. Correlation between zinc status and immune function in the elderly. Biogerontology. 2006;7:421–428. doi: 10.1007/s10522-006-9057-3.
    1. Kozlowski H., Luczkowski M., Remelli M., Valensin D. Copper, zinc and iron in neurodegenerative diseases (Alzheimer’s, Parkinson’s and prion diseases) Coord. Chem. Rev. 2012;256:2129–2141. doi: 10.1016/j.ccr.2012.03.013.
    1. Chabosseau P., Rutter G.A. Zinc and diabetes. Arch. Biochem. Biophys. 2016;611:79–85. doi: 10.1016/j.abb.2016.05.022.
    1. Bonaventura P., Benedetti G., Albarede F., Miossec P. Zinc and its role in immunity and inflammation. Autoimmun. Rev. 2015;14:277–285. doi: 10.1016/j.autrev.2014.11.008.
    1. Wapnir R.A. Zinc deficiency, malnutrition and the gastrointestinal tract. J. Nutr. 2000;130:1388s–1392s.
    1. Bonomini M., Di Paolo B., De Risio F., Niri L., Klinkmann H., Ivanovich P., Albertazzi A. Effects of zinc supplementation in chronic haemodialysis patients. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transplant. Assoc. Eur. Renal Assoc. 1993;8:1166–1168.
    1. Lestienne I., Icard-Vernière C., Mouquet C., Picq C., Trèche S. Effects of soaking whole cereal and legume seeds on iron, zinc and phytate contents. Food Chem. 2005;89:421–425. doi: 10.1016/j.foodchem.2004.03.040.
    1. Sandstead H.H., Prasad A.S., Schulert A.R., Farid Z., Miale A., Bassilly S., Darby W.J. Human zinc deficiency, endocrine manifestations and response to treatment. Am. J. Clin. Nutr. 1967;20:422–442.
    1. Sandstead H.H., Penland J.G., Alcock N.W., Dayal H.H., Chen X.C., Li J.S., Zhao F., Yang J.J. Effects of repletion with zinc and other micronutrients on neuropsychologic performance and growth of Chinese children. Am. J. Clin. Nutr. 1998;68:470S–475S.
    1. Prasad A.S., Miale A., Jr., Farid Z., Sandstead H.H., Schulert A.R. Zinc metabolism in patients with the syndrome of iron deficiency anemia, hepatosplenomegaly, dwarfism, and hypognadism. J. Lab. Clin. Med. 1963;61:537–549.
    1. Giacconi R., Costarelli L., Piacenza F., Basso A., Rink L., Mariani E., Fulop T., Dedoussis G., Herbein G., Provinciali M., et al. Main biomarkers associated with age-related plasma zinc decrease and copper/zinc ratio in healthy elderly from zincage study. Eur. J. Nutr. 2016;58:2457–2466. doi: 10.1007/s00394-016-1281-2.
    1. Andrews G.K. Regulation and Function of ZIP4, the Acrodermatitis Enteropathica Gene. Portland Press Limited; London, UK: 2008.
    1. Wuehler S.E., Peerson J.M., Brown K.H. Use of national food balance data to estimate the adequacy of zinc in national food supplies: Methodology and regional estimates. Public Health Nutr. 2005;8:812–819. doi: 10.1079/PHN2005724.
    1. Xin L., Yang X., Cai G., Fan D., Xia Q., Liu L., Hu Y., Ding N., Xu S., Wang L., et al. Serum levels of copper and zinc in patients with rheumatoid arthritis: A meta-analysis. Biol. Trace Elem. Res. 2015;168:1–10. doi: 10.1007/s12011-015-0325-4.
    1. Williams C.M., Lines C.M., McKay E.C. Iron and zinc status in multiple sclerosis patients with pressure sores. Eur. J. Clin. Nutr. 1988;42:321–328.
    1. Socha K., Karpinska E., Kochanowicz J., Soroczynska J., Jakoniuk M., Wilkiel M., Mariak Z.D., Borawska M.H. Dietary habits; concentration of copper, zinc, and cu-to-zn ratio in serum and ability status of patients with relapsing-remitting multiple sclerosis. Nutrition. 2017;39–40:76–81. doi: 10.1016/j.nut.2017.03.009.
    1. Popescu B.F., Frischer J.M., Webb S.M., Tham M., Adiele R.C., Robinson C.A., Fitz-Gibbon P.D., Weigand S.D., Metz I., Nehzati S., et al. Pathogenic implications of distinct patterns of iron and zinc in chronic ms lesions. Acta Neuropathol. 2017;134:45–64. doi: 10.1007/s00401-017-1696-8.
    1. Deibel M.A., Ehmann W.D., Markesbery W.R. Copper, iron, and zinc imbalances in severely degenerated brain regions in alzheimer’s disease: Possible relation to oxidative stress. J. Neurol. Sci. 1996;143:137–142. doi: 10.1016/S0022-510X(96)00203-1.
    1. Flinn J.M., Kakalec P., Tappero R., Jones B., Lengyel I. Correlations in distribution and concentration of calcium, copper and iron with zinc in isolated extracellular deposits associated with age-related macular degeneration. Metallomics Integr. Biomet. Sci. 2014;6:1223–1228. doi: 10.1039/C4MT00058G.
    1. Lönnerdal B. Dietary factors influencing zinc absorption. J. Nutr. 2000;130:1378S–1383S.
    1. Vallee B.L., Falchuk K.H. The biochemical basis of zinc physiology. Physiol. Rev. 1993;73:79–118.
    1. Beyersmann D., Haase H. Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals. 2001;14:331–341. doi: 10.1023/A:1012905406548.
    1. Vallee B.L. Metallothionein: Historical review and perspectives. Exp. Suppl. 1979;34:19–39.
    1. Colvin R.A., Holmes W.R., Fontaine C.P., Maret W. Cytosolic zinc buffering and muffling: Their role in intracellular zinc homeostasis. Metallomics Integr. Biomet. Sci. 2010;2:306–317. doi: 10.1039/b926662c.
    1. Krezel A., Maret W. The biological inorganic chemistry of zinc ions. Arch. Biochem. Biophys. 2016;611:3–19. doi: 10.1016/j.abb.2016.04.010.
    1. Thomas R.C., Coles J.A., Deitmer J.W. Homeostatic muffling. Nature. 1991;350:564. doi: 10.1038/350564b0.
    1. Colvin R.A., Bush A.I., Volitakis I., Fontaine C.P., Thomas D., Kikuchi K., Holmes W.R. Insights into Zn2+ homeostasis in neurons from experimental and modeling studies. Am. J. Physiol. Cell Physiol. 2008;294:C726–C742. doi: 10.1152/ajpcell.00541.2007.
    1. Haase H., Maret W. The regulatory and signaling functions of zinc ions in human cellular physiology. In: Zalups R.K., Koropatnick J., editors. Cellular and Molecular Biology of Metals. CRC Press; Boca Raton, FL, USA: 2010.
    1. Kramer K.K., Zoelle J.T., Klaassen C.D. Induction of metallothionein mrna and proteinin primary murine neuron cultures. Toxicol. Appl. Pharmacol. 1996;141:1–7. doi: 10.1016/S0041-008X(96)80002-0.
    1. Vasak M., Meloni G. Mammalian metallothionein-3: New functional and structural insights. Int. J. Mol. Sci. 2017;18:1117. doi: 10.3390/ijms18061117.
    1. Sutherland D.E., Stillman M.J. The “magic numbers” of metallothionein. Metallomics Integr. Biomet. Sci. 2011;3:444–463. doi: 10.1039/c0mt00102c.
    1. Kimura T., Kambe T. The functions of metallothionein and ZIP and ZnT transporters: An overview and perspective. Int. J. Mol. Sci. 2016;17:336. doi: 10.3390/ijms17030336.
    1. Fukada T., Kambe T. Molecular and genetic features of zinc transporters in physiology and pathogenesis. Metallomics Integr. Biomet. Sci. 2011;3:662–674. doi: 10.1039/c1mt00011j.
    1. Fukada T., Kambe T. Zinc Signals in Cellular Functions and Disorders. Springer; Tokyo, Japan: 2014.
    1. Vallee B.L., Galdes A. The metallobiochemistry of zinc enzymes. Adv. Enzymol. Relat. Areas Mol. Biol. 1984;56:283–430.
    1. McCall K.A., Huang C., Fierke C.A. Function and mechanism of zinc metalloenzymes. J. Nutr. 2000;130:1437S–1446S.
    1. Andreini C., Banci L., Bertini I., Rosato A. Counting the zinc-proteins encoded in the human genome. J. Proteome Res. 2006;5:196–201. doi: 10.1021/pr050361j.
    1. Andreini C., Bertini I. A bioinformatics view of zinc enzymes. J. Inorg. Biochem. 2012;111:150–156. doi: 10.1016/j.jinorgbio.2011.11.020.
    1. Andreini C., Bertini I., Rosato A. Metalloproteomes: A bioinformatic approach. Acc. Chem. Res. 2009;42:1471–1479. doi: 10.1021/ar900015x.
    1. Haase H., Rink L. Functional significance of zinc-related signaling pathways in immune cells. Ann. Rev. Nutr. 2009;29:133–152. doi: 10.1146/annurev-nutr-080508-141119.
    1. Fraker P.J., Gershwin M.E., Good R.A., Prasad A. Interrelationships between zinc and immune function. Fed. Proc. 1986;45:1474–1479.
    1. Prasad A.S. Clinical manifestations of zinc deficiency. Ann. Rev. Nutr. 1985;5:341–363. doi: 10.1146/annurev.nu.05.070185.002013.
    1. Bajait C., Thawani V. Role of zinc in pediatric diarrhea. Indian J. Pharmacol. 2011;43:232.
    1. Bode C., Bode J.C. Effect of alcohol consumption on the gut. Best Pract. Res. Clin. Gastroenterol. 2003;17:575–592. doi: 10.1016/S1521-6918(03)00034-9.
    1. Küry S., Dréno B., Bézieau S., Giraudet S., Kharfi M., Kamoun R., Moisan J.-P. Identification of SLC39A4, a gene involved in acrodermatitis enteropathica. Nat. Genet. 2002;31:239. doi: 10.1038/ng913.
    1. Neldner K.H., Hambidge K.M. Zinc therapy of acrodermatitis enteropathica. N. Engl. J. Med. 1975;292:879–882. doi: 10.1056/NEJM197504242921702.
    1. Allen J.I., Perri R.T., McClain C.J., Kay N.E. Alterations in human natural killer cell activity and monocyte cytotoxicity induced by zinc deficiency. J. Lab. Clin. Med. 1983;102:577–589.
    1. Miller L.V., Krebs N.F., Hambidge K.M. A mathematical model of zinc absorption in humans as a function of dietary zinc and phytate. J. Nutr. 2007;137:135–141.
    1. Maywald M., Rink L. Zinc homeostasis and immunosenescence. J. Trace Elem. Med. Biol. Organ Soc. Miner. Trace Elem. (GMS) 2015;29:24–30. doi: 10.1016/j.jtemb.2014.06.003.
    1. Prasad A., Fitzgerald J., Hess J., Kaplan J., Pelen F., Dardenne M. Zinc deficiency in elderly patients. Nutrition. 1993;9:218–224.
    1. Weyand C.M., Goronzy J.J. Aging of the immune system. Mechanisms and therapeutic targets. Ann. Am. Thorac. Soc. 2016;13:S422–S428. doi: 10.1513/AnnalsATS.201602-095AW.
    1. Brewer G.J., Hill G.M., Prasad A.S., Cossack Z.T., Rabbani P. Oral zinc therapy for Wilson’s disease. Ann. Intern. Med. 1983;99:314–319. doi: 10.7326/0003-4819-99-3-314.
    1. Newsome D.A., Miceli M.V., Tate D.J., Alcock N.W., Oliver P.D. Zinc content of human retinal pigment epithelium decreases with age and macular degeneration, but superoxide dismutase activity increases. J. Trace Elem. Exp. Med. 1996;8:193–199. doi: 10.1002/(SICI)1520-670X(199605)8:4<193::AID-JTRA1>;2-O.
    1. Newsome D.A., Swartz M., Leone N.C., Elston R.C., Miller E. Oral zinc in macular degeneration. Arch. Ophthalmol. 1988;106:192–198. doi: 10.1001/archopht.1988.01060130202026.
    1. Overbeck S., Rink L., Haase H. Modulating the immune response by oral zinc supplementation: A single approach for multiple diseases. Arch. Immunol. Ther. Exp. 2008;56:15–30. doi: 10.1007/s00005-008-0003-8.
    1. Lowe N.M., Dykes F.C., Skinner A.L., Patel S., Warthon-Medina M., Decsi T., Fekete K., Souverein O.W., Dullemeijer C., Cavelaars A.E., et al. Eurreca-estimating zinc requirements for deriving dietary reference values. Crit. Rev. Food Sci. Nutr. 2013;53:1110–1123. doi: 10.1080/10408398.2012.742863.
    1. Haase H., Rink L. Multiple impacts of zinc on immune function. Metallomics Integr. Biomet. Sci. 2014;6:1175–1180. doi: 10.1039/c3mt00353a.
    1. Wessels I., Cousins R.J. Zinc dyshomeostasis during polymicrobial sepsis in mice involves zinc transporter ZIP14 and can be overcome by zinc supplementation. Am. J. Physiol. Gastrointest. Liver Physiol. 2015;309:G768–G778. doi: 10.1152/ajpgi.00179.2015.
    1. Mocchegiani E., Malavolta M. Zinc dyshomeostasis, ageing and neurodegeneration: Implications of A2M and inflammatory gene polymorphisms. J. Alzheimer’s Dis. 2007;12:101–109. doi: 10.3233/JAD-2007-12110.
    1. Knoell D.L., Julian M.W., Bao S., Besecker B., Macre J.E., Leikauf G.D., DiSilvestro R.A., Crouser E.D. Zinc deficiency increases organ damage and mortality in a murine model of polymicrobial sepsis. Crit. Care Med. 2009;37:1380. doi: 10.1097/CCM.0b013e31819cefe4.
    1. Wessels I., Haase H., Engelhardt G., Rink L., Uciechowski P. Zinc deficiency induces production of the proinflammatory cytokines IL-1β and TNFΑ in promyeloid cells via epigenetic and redox-dependent mechanisms. J. Nutr. Biochem. 2013;24:289–297. doi: 10.1016/j.jnutbio.2012.06.007.
    1. Prasad A.S. Effects of zinc deficiency on Th1 and Th2 cytokine shifts. J. Infect. Dis. 2000;182:S62–S68. doi: 10.1086/315916.
    1. Cossack Z.T. T-lymphocyte dysfunction in the elderly associated with zinc deficiency and subnormal nucleoside phosphorylase activity: Effect of zinc supplementation. Eur. J. Cancer Clin. Oncol. 1989;25:973–976. doi: 10.1016/0277-5379(89)90156-9.
    1. Uciechowski P., Kahmann L., Plumakers B., Malavolta M., Mocchegiani E., Dedoussis G., Herbein G., Jajte J., Fulop T., Rink L. Th1 and TH2 cell polarization increases with aging and is modulated by zinc supplementation. Exp. Gerontol. 2008;43:493–498. doi: 10.1016/j.exger.2007.11.006.
    1. Prasad A.S., Beck F.W., Bao B., Fitzgerald J.T., Snell D.C., Steinberg J.D., Cardozo L.J. Zinc supplementation decreases incidence of infections in the elderly: Effect of zinc on generation of cytokines and oxidative stress. Am. J. Clin. Nutr. 2007;85:837–844.
    1. Kaltenberg J., Plum L.M., Ober-Blobaum J.L., Honscheid A., Rink L., Haase H. Zinc signals promote il-2-dependent proliferation of t cells. Eur. J. Immunol. 2010;40:1496–1503. doi: 10.1002/eji.200939574.
    1. Rosenkranz E., Metz C.H., Maywald M., Hilgers R.D., Wessels I., Senff T., Haase H., Jager M., Ott M., Aspinall R., et al. Zinc supplementation induces regulatory T cells by inhibition of Sirt-1 deacetylase in mixed lymphocyte cultures. Mol. Nutr. Food Res. 2016;60:661–671. doi: 10.1002/mnfr.201500524.
    1. Rosenkranz E., Maywald M., Hilgers R.D., Brieger A., Clarner T., Kipp M., Plumakers B., Meyer S., Schwerdtle T., Rink L. Induction of regulatory T cells in Th1-/Th17-driven experimental autoimmune encephalomyelitis by zinc administration. J. Nutr. Biochem. 2016;29:116–123. doi: 10.1016/j.jnutbio.2015.11.010.
    1. Kitabayashi C., Fukada T., Kanamoto M., Ohashi W., Hojyo S., Atsumi T., Ueda N., Azuma I., Hirota H., Murakami M., et al. Zinc suppresses Th17 development via inhibition of STAT3 activation. Int. Immunol. 2010;22:375–386. doi: 10.1093/intimm/dxq017.
    1. Maywald M., Rink L. Zinc supplementation dampens t helper 9 differentiation in allogeneic immune reactions in vitro. 2017. Unpublished work.
    1. George M.M., Vignesh K.S., Landero Figueroa J.A., Caruso J.A., Deepe G.S. Zinc induces dendritic cell tolerogenic phenotype and skews regulatory T cell-Th17 balance. J. Immunol. 2016;197:1864–1876. doi: 10.4049/jimmunol.1600410.
    1. Wessels I. Epigenetics and metal deficiencies. Curr. Nutr. Rep. 2014;3:196–203. doi: 10.1007/s13668-014-0091-5.
    1. Kahmann L., Uciechowski P., Warmuth S., Plümäkers B., Gressner A.M., Malavolta M., Mocchegiani E., Rink L. Zinc supplementation in the elderly reduces spontaneous inflammatory cytokine release and restores t cell functions. Rejuv. Res. 2008;11:227–237. doi: 10.1089/rej.2007.0613.
    1. Wagner P., Jernigan J., Bailey L., Nickens C., Brazzi G. Zinc nutritive and cell-mediated immunity in the aged. Int. J. Vitam. Nutr. Res. 1983;53:94–101.
    1. Dubben S., Honscheid A., Winkler K., Rink L., Haase H. Cellular zinc homeostasis is a regulator in monocyte differentiation of HL-60 cells by 1 alpha,25-dihydroxyvitamin D3. J. Leukoc. Biol. 2010;87:833–844. doi: 10.1189/jlb.0409241.
    1. Kehl-Fie T.E., Skaar E.P. Nutritional immunity beyond iron: A role for manganese and zinc. Curr. Opin. Chem. Biol. 2010;14:218–224. doi: 10.1016/j.cbpa.2009.11.008.
    1. Stříž I., Trebichavský I. Calprotectin—A pleiotropic molecule in acute and chronic inflammation. Physiol. Res. 2004;53:245–253.
    1. Hasan R., Rink L., Haase H. Zinc signals in neutrophil granulocytes are required for the formation of neutrophil extracellular traps. Innate Immun. 2013;19:253–264. doi: 10.1177/1753425912458815.
    1. Hasan R., Rink L., Haase H. Chelation of free Zn2+ impairs chemotaxis, phagocytosis, oxidative burst, degranulation, and cytokine production by neutrophil granulocytes. Biol. Trace Elem. Res. 2016;171:79–88. doi: 10.1007/s12011-015-0515-0.
    1. Hasegawa H., Suzuki K., Suzuki K., Nakaji S., Sugawara K. Effects of zinc on the reactive oxygen species generating capacity of human neutrophils and on the serum opsonic activity in vitro. Luminescence. 2000;15:321–327. doi: 10.1002/1522-7243(200009/10)15:5<321::AID-BIO605>;2-O.
    1. DeCoursey T.E., Morgan D., Cherny V.V. The voltage dependence of nadph oxidase reveals why phagocytes need proton channels. Nature. 2003;422:531–534. doi: 10.1038/nature01523.
    1. Rajagopalan S., Long E.O. Zinc bound to the killer cell-inhibitory receptor modulates the negative signal in human NK cells. J. Immunol. 1998;161:1299–1305.
    1. Rajagopalan S., Winter C.C., Wagtmann N., Long E.O. The ig-related killer cell inhibitory receptor binds zinc and requires zinc for recognition of HLA-C on target cells. J. Immunol. 1995;155:4143–4146.
    1. Kumar S., Rajagopalan S., Sarkar P., Dorward D.W., Peterson M.E., Liao H.-S., Guillermier C., Steinhauser M.L., Vogel S.S., Long E.O. Zinc-induced polymerization of killer-cell Ig-like receptor into filaments promotes its inhibitory function at cytotoxic immunological synapses. Mol. Cell. 2016;62:21–33. doi: 10.1016/j.molcel.2016.03.009.
    1. Rolles B., Maywald M., Rink L. Influence of zinc deficiency and supplementation on NK cell cytotoxicity. 2017. Unpublished work.
    1. Muzzioli M., Stecconi R., Moresi R., Provinciali M. Zinc improves the development of human CD34+ cell progenitors towards NK cells and increases the expression of GATA-3 transcription factor in young and old ages. Biogerontology. 2009;10:593–604. doi: 10.1007/s10522-008-9201-3.
    1. King K.L., Cidlowski J.A. Cell cycle regulation and apoptosis. Ann. Rev. Physiol. 1998;60:601–617. doi: 10.1146/annurev.physiol.60.1.601.
    1. Haase H., Hebel S., Engelhardt G., Rink L. Flow cytometric measurement of labile zinc in peripheral blood mononuclear cells. Anal. Biochem. 2006;352:222–230. doi: 10.1016/j.ab.2006.02.009.
    1. Haase H., Ober-Blobaum J.L., Engelhardt G., Hebel S., Heit A., Heine H., Rink L. Zinc signals are essential for lipopolysaccharide-induced signal transduction in monocytes. J. Immunol. 2008;181:6491–6502. doi: 10.4049/jimmunol.181.9.6491.
    1. Murakami M., Hirano T. Intracellular zinc homeostasis and zinc signaling. Cancer Sci. 2008;99:1515–1522. doi: 10.1111/j.1349-7006.2008.00854.x.
    1. Yamasaki S., Sakata-Sogawa K., Hasegawa A., Suzuki T., Kabu K., Sato E., Kurosaki T., Yamashita S., Tokunaga M., Nishida K. Zinc is a novel intracellular second messenger. J. Cell Biol. 2007;177:637–645. doi: 10.1083/jcb.200702081.
    1. Brieger A., Rink L., Haase H. Differential regulation of TLR-dependent MYD88 and TRIF signaling pathways by free zinc ions. J. Immunol. 2013;191:1808–1817. doi: 10.4049/jimmunol.1301261.
    1. Taylor K.M., Hiscox S., Nicholson R.I., Hogstrand C., Kille P. Protein kinase CK2 triggers cytosolic zinc signaling pathways by phosphorylation of zinc channel ZIP7. Sci. Signal. 2012;5 doi: 10.1126/scisignal.2002585.
    1. Maret W. Zinc coordination environments in proteins as redox sensors and signal transducers. Antioxid. Redox Signal. 2006;8:1419–1441. doi: 10.1089/ars.2006.8.1419.
    1. Kitamura H., Morikawa H., Kamon H., Iguchi M., Hojyo S., Fukada T., Yamashita S., Kaisho T., Akira S., Murakami M., et al. Toll-like receptor-mediated regulation of zinc homeostasis influences dendritic cell function. Nat. Immunol. 2006;7:971–977. doi: 10.1038/ni1373.
    1. Aydemir T.B., Liuzzi J.P., McClellan S., Cousins R.J. Zinc transporter ZIP8 (SLC39A8) and zinc influence IFN-γ expression in activated human T cells. J. Leukoc. Biol. 2009;86:337–348. doi: 10.1189/jlb.1208759.
    1. Yu M., Lee W.W., Tomar D., Sergey P., Czesnikiewicz-Guzik M., Lamar D.L., Li G., Singh K., Tian L., Weyand C.M., et al. Regulation of T cell receptor signaling by activation-induced zinc influx. J. Exp. Med. 2011;208:775–785. doi: 10.1084/jem.20100031.
    1. Hojyo S., Fukada T. Roles of zinc signaling in the immune system. J. Immunol. Res. 2016;2016 doi: 10.1155/2016/6762343.
    1. Raymond A.D., Gekonge B., Giri M.S., Hancock A., Papasavvas E., Chehimi J., Kossevkov A.V., Nicols C., Yousef M., Mounzer K. Increased metallothionein gene expression, zinc, and zinc-dependent resistance to apoptosis in circulating monocytes during HIV viremia. J. Leukoc. Biol. 2010;88:589–596. doi: 10.1189/jlb.0110051.
    1. Kambe T., Hashimoto A., Fujimoto S. Current understanding of ZIP and ZnT zinc transporters in human health and diseases. Cell. Mol. Life Sci. 2014;71:3281–3295. doi: 10.1007/s00018-014-1617-0.
    1. Fukada T., Hojyo S., Furuichi T. Zinc signal: A new player in osteobiology. J. Bone Miner. Metab. 2013;31:129–135. doi: 10.1007/s00774-012-0409-6.
    1. Tartey S., Takeuchi O. Pathogen recognition and toll-like receptor targeted therapeutics in innate immune cells. Int. Rev. Immunol. 2017;36:57–73. doi: 10.1080/08830185.2016.1261318.
    1. Ten Hacken E., Burger J.A. Molecular pathways: Targeting the microenvironment in chronic lymphocytic leukemia—Focus on the B-cell receptor. Clin. Cancer Res. 2014;20:548–556. doi: 10.1158/1078-0432.CCR-13-0226.
    1. Mustelin T., Tasken K. Positive and negative regulation of T-cell activation through kinases and phosphatases. Biochem. J. 2003;371:15–27. doi: 10.1042/bj20021637.
    1. Graves J.D., Krebs E.G. Protein phosphorylation and signal transduction. Pharmacol. Ther. 1999;82:111–121. doi: 10.1016/S0163-7258(98)00056-4.
    1. Lee E.J., Kim N., Kang K.H., Kim J.W. Phosphorylation/inactivation of PTEN by AKT-independent PI3K signaling in retinal pigment epithelium. Biochem. Biophys. Res. Commun. 2011;414:384–389. doi: 10.1016/j.bbrc.2011.09.083.
    1. Vener A.V., Aksenova M.V., Burbaeva G.S. Drastic reduction of the zinc-and magnesium-stimulated protein tyrosine kinase activities in Alzheimer’s disease hippocampus. FEBS Lett. 1993;328:6–8. doi: 10.1016/0014-5793(93)80953-R.
    1. Baraldi E., Carugo K.D., Hyvönen M., Surdo P.L., Riley A.M., Potter B.V., O’Brien R., Ladbury J.E., Saraste M. Structure of the PH domain from Bruton’s tyrosine kinase in complex with inositol 1, 3, 4, 5-tetrakisphosphate. Structure. 1999;7:449–460. doi: 10.1016/S0969-2126(99)80057-4.
    1. Arbibe L., Jean-Paul M., Teusch N., Kline L., Guha M., Mackman N., Godowski P.J., Ulevitch R.J., Knaus U.G. Toll-like receptor 2-mediated NF-[kappa] B activation requires a Rac1-dependent pathway. Nat. Immunol. 2000;1:533. doi: 10.1038/82797.
    1. Bennasroune A., Mazot P., Boutterin M.-C., Vigny M. Activation of the orphan receptor tyrosine kinase alk by zinc. Biochem. Biophys. Res. Commun. 2010;398:702–706. doi: 10.1016/j.bbrc.2010.07.004.
    1. Zhang Y., Xing F., Zheng H., Xi J., Cui X., Xu Z. Roles of mitochondrial src tyrosine kinase and zinc in nitric oxide-induced cardioprotection against ischemia/reperfusion injury. Free Radic. Res. 2013;47:517–525. doi: 10.3109/10715762.2013.796044.
    1. Quest A.F., Bloomenthal J., Bardes E.S., Bell R.M. The regulatory domain of protein kinase C coordinates four atoms of zinc. J. Biol. Chem. 1992;267:10193–10197.
    1. Korichneva I., Hoyos B., Chua R., Levi E., Hammerling U. Zinc release from protein kinase C as the common event during activation by lipid second messenger or reactive oxygen. J. Biol. Chem. 2002;277:44327–44331. doi: 10.1074/jbc.M205634200.
    1. Forbes I.J., Zalewski P.D., Giannakis C., Petkoff H.S., Cowled P.A. Interaction between protein kinase C and regulatory ligand is enhanced by a chelatable pool of cellular zinc. Biochim. Biophys. Acta. 1990;1053:113–117. doi: 10.1016/0167-4889(90)90001-T.
    1. Castrillo A., Pennington D.J., Otto F., Parker P.J., Owen M.J., Boscá L. Protein kinase Cϵ is required for macrophage activation and defense against bacterial infection. J. Exp. Med. 2001;194:1231–1242. doi: 10.1084/jem.194.9.1231.
    1. Korichneva I. Redox regulation of cardiac protein kinase C. Exp. Clin. Cardiol. 2005;10:256–261.
    1. Krężel A., Hao Q., Maret W. The zinc/thiolate redox biochemistry of metallothionein and the control of zinc ion fluctuations in cell signaling. Arch. Biochem. Biophys. 2007;463:188–200. doi: 10.1016/j.abb.2007.02.017.
    1. Zalewski P., Forbes I., Giannakis C., Cowled P., Betts W. Synergy between zinc and phorbol ester in translocation of protein kinase C to cytoskeleton. FEBS Lett. 1990;273:131–134. doi: 10.1016/0014-5793(90)81067-X.
    1. Beyersmann D., Haase H. Zinc Biochemistry, Physiology, and Homeostasis. Springer; Berlin, Germany: 2001. Functions of zinc in signaling, proliferation and differentiation of mammalian cells; pp. 145–155.
    1. Lindahl M., Leanderson P., Tagesson C. Novel aspect on metal fume fever: Zinc stimulates oxygen radical formation in human neutrophils. Hum. Exp. Toxicol. 1998;17:105–110. doi: 10.1177/096032719801700205.
    1. Powell S.R. The antioxidant properties of zinc. J. Nutr. 2000;130:1447s–1454s.
    1. Freitas M., Porto G., Lima J.L., Fernandes E. Zinc activates neutrophils’ oxidative burst. Biometals. 2010;23:31. doi: 10.1007/s10534-009-9264-x.
    1. Percival M.D., Yeh B., Falgueyret J.-P. Zinc dependent activation of camp-specific phosphodiesterase (PDE4A) Biochem. Biophys. Res. Commun. 1997;241:175–180. doi: 10.1006/bbrc.1997.7542.
    1. Londesborough J., Suoranta K. Zinc-containing cyclic nucleotide phosphodiesterases from bakers’ yeast. Methods Enzymol. 1988;159:777–785.
    1. Von Bülow V., Rink L., Haase H. Zinc-mediated inhibition of cyclic nucleotide phosphodiesterase activity and expression suppresses TNF-α and il-1β production in monocytes by elevation of guanosine 3′, 5′-cyclic monophosphate. J. Immunol. 2005;175:4697–4705. doi: 10.4049/jimmunol.175.7.4697.
    1. Klein C., Heyduk T., Sunahara R.K. Zinc inhibition of adenylyl cyclase correlates with conformational changes in the enzyme. Cell. Signal. 2004;16:1177–1185. doi: 10.1016/j.cellsig.2004.03.008.
    1. Gao X., Du Z., Patel T.B. Copper and zinc inhibit Gαs function: A nucleotide-free state of Gαs induced by Cu2+ and Zn2+ J. Biol. Chem. 2005;280:2579–2586. doi: 10.1074/jbc.M409791200.
    1. Von Bülow V., Dubben S., Engelhardt G., Hebel S., Plümäkers B., Heine H., Rink L., Haase H. Zinc-dependent suppression of TNF-α production is mediated by protein kinase a-induced inhibition of Raf-1, IκB kinase β, and NF-κB. J. Immunol. 2007;179:4180–4186. doi: 10.4049/jimmunol.179.6.4180.
    1. Medgyesi D., Hobeika E., Biesen R., Kollert F., Taddeo A., Voll R.E., Hiepe F., Reth M. The protein tyrosine phosphatase PTP1B is a negative regulator of CD40 and BAFF-R signaling and controls B cell autoimmunity. J. Exp. Med. 2014;211:427–440. doi: 10.1084/jem.20131196.
    1. Plum L.M., Brieger A., Engelhardt G., Hebel S., Nessel A., Arlt M., Kaltenberg J., Schwaneberg U., Huber M., Rink L., et al. Pten-inhibition by zinc ions augments interleukin-2-mediated akt phosphorylation. Metallomics Integr. Biomet. Sci. 2014;6:1277–1287. doi: 10.1039/c3mt00197k.
    1. Haase H., Maret W. Protein tyrosine phosphatases as targets of the combined insulinomimetic effects of zinc and oxidants. Biometals. 2005;18:333–338. doi: 10.1007/s10534-005-3707-9.
    1. Maret W., Jacob C., Vallee B.L., Fischer E.H. Inhibitory sites in enzymes: Zinc removal and reactivation by thionein. Proc. Natl. Acad. Sci. USA. 1999;96:1936–1940. doi: 10.1073/pnas.96.5.1936.
    1. Ho Y., Samarasinghe R., Knoch M.E., Lewis M., Aizenman E., DeFranco D.B. Selective inhibition of mitogen-activated protein kinase phosphatases by zinc accounts for extracellular signal-regulated kinase 1/2-dependent oxidative neuronal cell death. Mol. Pharmacol. 2008;74:1141–1151. doi: 10.1124/mol.108.049064.
    1. Takahashi K., Akaishi E., Abe Y., Ishikawa R., Tanaka S., Hosaka K., Kubohara Y. Zinc inhibits calcineurin activity in vitro by competing with nickel. Biochem. Biophys. Res. Commun. 2003;307:64–68. doi: 10.1016/S0006-291X(03)01122-7.
    1. Huang J., Zhang D., Xing W., Ma X., Yin Y., Wei Q., Li G. An approach to assay calcineurin activity and the inhibitory effect of zinc ion. Anal. Biochem. 2008;375:385–387. doi: 10.1016/j.ab.2007.12.016.
    1. Bellomo E., Massarotti A., Hogstrand C., Maret W. Zinc ions modulate protein tyrosine phosphatase 1B activity. Metallomics Integr. Biomet. Sci. 2014;6:1229–1239. doi: 10.1039/C4MT00086B.
    1. Liu M.-J., Bao S., Napolitano J.R., Burris D.L., Yu L., Tridandapani S., Knoell D.L. Zinc regulates the acute phase response and serum amyloid a production in response to sepsis through JAK-STAT3 signaling. PLoS ONE. 2014;9 doi: 10.1371/journal.pone.0094934.
    1. Hu J., Yang Z., Wang J., Yu J., Guo J., Liu S., Qian C., Song L., Wu Y., Cheng J. Zinc chloride transiently maintains mouse embryonic stem cell pluripotency by activating stat3 signaling. PLoS ONE. 2016;11 doi: 10.1371/journal.pone.0148994.
    1. Azriel-Tamir H., Sharir H., Schwartz B., Hershfinkel M. Extracellular zinc triggers ERK-dependent activation of Na+/H+ exchange in colonocytes mediated by the zinc-sensing receptor. J. Biol. Chem. 2004;279:51804–51816. doi: 10.1074/jbc.M406581200.
    1. Gruber K., Maywald M., Rosenkranz E., Haase H., Plumakers B., Rink L. Zinc deficiency adversely influences interleukin-4 and interleukin-6 signaling. J. Biol. Regul. Homeost. Agents. 2013;27:661–671.
    1. Dierichs L., Kloubert V., Rink L. Cellular zinc homeostasis modulates polarization of THP-1-derived macrophages. Eur. J. Nutr. 2017 doi: 10.1007/s00394-017-1491-2.
    1. Aster I., Engelhardt G., Rink L., Weßels I. The influence of zinc on granulocyte-macrophage colony stimulating factor-induced signaling in u937 cells. 2017. Unpublished work.
    1. Prasad A.S., Bao B., Beck F.W., Kucuk O., Sarkar F.H. Antioxidant effect of zinc in humans. Free Radic. Biol. Med. 2004;37:1182–1190. doi: 10.1016/j.freeradbiomed.2004.07.007.
    1. Prasad A.S., Bao B., Beck F.W., Sarkar F.H. Zinc-suppressed inflammatory cytokines by induction of A20-mediated inhibition of nuclear factor-kappaB. Nutrition. 2011;27:816–823. doi: 10.1016/j.nut.2010.08.010.
    1. Bao B., Prasad A.S., Beck F.W., Fitzgerald J.T., Snell D., Bao G.W., Singh T., Cardozo L.J. Zinc decreases c-reactive protein, lipid peroxidation, and inflammatory cytokines in elderly subjects: A potential implication of zinc as an atheroprotective agent. Am. J. Clin. Nutr. 2010;91:1634–1641. doi: 10.3945/ajcn.2009.28836.
    1. Morgan C.I., Ledford J.R., Zhou P., Page K. Zinc supplementation alters airway inflammation and airway hyperresponsiveness to a common allergen. J. Inflamm. 2011;8:36. doi: 10.1186/1476-9255-8-36.
    1. Li C., Guo S., Gao J., Guo Y., Du E., Lv Z., Zhang B. Maternal high-zinc diet attenuates intestinal inflammation by reducing DNA methylation and elevating H3K9 acetylation in the A20 promoter of offspring chicks. J. Nutr. Biochem. 2015;26:173–183. doi: 10.1016/j.jnutbio.2014.10.005.
    1. Yan Y.-W., Fan J., Bai S.-L., Hou W.-J., Li X., Tong H. Zinc prevents abdominal aortic aneurysm formation by induction of A20-mediated suppression of NF-κB pathway. PLoS ONE. 2016;11 doi: 10.1371/journal.pone.0148536.
    1. Fraker P., King L. Changes in regulation of lymphopoiesis and myelopoiesis in the zinc-deficient mouse. Nutr. Rev. 1998;56:S65–S69. doi: 10.1111/j.1753-4887.1998.tb01647.x.
    1. Supasai S., Aimo L., Adamo A., Mackenzie G., Oteiza P. Zinc deficiency affects the stat1/3 signaling pathways in part through redox-mediated mechanisms. Redox Biol. 2017;11:469–481. doi: 10.1016/j.redox.2016.12.027.
    1. Haase H., Maret W. Fluctuations of cellular, available zinc modulate insulin signaling via inhibition of protein tyrosine phosphatases. J. Trace Elem. Med. Biol. Organ Soc. Miner. Trace Elem. (GMS) 2005;19:37–42. doi: 10.1016/j.jtemb.2005.02.004.
    1. Ryu J.M., Lee M.Y., Yun S.P., Han H.J. Zinc chloride stimulates DNA synthesis of mouse embryonic stem cells: Involvement of PI3K/Akt, MAPKs, and mTOR. J. Cell. Physiol. 2009;218:558–567. doi: 10.1002/jcp.21628.
    1. Manz M.G., Boettcher S. Emergency granulopoiesis. Nat. Rev. Immunol. 2014;14:302–314. doi: 10.1038/nri3660.
    1. Beck F.W., Kaplan J., Fine N., Handschu W., Prasad A.S. Decreased expression of CD73 (ecto-5′-nucleotidase) in the CD8+ subset is associated with zinc deficiency in human patients. J. Lab. Clin. Med. 1997;130:147–156. doi: 10.1016/S0022-2143(97)90091-3.
    1. Fraker P.J. Roles for cell death in zinc deficiency. J. Nutr. 2005;135:359–362.
    1. Chai F., Truong-Tran A.Q., Evdokiou A., Young G.P., Zalewski P.D. Intracellular zinc depletion induces caspase activation and p21 Waf1/Cip1 cleavage in human epithelial cell lines. J. Infect. Dis. 2000;182(Suppl. 1):S85–S92. doi: 10.1086/315914.
    1. Coto J.A., Hadden E.M., Sauro M., Zorn N., Hadden J.W. Interleukin 1 regulates secretion of zinc-thymulin by human thymic epithelial cells and its action on t-lymphocyte proliferation and nuclear protein kinase C. Proc. Natl. Acad. Sci. USA. 1992;89:7752–7756. doi: 10.1073/pnas.89.16.7752.
    1. Dardenne M., Savino W., Wade S., Kaiserlian D., Lemonnier D., Bach J.F. In vivo and in vitro studies of thymulin in marginally zinc-deficient mice. Eur. J. Immunol. 1984;14:454–458. doi: 10.1002/eji.1830140513.
    1. Dowd P.S., Kelleher J., Guillou P.J. T-lymphocyte subsets and interleukin-2 production in zinc-deficient rats. Br. J. Nutr. 1986;55:59–69. doi: 10.1079/BJN19860010.
    1. Prasad A.S., Meftah S., Abdallah J., Kaplan J., Brewer G.J., Bach J.F., Dardenne M. Serum thymulin in human zinc deficiency. J. Clin. Investig. 1988;82:1202–1210. doi: 10.1172/JCI113717.
    1. Fiedler K., Brunner C. The role of transcription factors in the guidance of granulopoiesis. Am. J. Blood Res. 2012;2:57.
    1. Garg G., Nikolouli E., Hardtke-Wolenski M., Toker A., Ohkura N., Beckstette M., Miyao T., Geffers R., Floess S., Gerdes N. Unique properties of thymic antigen-presenting cells promote epigenetic imprinting of alloantigen-specific regulatory T cells. Oncotarget. 2017;8:35542–35557. doi: 10.18632/oncotarget.16221.
    1. Maywald M., Meurer S.K., Weiskirchen R., Rink L. Zinc supplementation augments tgf-beta1-dependent regulatory T cell induction. Mol. Nutr. Food Res. 2017;61 doi: 10.1002/mnfr.201600493.
    1. Boskovic Z.V., Kemp M.M., Freedy A.M., Viswanathan V.S., Pop M.S., Fuller J.H., Martinez N.M., Figueroa Lazú S.O., Hong J.A., Lewis T.A. Inhibition of zinc-dependent histone deacetylases with a chemically triggered electrophile. ACS Chem. Biol. 2016;11:1844–1851. doi: 10.1021/acschembio.6b00012.
    1. Maywald M., Rink L. Zinc supplementation induces CD4+CD25+Foxp3+ antigen-specific regulatory T cells and suppresses IFN-gamma production by upregulation of Foxp3 and KLF-10 and downregulation of IRF-1. Eur. J. Nutr. 2016;56:1859–1869. doi: 10.1007/s00394-016-1228-7.
    1. Hogstrand C., Kille P., Nicholson R.I., Taylor K.M. Zinc transporters and cancer: A potential role for ZIP7 as a hub for tyrosine kinase activation. Trends Mol. Med. 2009;15:101–111. doi: 10.1016/j.molmed.2009.01.004.
    1. Rice J.M., Zweifach A., Lynes M.A. Metallothionein regulates intracellular zinc signaling during CD4(+) T cell activation. BMC Immunol. 2016;17:13. doi: 10.1186/s12865-016-0151-2.
    1. Lienau S., Engelardt G., Rink L., Weßels I. The role of zinc in calprotectin expression in human monocytic cells. 2017. Unpublished work.
    1. Chasapis C.T., Loutsidou A.C., Spiliopoulou C.A., Stefanidou M.E. Zinc and human health: An update. Arch. Toxicol. 2012;86:521–534. doi: 10.1007/s00204-011-0775-1.
    1. Cho J., Tsichlis P.N. Phosphorylation at Thr-290 regulates Tpl2 binding to NF-κB1/p105 and Tpl2 activation and degradation by lipopolysaccharide. Proc. Natl. Acad. Sci. USA. 2005;102:2350–2355. doi: 10.1073/pnas.0409856102.
    1. Wan Y., Petris M.J., Peck S.C. Separation of zinc-dependent and zinc-independent events during early LPS-stimulated TLR4 signaling in macrophage cells. FEBS Lett. 2014;588:2928–2935. doi: 10.1016/j.febslet.2014.05.043.
    1. Guo J., Friedman S.L. Toll-like receptor 4 signaling in liver injury and hepatic fibrogenesis. Fibrogenes Tissue Repair. 2010;3:21. doi: 10.1186/1755-1536-3-21.
    1. Gammoh N.Z., Rink L. Zinc in infection and inflammation. Nutrients. 2017;9 doi: 10.3390/nu9060624.
    1. Denk A., Wirth T., Baumann B. NF-κB transcription factors: Critical regulators of hematopoiesis and neuronal survival. Cytokine Growth Factor Rev. 2000;11:303–320. doi: 10.1016/S1359-6101(00)00009-5.
    1. Wang C., Deng L., Hong M., Akkaraju G.R., Inoue J.-I., Chen Z.J. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature. 2001;412:346. doi: 10.1038/35085597.
    1. Boone D.L., Turer E.E., Lee E.G., Regina-Celeste A., Wheeler M.T., Tsui C., Hurley P., Chien M., Chai S., Hitotsumatsu O. The ubiquitin-modifying enzyme A20 is required for termination of toll-like receptor responses. Nat. Immunol. 2004;5:1052. doi: 10.1038/ni1110.
    1. Aude-Garcia C., Dalzon B., Ravanat J.-L., Collin-Faure V., Diemer H., Strub J.M., Cianferani S., Van Dorsselaer A., Carrière M., Rabilloud T. A combined proteomic and targeted analysis unravels new toxic mechanisms for zinc oxide nanoparticles in macrophages. J. Proteom. 2016;134:174–185. doi: 10.1016/j.jprot.2015.12.013.
    1. Ho L.H., Ruffin R.E., Murgia C., Li L., Krilis S.A., Zalewski P.D. Labile zinc and zinc transporter ZNT4 in mast cell granules: Role in regulation of caspase activation and NF-κB translocation. J. Immunol. 2004;172:7750–7760. doi: 10.4049/jimmunol.172.12.7750.
    1. Kabu K., Yamasaki S., Kamimura D., Ito Y., Hasegawa A., Sato E., Kitamura H., Nishida K., Hirano T. Zinc is required for FcεRI-mediated mast cell activation. J. Immunol. 2006;177:1296–1305. doi: 10.4049/jimmunol.177.2.1296.
    1. Kessels J.E., Wessels I., Haase H., Rink L., Uciechowski P. Influence of DNA-methylation on zinc homeostasis in myeloid cells: Regulation of zinc transporters and zinc binding proteins. J. Trace Elem. Med. Biol. 2016;37:125–133. doi: 10.1016/j.jtemb.2016.02.003.
    1. Ollig J., Kloubert V., Weßels I., Haase H., Rink L. Parameters influencing zinc in experimental systems in vivo and in vitro. Metals. 2016;6:71. doi: 10.3390/met6030071.
    1. Topham N.J., Hewitt E.W. Natural killer cell cytotoxicity: How do they pull the trigger? Immunology. 2009;128:7–15. doi: 10.1111/j.1365-2567.2009.03123.x.
    1. Rolles B., Maywald M., Rink L. Intracellular zinc homeostasis during cell activation and zinc deficiency. 2017. Unpublished work.
    1. Malek T.R., Castro I. Interleukin-2 receptor signaling: At the interface between tolerance and immunity. Immunity. 2010;33:153–165. doi: 10.1016/j.immuni.2010.08.004.
    1. Yamasaki S., Hasegawa A., Hojyo S., Ohashi W., Fukada T., Nishida K., Hirano T. A novel role of the L-type calcium channel alpha1D subunit as a gatekeeper for intracellular zinc signaling: Zinc wave. PLoS ONE. 2012;7:e39654. doi: 10.1371/journal.pone.0039654.
    1. Alder H., Taccioli C., Chen H., Jiang Y., Smalley K.J., Fadda P., Ozer H.G., Huebner K., Farber J.L., Croce C.M., et al. Dysregulation of miR-31 and miR-21 induced by zinc deficiency promotes esophageal cancer. Carcinogenesis. 2012;33:1736–1744. doi: 10.1093/carcin/bgs204.
    1. Kim P.W., Sun Z.Y., Blacklow S.C., Wagner G., Eck M.J. A zinc clasp structure tethers Lck to T cell coreceptors CD4 and CD8. Science. 2003;301:1725–1728. doi: 10.1126/science.1085643.
    1. Romir J., Lilie H., Egerer-Sieber C., Bauer F., Sticht H., Muller Y.A. Crystal structure analysis and solution studies of human Lck-SH3; zinc-induced homodimerization competes with the binding of proline-rich motifs. J. Mol. Biol. 2007;365:1417–1428. doi: 10.1016/j.jmb.2006.10.058.
    1. Mustelin T., Vang T., Bottini N. Protein tyrosine phosphatases and the immune response. Nat. Rev. Immunol. 2005;5:43–57. doi: 10.1038/nri1530.
    1. Bellomo E., Hogstrand C., Maret W. Redox and zinc signalling pathways converging on protein tyrosine phosphatases. Free Radic. Biol. Med. 2014;75(Suppl. 1):S9. doi: 10.1016/j.freeradbiomed.2014.10.851.
    1. Sun G., Budde R.J. Affinity purification of Csk protein tyrosine kinase based on its catalytic requirement for divalent metal cations. Protein Expr. Purif. 2001;21:8–12. doi: 10.1006/prep.2000.1351.
    1. Honscheid A., Rink L., Haase H. T-lymphocytes: A target for stimulatory and inhibitory effects of zinc ions. Endocr. Metab. Immune Disord. Drug Targets. 2009;9:132–144. doi: 10.2174/187153009788452390.
    1. Chiang Y.J., Hodes R.J. T-cell development is regulated by the coordinated function of proximal and distal lck promoters active at different developmental stages. Eur. J. Immunol. 2016;46:2401–2408. doi: 10.1002/eji.201646440.
    1. Macian F. NFAT proteins: Key regulators of T-cell development and function. Nat. Rev. Immunol. 2005;5:472–484. doi: 10.1038/nri1632.
    1. Lee W.-W., Cui D., Czesnikiewicz-Guzik M., Vencio R.Z., Shmulevich I., Aderem A., Weyand C.M., Goronzy J.J. Age-dependent signature of metallothionein expression in primary CD4 T cell responses is due to sustained zinc signaling. Rejuv. Res. 2008;11:1001–1011. doi: 10.1089/rej.2008.0747.
    1. Devadas S., Zaritskaya L., Rhee S.G., Oberley L., Williams M.S. Discrete generation of superoxide and hydrogen peroxide by T cell receptor stimulation. J. Exp. Med. 2002;195:59–70. doi: 10.1084/jem.20010659.
    1. Liu M.-J., Bao S., Gálvez-Peralta M., Pyle C.J., Rudawsky A.C., Pavlovicz R.E., Killilea D.W., Li C., Nebert D.W., Wewers M.D. ZIP8 regulates host defense through zinc-mediated inhibition of NF-κB. Cell Rep. 2013;3:386–400. doi: 10.1016/j.celrep.2013.01.009.
    1. Lee H., Kim B., Choi Y.H., Hwang Y., Kim D.H., Cho S., Hong S.J., Lee W.W. Inhibition of interleukin-1β-mediated interleukin-1 receptor-associated kinase 4 phosphorylation by zinc leads to repression of memory T helper type 17 response in humans. Immunology. 2015;146:645–656. doi: 10.1111/imm.12536.
    1. Daaboul D., Rosenkranz E., Uciechowski P., Rink L. Repletion of zinc in zinc-deficient cells strongly up-regulates IL-1beta-induced IL-2 production in T-cells. Metallomics Integr. Biomet. Sci. 2012;4:1088–1097. doi: 10.1039/c2mt20118f.
    1. Fraker P.J., Telford W.G. A reappraisal of the role of zinc in life and death decisions of cells. Proc. Soc. Exp. Biol. Med. 1997;215:229–236. doi: 10.3181/00379727-215-44132.
    1. King L.E., Frentzel J.W., Mann J.J., Fraker P.J. Chronic zinc deficiency in mice disrupted T cell lymphopoiesis and erythropoiesis while B cell lymphopoiesis and myelopoiesis were maintained. J. Am. Coll. Nutr. 2005;24:494–502. doi: 10.1080/07315724.2005.10719495.
    1. Fraker P.J., King L.E. Reprogramming of the immune system during zinc deficiency. Annu. Rev. Nutr. 2004;24:277–298. doi: 10.1146/annurev.nutr.24.012003.132454.
    1. Rawlings D.J., Metzler G., Wray-Dutra M., Jackson S.W. Altered B cell signalling in autoimmunity. Nat. Rev. Immunol. 2017;17:421. doi: 10.1038/nri.2017.24.
    1. Moulder K., Steward M.W. Experimental zinc deficiency: Effects on cellular responses and the affinity of humoral antibody. Clin. Exp. Immunol. 1989;77:269–274.
    1. Cook-Mills J.M., Fraker P.J. Functional capacity of the residual lymphocytes from zinc-deficient adult mice. Br. J. Nutr. 1993;69:835–848. doi: 10.1079/BJN19930084.
    1. Hojyo S., Miyai T., Fujishiro H., Kawamura M., Yasuda T., Hijikata A., Bin B.H., Irie T., Tanaka J., Atsumi T., et al. Zinc transporter SLC39A10/ZIP10 controls humoral immunity by modulating B-cell receptor signal strength. Proc. Natl. Acad. Sci. USA. 2014;111:11786–11791. doi: 10.1073/pnas.1323557111.
    1. Maret W., Sandstead H.H. Zinc requirements and the risks and benefits of zinc supplementation. J. Trace Elem. Med. Biol. Organ Soc. Miner. Trace Elem. (GMS) 2006;20:3–18. doi: 10.1016/j.jtemb.2006.01.006.
    1. Lue C., Kiyono H., McGhee J.R., Fujihashi K., Kishimoto T., Hirano T., Mestecky J. Recombinant human interleukin 6 (rhiL-6) promotes the terminal differentiation of in vivo-activated human B cells into antibody-secreting cells. Cell. Immunol. 1991;132:423–432. doi: 10.1016/0008-8749(91)90039-E.
    1. Truong-Tran A.Q., Carter J., Ruffin R.E., Zalewski P.D. The role of zinc in caspase activation and apoptotic cell death. Biometals. 2001;14:315–330. doi: 10.1023/A:1012993017026.
    1. Kreft B., Fischer A., Krüger S., Sack K., Kirchner H., Rink L. The impaired immune response to diphtheria vaccinationin elderly chronic hemodialysis patients is related to zinc deficiency. Biogerontology. 2000;1:61–66. doi: 10.1023/A:1010077622172.
    1. Afsharian M., Vaziri S., Janbakhsh A.R., Sayad B., Mansouri F., Nourbakhsh J., Qadiri K., Najafi F., Shirvanii M. The effect of zinc sulfate on immunologic response to recombinant hepatitis b vaccine in elderly: Zinc sulfate and immunologic response to recombinant hepatitis B vaccine. Hepat. Mon. 2011;11:32.
    1. Miyai T., Hojyo S., Ikawa T., Kawamura M., Irie T., Ogura H., Hijikata A., Bin B.H., Yasuda T., Kitamura H., et al. Zinc transporter SLC39A10/ZIP10 facilitates antiapoptotic signaling during early B-cell development. Proc. Natl. Acad. Sci. USA. 2014;111:11780–11785. doi: 10.1073/pnas.1323549111.
    1. Schrantz N., Auffredou M., Bourgeade M., Besnault L., Leca G., Vazquez A. Zinc-mediated regulation of caspases activity: Dose-dependent inhibition or activation of caspase-3 in the human Burkitt lymphoma B cells (Ramos) Cell Death Differ. 2001;8:152. doi: 10.1038/sj.cdd.4400772.
    1. Chang A.Y., Bhattacharya N. Learning to live together: Harnessing regulatory t cells to induce organ transplant tolerance. Yale J Biol Med. 2011;84:345–351.
    1. Stennicke H.R., Salvesen G.S. Biochemical characteristics of caspases-3, -6, -7, and -8. J Biol. Chem. 1997;272:25719–25723. doi: 10.1074/jbc.272.41.25719.
    1. Molkentin J.D. The zinc finger-containing transcription factors gata-4,-5, and-6 ubiquitously expressed regulators of tissue-specific gene expression. J. Biol. Chem. 2000;275:38949–38952. doi: 10.1074/jbc.R000029200.
    1. Ghaleb A.M., Nandan M.O., Chanchevalap S., Dalton W.B., Hisamuddin I.M. Krüppel-like factors 4 and 5: The yin and yang regulators of cellular proliferation. Cell Res. 2005;15:92. doi: 10.1038/sj.cr.7290271.
    1. Staitieh B.S., Fan X., Neveu W., Guidot D.M. Nrf2 regulates PU. 1 expression and activity in the alveolar macrophage. Am. J. Physiol. Lung Cell. Mol. Physiol. 2015;308:L1086–L1093. doi: 10.1152/ajplung.00355.2014.
    1. Hernández-Hoyos G., Anderson M.K., Wang C., Rothenberg E.V., Alberola-Ila J. Gata-3 expression is controlled by tcr signals and regulates CD4/CD8 differentiation. Immunity. 2003;19:83–94. doi: 10.1016/S1074-7613(03)00176-6.
    1. Aliahmad P., Kaye J. Development of all CD4 T lineages requires nuclear factor tox. J. Exp. Med. 2008;205:245–256. doi: 10.1084/jem.20071944.
    1. Ho I.C., Tai T.S., Pai S.Y. GATA3 and the T-cell lineage: Essential functions before and after T-helper-2-cell differentiation. Nat. Rev. Immunol. 2009;9:125–135. doi: 10.1038/nri2476.
    1. Zhu J., Min B., Hu-Li J., Watson C.J., Grinberg A., Wang Q., Killeen N., Urban J.F., Guo L., Paul W.E. Conditional deletion of gata3 shows its essential function in Th1-Th2 responses. Nat. Immunol. 2004;5:1157. doi: 10.1038/ni1128.
    1. Hart G.T., Hogquist K.A., Jameson S.C. Krüppel-like factors in lymphocyte biology. J. Immunol. 2012;188:521–526. doi: 10.4049/jimmunol.1101530.
    1. Laity J.H., Andrews G.K. Understanding the mechanisms of zinc-sensing by metal-response element binding transcription factor-1 (MTF-1) Arch. Biochem. Biophys. 2007;463:201–210. doi: 10.1016/j.abb.2007.03.019.
    1. Waddington C. Organizers and Genes Cambridge. Cambridge University Press; Cambridge, UK: 1940.
    1. Sharma A., Nguyen H., Geng C., Hinman M.N., Luo G., Lou H. Calcium-mediated histone modifications regulate alternative splicing in cardiomyocytes. Proc. Natl. Acad. Sci. USA. 2014;111:E4920–E4928. doi: 10.1073/pnas.1408964111.
    1. Alegría-Torres J.A., Baccarelli A., Bollati V. Epigenetics and lifestyle. Epigenomics. 2011;3:266–277. doi: 10.2217/epi.11.22.
    1. Samuelsson U., Oikarinen S., Hyoty H., Ludvigsson J. Low zinc in drinking water is associated with the risk of type 1 diabetes in children. Pediatr. Diabetes. 2011;12:156–164. doi: 10.1111/j.1399-5448.2010.00678.x.
    1. McGowan P.O., Suderman M., Sasaki A., Huang T.C., Hallett M., Meaney M.J., Szyf M. Broad epigenetic signature of maternal care in the brain of adult rats. PLoS ONE. 2011;6 doi: 10.1371/journal.pone.0014739.
    1. Wong C.P., Rinaldi N.A., Ho E. Zinc deficiency enhanced inflammatory response by increasing immune cell activation and inducing IL6 promoter demethylation. Mol. Nutr. Food Res. 2015;59:991–999. doi: 10.1002/mnfr.201400761.
    1. Tian X., Diaz F. Acute dietary zinc deficiency before conception compromises oocyte epigenetic programming and disrupts embryonic development. Dev. Biol. 2013;376:51–61. doi: 10.1016/j.ydbio.2013.01.015.
    1. Valera P., Zavattari P., Albanese S., Cicchella D., Dinelli E., Lima A., De Vivo B. A correlation study between multiple sclerosis and type 1 diabetes incidences and geochemical data in europe. Environ. Geochem. Health. 2014;36:79–98. doi: 10.1007/s10653-013-9520-4.
    1. Wessels I. Epigenetics and minerals. In: Patel V., Preedy V., editors. Handbook of Nutrition, Diet, and Epigenetics. Springer International Publishing; Cham, Switzerland: 2017. pp. 1–19.
    1. Schapira M. Histone Deacetylases: The Biology and Clinical Implication. Springer; Berlin, Germany: 2011. Structural biology of human metal-dependent histone deacetylases; pp. 225–240.
    1. Davis C.D., Uthus E.O. DNA methylation, cancer susceptibility, and nutrient interactions. Exp. Biol. Med. 2004;229:988–995. doi: 10.1177/153537020422901002.
    1. Wong C.P., Magnusson K.R., Ho E. Increased inflammatory response in aged mice is associated with age-related zinc deficiency and zinc transporter dysregulation. J. Nutr. Biochem. 2013;24:353–359. doi: 10.1016/j.jnutbio.2012.07.005.
    1. Wuelling M., Pasdziernik M., Moll C.N., Thiesen A.M., Schneider S., Johannes C., Vortkamp A. The multi zinc-finger protein Trps1 acts as a regulator of histone deacetylation during mitosis. Cell Cycle. 2013;12:2219–2232. doi: 10.4161/cc.25267.
    1. Apgar J. Zinc and reproduction. Ann. Rev. Nutr. 1985;5:43–68. doi: 10.1146/annurev.nu.05.070185.000355.
    1. Uriu-Adams J.Y., Keen C.L. Zinc and reproduction: Effects of zinc deficiency on prenatal and early postnatal development. Birth Defects Res. Part B Dev. Reprod. Toxicol. 2010;89:313–325. doi: 10.1002/bdrb.20264.
    1. Beach R.S., Gershwin M.E., Hurley L.S. Gestational zinc deprivation in mice: Persistence of immunodeficiency for three generations. Science. 1982;218:469–471. doi: 10.1126/science.7123244.
    1. Tomat A.L., Inserra F., Veiras L., Vallone M.C., Balaszczuk A.M., Costa M.A., Arranz C. Moderate zinc restriction during fetal and postnatal growth of rats: Effects on adult arterial blood pressure and kidney. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008;295:R543–R549. doi: 10.1152/ajpregu.00050.2008.
    1. Yasuda H., Yoshida K., Yasuda Y., Tsutsui T. Infantile zinc deficiency: Association with autism spectrum disorders. Sci. Rep. 2011;1:129. doi: 10.1038/srep00129.
    1. Kong B.Y., Bernhardt M.L., Kim A.M., O’Halloran T.V., Woodruff T.K. Zinc maintains prophase I arrest in mouse oocytes through regulation of the MOS-MAPK pathway. Biol. Reprod. 2012;87:1–12. doi: 10.1095/biolreprod.112.099390.
    1. Kurita H., Ohsako S., Hashimoto S.-I., Yoshinaga J., Tohyama C. Prenatal zinc deficiency-dependent epigenetic alterations of mouse metallothionein-2 gene. J. Nutr. Biochem. 2013;24:256–266. doi: 10.1016/j.jnutbio.2012.05.013.
    1. Girgenti M.J., LoTurco J.J., Maher B.J. ZNF804A regulates expression of the schizophrenia-associated genes PRSS16, COMT, PDE4B, and DRD2. PLoS ONE. 2012;7 doi: 10.1371/journal.pone.0032404.
    1. Liou Y.-J., Chen C.-H., Cheng C.-Y., Chen S.-Y., Chen T.-J., Younger W., Nian F.-S., Tsai S.-J., Hong C.-J. Convergent evidence from mouse and human studies suggests the involvement of zinc finger protein 326 gene in antidepressant treatment response. PLoS ONE. 2012;7 doi: 10.1371/journal.pone.0032984.
    1. Huang Y.Z., Pan E., Xiong Z.-Q., McNamara J.O. Zinc-mediated transactivation of TrkB potentiates the hippocampal mossy fiber-CA3 pyramid synapse. Neuron. 2008;57:546–558. doi: 10.1016/j.neuron.2007.11.026.
    1. Dufault R., Lukiw W.J., Crider R., Schnoll R., Wallinga D., Deth R. A macroepigenetic approach to identify factors responsible for the autism epidemic in the united states. Clin. Epigenet. 2012;4:6. doi: 10.1186/1868-7083-4-6.
    1. Yasuda H., Tsutsui T. Assessment of infantile mineral imbalances in autism spectrum disorders (ASDs) Int. J. Environ. Res. Public Health. 2013;10:6027–6043. doi: 10.3390/ijerph10116027.
    1. Grabrucker A.M. A role for synaptic zinc in ProSAP/Shank PSD scaffold malformation in autism spectrum disorders. Dev. Neurobiol. 2014;74:136–146. doi: 10.1002/dneu.22089.
    1. Coneyworth L., Mathers J., Ford D. Does promoter methylation of the SLC30A5 (ZNT5) zinc transporter gene contribute to the ageing-related decline in zinc status?: Conference on ‘multidisciplinary approaches to nutritional problems’. Proc. Nutr. Soc. 2009;68:142–147. doi: 10.1017/S0029665109001104.
    1. Wang J., Wu Z., Li D., Li N., Dindot S.V., Satterfield M.C., Bazer F.W., Wu G. Nutrition, epigenetics, and metabolic syndrome. Antioxid. Redox Signal. 2012;17:282–301. doi: 10.1089/ars.2011.4381.
    1. Dufner-Beattie J., Weaver B.P., Geiser J., Bilgen M., Larson M., Xu W., Andrews G.K. The mouse acrodermatitis enteropathica gene SLC39A4 (ZIP4) is essential for early development and heterozygosity causes hypersensitivity to zinc deficiency. Hum. Mol. Genet. 2007;16:1391–1399. doi: 10.1093/hmg/ddm088.
    1. Geiser J., Venken K.J., De Lisle R.C., Andrews G.K. A mouse model of acrodermatitis enteropathica: Loss of intestine zinc transporter ZIP4 (SLC39A4) disrupts the stem cell niche and intestine integrity. PLoS Genet. 2012;8 doi: 10.1371/journal.pgen.1002766.
    1. Logsdon C.D., Simeone D.M., Binkley C., Arumugam T., Greenson J.K., Giordano T.J., Misek D.E., Hanash S. Molecular profiling of pancreatic adenocarcinoma and chronic pancreatitis identifies multiple genes differentially regulated in pancreatic cancer. Cancer Res. 2003;63:2649–2657.
    1. Eom S.J., Kim E.Y., Lee J.E., Kang H.J., Shim J., Kim S.U., Gwag B.J., Choi E.J. Zn(2+) induces stimulation of the c-Jun N-terminal kinase signaling pathway through phosphoinositide 3-Kinase. Mol. Pharmacol. 2001;59:981–986.
    1. Li M., Zhang Y., Liu Z., Bharadwaj U., Wang H., Wang X., Zhang S., Liuzzi J.P., Chang S.-M., Cousins R.J. Aberrant expression of zinc transporter ZIP4 (SLC39A4) significantly contributes to human pancreatic cancer pathogenesis and progression. Proc. Natl. Acad. Sci. USA. 2007;104:18636–18641. doi: 10.1073/pnas.0709307104.
    1. Li M., Zhang Y., Bharadwaj U., Zhai Q.J., Ahern C.H., Fisher W.E., Brunicardi F.C., Logsdon C.D., Chen C., Yao Q. Down-regulation of ZIP4 by RNA interference inhibits pancreatic cancer growth and increases the survival of nude mice with pancreatic cancer xenografts. Clin. Cancer Res. 2009;15:5993–6001. doi: 10.1158/1078-0432.CCR-09-0557.
    1. Weaver B.P., Zhang Y., Hiscox S., Guo G.L., Apte U., Taylor K.M., Sheline C.T., Wang L., Andrews G.K. ZIP4 (SLC39A4) expression is activated in hepatocellular carcinomas and functions to repress apoptosis, enhance cell cycle and increase migration. PLoS ONE. 2010;5 doi: 10.1371/journal.pone.0013158.
    1. Zhang Y., Bharadwaj U., Logsdon C.D., Chen C., Yao Q., Li M. ZIP4 regulates pancreatic cancer cell growth by activating IL-6/STAT3 pathway through zinc finger transcription factor creb. Clin. Cancer Res. 2010;16:1423–1430. doi: 10.1158/1078-0432.CCR-09-2405.
    1. Zhang Y., Chen C., Yao Q., Li M. ZIP4 upregulates the expression of neuropilin-1, vascular endothelial growth factor, and matrix metalloproteases in pancreatic cancer cell lines and xenografts. Cancer Biol. Ther. 2010;9:235–241. doi: 10.4161/cbt.9.3.10749.
    1. Schneider J., Ruschhaupt M., Buneß A., Asslaber M., Regitnig P., Zatloukal K., Schippinger W., Ploner F., Poustka A., Sültmann H. Identification and meta-analysis of a small gene expression signature for the diagnosis of estrogen receptor status in invasive ductal breast cancer. Int. J. Cancer. 2006;119:2974–2979. doi: 10.1002/ijc.22234.
    1. Tozlu S., Girault I., Vacher S., Vendrell J., Andrieu C., Spyratos F., Cohen P., Lidereau R., Bieche I. Identification of novel genes that co-cluster with estrogen receptor alpha in breast tumor biopsy specimens, using a large-scale real-time reverse transcription-pcr approach. Endocr. Relat. Cancer. 2006;13:1109–1120. doi: 10.1677/erc.1.01120.
    1. Taylor K.M. A distinct role in breast cancer for two LIV-1 family zinc transporters. Biochem. Soc. Trans. 2008;36:1247–1251. doi: 10.1042/BST0361247.
    1. Taylor K.M., Vichova P., Jordan N., Hiscox S., Hendley R., Nicholson R.I. ZIP7-mediated intracellular zinc transport contributes to aberrant growth factor signaling in antihormone-resistant breast cancer cells. Endocrinology. 2008;149:4912–4920. doi: 10.1210/en.2008-0351.
    1. Kagara N., Tanaka N., Noguchi S., Hirano T. Zinc and its transporter ZIP10 are involved in invasive behavior of breast cancer cells. Cancer Sci. 2007;98:692–697. doi: 10.1111/j.1349-7006.2007.00446.x.
    1. Taylor K.M., Nicholson R.I. The LZT proteins; the LIV-1 subfamily of zinc transporters. Biochim. Biophys. Acta. 2003;1611:16–30. doi: 10.1016/S0005-2736(03)00048-8.
    1. McClelland R.A., Manning D., Gee J., Willsher P., Robertson J., Ellis I., Blamey R., Nicholson R.I. Oestrogen-regulated genes in breast cancer: Association of pLIV1 with response to endocrine therapy. Br. J. Cancer. 1998;77:1653. doi: 10.1038/bjc.1998.271.
    1. Taylor K.M., Muraina I.A., Brethour D., Schmitt-Ulms G., Nimmanon T., Ziliotto S., Kille P., Hogstrand C. Zinc transporter ZIP10 forms a heteromer with ZIP6 which regulates embryonic development and cell migration. Biochem. J. 2016;473:2531–2544. doi: 10.1042/BCJ20160388.
    1. Nimmanon T., Ziliotto S., Morris S., Flanagan L., Taylor K. Phosphorylation of zinc channel ZIP7 drives MAPK, PI3K and mTOR growth and proliferation signalling. Metallomics Integr. Biomet. Sci. 2017;9:471–481. doi: 10.1039/C6MT00286B.
    1. Knowlden J.M., Hutcheson I.R., Jones H.E., Madden T., Gee J.M., Harper M.E., Barrow D., Wakeling A.E., Nicholson R.I. Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells. Endocrinology. 2003;144:1032–1044. doi: 10.1210/en.2002-220620.
    1. Jones H.E., Goddard L., Gee J.M.W., Hiscox S., Rubini M., Barrow D., Knowlden J.M., Williams S., Wakeling A., Nicholson R.I. Insulin-like growth factor-I receptor signalling and acquired resistance to gefitinib (ZD1839; Iressa) in human breast and prostate cancer cells. Endocr. Relat. Cancer. 2004;11:793–814. doi: 10.1677/erc.1.00799.
    1. Josefowicz S.Z., Lu L.F., Rudensky A.Y. Regulatory t cells: Mechanisms of differentiation and function. Annu. Rev. Immunol. 2012;30:531–564. doi: 10.1146/annurev.immunol.25.022106.141623.
    1. Costas J. The highly pleiotropic gene SLC39A8 as an opportunity to gain insight into the molecular pathogenesis of schizophrenia. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2017 doi: 10.1002/ajmg.b.32545.
    1. Chowanadisai W. Comparative genomic analysis of SLC39A12/ZIP12: Insight into a zinc transporter required for vertebrate nervous system development. PLoS ONE. 2014;9 doi: 10.1371/journal.pone.0111535.
    1. Kimura K., Kumura J. Preliminary reports on the metabolism of trace elements in neuro-psychiatric diseases. I. Proc. Jpn. Acad. 1965;41:943–947.
    1. Bly M. Examination of the zinc transporter gene, SLC39A12. Schizophr. Res. 2006;81:321–322. doi: 10.1016/j.schres.2005.07.039.
    1. Prasad A.S. Effects of zinc deficiency on TH1 and TH2 cytokine shifts. J. Infect. Dis. 2000;182(Suppl. 1):S62–S68. doi: 10.1086/315916.
    1. Honscheid A., Dubben S., Rink L., Haase H. Zinc differentially regulates mitogen-activated protein kinases in human T cells. J. Nutr. Biochem. 2012;23:18–26. doi: 10.1016/j.jnutbio.2010.10.007.
    1. Lecomte D., Fornes P. Suicide among youth and young adults, 15 through 24 years of age. A report of 392 cases from Paris, 1989–1996. J. Forensic Sci. 1998;43:964–968. doi: 10.1520/JFS14342J.
    1. Yary T., Aazami S. Dietary intake of zinc was inversely associated with depression. Biol. Trace Elem. Res. 2012;145:286–290. doi: 10.1007/s12011-011-9202-y.
    1. Nowak G., Szewczyk B., Pilc A. Zinc and depression. An update. Pharmacol. Rep. 2005;57:713–718.
    1. Maes M., Bosmans E., De Jongh R., Kenis G., Vandoolaeghe E., Neels H. Increased serum IL-6 and IL-1 receptor antagonist concentrations in major depression and treatment resistant depression. Cytokine. 1997;9:853–858. doi: 10.1006/cyto.1997.0238.
    1. Frederickson C.J. Neurobiology of zinc and zinc-containing neurons. Int. Rev. Neurobiol. 1989;31:145–238.
    1. Styczen K., Sowa-Kucma M., Siwek M., Dudek D., Reczynski W., Szewczyk B., Misztak P., Topor-Madry R., Opoka W., Nowak G. The serum zinc concentration as a potential biological marker in patients with major depressive disorder. Metab. Brain Dis. 2017;32:97–103. doi: 10.1007/s11011-016-9888-9.
    1. Himmerich H., Milenovic S., Fulda S., Plumakers B., Sheldrick A.J., Michel T.M., Kircher T., Rink L. Regulatory T cells increased while IL-1beta decreased during antidepressant therapy. J. Psychiatr. Res. 2010;44:1052–1057. doi: 10.1016/j.jpsychires.2010.03.005.
    1. Wong E.K., Jr., Enomoto H., Leopold I.H., Fleischer E.B., Schoon D.V., Fender D., Tucker H.G., Adamson B., Kladde L., Kazan D., et al. Plasma zinc levels in multiple sclerosis. Metab. Pediatr. Ophthalmol. 1980;4:3–8.
    1. Ascherio A., Munger K.L. Environmental risk factors for multiple sclerosis. Part II: Noninfectious factors. Ann. Neurol. 2007;61:504–513. doi: 10.1002/ana.21141.
    1. Bredholt M., Frederiksen J.L. Zinc in multiple sclerosis: A systematic review and meta-analysis. ASN Neuro. 2016;8 doi: 10.1177/1759091416651511.
    1. Campo C.A., Wellinghausen N., Faber C., Fischer A., Rink L. Zinc inhibits the mixed lymphocyte culture. Biol. Trace Elem. Res. 2001;79:15–22.
    1. Faber C., Gabriel P., Ibs K.H., Rink L. Zinc in pharmacological doses suppresses allogeneic reaction without affecting the antigenic response. Bone Marrow Transplant. 2004;33:1241–1246. doi: 10.1038/sj.bmt.1704509.
    1. Kown M.H., van der Steenhoven T.J., Jahncke C.L., Mari C., Lijkwan M.A., Koransky M.L., Blankenberg F.G., Strauss H.W., Robbins R.C. Zinc chloride-mediated reduction of apoptosis as an adjunct immunosuppressive modality in cardiac transplantation. J. Heart Lung Transplant. Off. Publ. Int. Soc. Heart Transplant. 2002;21:360–365. doi: 10.1016/S1053-2498(01)00384-9.
    1. Schubert C., Guttek K., Grungreiff K., Thielitz A., Buhling F., Reinhold A., Brocke S., Reinhold D. Oral zinc aspartate treats experimental autoimmune encephalomyelitis. Biometals. 2014;27:1249–1262. doi: 10.1007/s10534-014-9786-8.
    1. Giunta C., Randolph A., Steinmann B. Mutation analysis of the PLOD1 gene: An efficient multistep approach to the molecular diagnosis of the kyphoscoliotic type of ehlers-danlos syndrome (EDS VIA) Mol. Genet. Metab. 2005;86:269–276. doi: 10.1016/j.ymgme.2005.04.014.
    1. Bin B.-H., Hojyo S., Ryong Lee T., Fukada T. Spondylocheirodysplastic Ehlers-Danlos syndrome (SCD-EDS) and the mutant zinc transporter ZIP13. Rare Dis. 2014;2 doi: 10.4161/21675511.2014.974982.
    1. Fukada T., Asada Y., Mishima K., Shimoda S., Saito I. SLC39A13/ZIP13: A crucial zinc transporter involved in tooth development and inherited disorders. J. Oral Biosci. 2011;53:1–12. doi: 10.1016/S1349-0079(11)80030-7.
    1. Fukada T., Civic N., Furuichi T., Shimoda S., Mishima K., Higashiyama H., Idaira Y., Asada Y., Kitamura H., Yamasaki S. The zinc transporter SLC39A13/ZIP13 is required for connective tissue development; its involvement in BMP/TGF-β signaling pathways. PLoS ONE. 2008;3 doi: 10.1371/annotation/a6c35a12-e8eb-43a0-9d00-5078fa6da1bb.
    1. Chai J., Wu J.-W., Yan N., Massagué J., Pavletich N.P., Shi Y. Features of a Smad3 MH1-DNA complex roles of water and zinc in DNA binding. J. Biol. Chem. 2003;278:20327–20331. doi: 10.1074/jbc.C300134200.
    1. Kim J.-H., Jeon J., Shin M., Won Y., Lee M., Kwak J.-S., Lee G., Rhee J., Ryu J.-H., Chun C.-H. Regulation of the catabolic cascade in osteoarthritis by the zinc-ZIP8-MTF1 axis. Cell. 2014;156:730–743. doi: 10.1016/j.cell.2014.01.007.
    1. Park J.H., Hogrebe M., Grüneberg M., DuChesne I., Ava L., Reunert J., Schlingmann K.P., Boycott K.M., Beaulieu C.L., Mhanni A.A. SLC39A8 deficiency: A disorder of manganese transport and glycosylation. Am. J. Hum. Genet. 2015;97:894–903. doi: 10.1016/j.ajhg.2015.11.003.
    1. Besecker B., Bao S., Bohacova B., Papp A., Sadee W., Knoell D.L. The human zinc transporter SLC39A8 (ZIP8) is critical in zinc-mediated cytoprotection in lung epithelia. Am. J. Physiol. Lung Cell. Mol. Physiol. 2008;294:L1127–L1136. doi: 10.1152/ajplung.00057.2008.
    1. Napolitano J.R., Liu M.-J., Bao S., Crawford M., Nana-Sinkam P., Cormet-Boyaka E., Knoell D.L. Cadmium-mediated toxicity of lung epithelia is enhanced through NF-κB-mediated transcriptional activation of the human zinc transporter ZIP8. Am. J. Physiol. Lung Cell. Mol. Physiol. 2012;302:L909–L918. doi: 10.1152/ajplung.00351.2011.
    1. Aggett P., Atherton D., More J., Davey J., Delves H., Harries J. Symptomatic zinc deficiency in a breast-fed preterm infant. Arch. Dis. Child. 1980;55:547–550. doi: 10.1136/adc.55.7.547.
    1. Chowanadisai W., Lönnerdal B., Kelleher S.L. Identification of a mutation in SLC30A2 (ZNT-2) in women with low milk zinc concentration that results in transient neonatal zinc deficiency. J. Biol. Chem. 2006;281:39699–39707. doi: 10.1074/jbc.M605821200.
    1. Murthy S.C., Udagani M.M., Badakali A.V., Yelameli B.C. Symptomatic zinc deficiency in a full-term breast-fed infant. Dermatol. Online J. 2010;16:307–308.
    1. Itsumura N., Inamo Y., Okazaki F., Teranishi F., Narita H., Kambe T., Kodama H. Compound heterozygous mutations in SLC30A2/ZNT2 results in low milk zinc concentrations: A novel mechanism for zinc deficiency in a breast-fed infant. PLoS ONE. 2013;8 doi: 10.1371/journal.pone.0064045.
    1. Itsumura N., Kibihara Y., Fukue K., Miyata A., Fukushima K., Tamagawa-Mineoka R., Katoh N., Nishito Y., Ishida R., Narita H. Novel mutations in SLC30A2 involved in the pathogenesis of transient neonatal zinc deficiency. Pediatr. Res. 2016;80:586–594. doi: 10.1038/pr.2016.108.
    1. Huang L., Gitschier J. A novel gene involved in zinc transport is deficient in the lethal milk mouse. Nat. Genet. 1997;17:292–297. doi: 10.1038/ng1197-292.
    1. Ackland M.L., Mercer J. The murine mutation, lethal milk, results in production of zinc-deficient milk. J. Nutr. 1992;122:1214.
    1. McCormick N.H., Lee S., Hennigar S.R., Kelleher S.L. Znt4 (SLC30a4)-null (“lethal milk”) mice have defects in mammary gland secretion and hallmarks of precocious involution during lactation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016;310:R33–R40. doi: 10.1152/ajpregu.00315.2014.
    1. Ackland M.L., Michalczyk A. Zinc deficiency and its inherited disorders—A review. Genes Nutr. 2006;1:41–49. doi: 10.1007/BF02829935.
    1. Danaei G., Finucane M.M., Lu Y., Singh G.M., Cowan M.J., Paciorek C.J., Lin J.K., Farzadfar F., Khang Y.-H., Stevens G.A. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: Systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet. 2011;378:31–40. doi: 10.1016/S0140-6736(11)60679-X.
    1. Katsarou A., Gudbjornsdottir S., Rawshani A., Dabelea D., Bonifacio E., Anderson B.J., Jacobsen L.M., Schatz D.A., Lernmark A. Type 1 diabetes mellitus. Nat. Rev. Dis. Prim. 2017;3:17016. doi: 10.1038/nrdp.2017.16.
    1. Wenzlau J.M., Liu Y., Yu L., Moua O., Fowler K.T., Rangasamy S., Walters J., Eisenbarth G.S., Davidson H.W., Hutton J.C. A common nonsynonymous single nucleotide polymorphism in the SLC30A8 gene determines ZNT8 autoantibody specificity in type 1 diabetes. Diabetes. 2008;57:2693–2697. doi: 10.2337/db08-0522.
    1. Sladek R., Rocheleau G., Rung J., Christian D., Shen L., Serre D., Boutin P., Vincent D., Belisle A., Hadjadj S. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;445:881. doi: 10.1038/nature05616.
    1. Pound L.D., Sarkar S.A., Benninger R.K., Wang Y., Suwanichkul A., Shadoan M.K., Printz R.L., Oeser J.K., Lee C.E., Piston D.W. Deletion of the mouse SLC30A8 gene encoding zinc transporter-8 results in impaired insulin secretion. Biochem. J. 2009;421:371–376. doi: 10.1042/BJ20090530.
    1. Lemaire K., Ravier M., Schraenen A., Creemers J., Van de Plas R., Granvik M., Van Lommel L., Waelkens E., Chimienti F., Rutter G., et al. Insulin crystallization depends on zinc transporter ZNT8 expression, but is not required for normal glucose homeostasis in mice. Proc. Natl. Acad. Sci. USA. 2009;106:14872–14877. doi: 10.1073/pnas.0906587106.
    1. Trabucchi A., Faccinetti N.I., Guerra L.L., Puchulu F.M., Frechtel G.D., Poskus E., Valdez S.N. Detection and characterization of ZNT8 autoantibodies could help to screen latent autoimmune diabetes in adult-onset patients with type 2 phenotype. Autoimmunity. 2012;45:137–142. doi: 10.3109/08916934.2011.604658.
    1. Vaziri-Sani F., Oak S., Radtke J., Lernmark Å., Lynch K., Agardh C.-D., Cilio C.M., Lethagen Å.L., Örtqvist E., Landin-Olsson M. ZNT8 autoantibody titers in type 1 diabetes patients decline rapidly after clinical onset. Autoimmunity. 2010;43:598–606. doi: 10.3109/08916930903555927.
    1. Dang M., Rockell J., Wagner R., Wenzlau J.M., Yu L., Hutton J.C., Gottlieb P.A., Davidson H.W. Human type 1 diabetes is associated with T cell autoimmunity to zinc transporter 8. J. Immunol. 2011;186:6056–6063. doi: 10.4049/jimmunol.1003815.
    1. Lampasona V., Petrone A., Tiberti C., Capizzi M., Spoletini M., Di Pietro S., Songini M., Bonicchio S., Giorgino F., Bonifacio E. Zinc transporter 8 antibodies complement GAD and IA-2 antibodies in the identification and characterization of adult-onset autoimmune diabetes. Diabetes Care. 2010;33:104–108. doi: 10.2337/dc08-2305.
    1. Rungby J. Zinc, zinc transporters and diabetes. Diabetologia. 2010;53:1549–1551. doi: 10.1007/s00125-010-1793-x.
    1. Jansen J., Karges W., Rink L. Zinc and diabetes—Clinical links and molecular mechanisms. J. Nutr. Biochem. 2009;20:399–417. doi: 10.1016/j.jnutbio.2009.01.009.
    1. Nicolson T.J., Bellomo E.A., Wijesekara N., Loder M.K., Baldwin J.M., Gyulkhandanyan A.V., Koshkin V., Tarasov A.I., Carzaniga R., Kronenberger K. Insulin storage and glucose homeostasis in mice null for the granule zinc transporter Znt8 and studies of the type 2 diabetes-associated variants. Diabetes. 2009;58:2070–2083. doi: 10.2337/db09-0551.
    1. Wijesekara N., Dai F., Hardy A., Giglou P., Bhattacharjee A., Koshkin V., Chimienti F., Gaisano H., Rutter G., Wheeler M. Beta cell-specific ZNT8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion. Diabetologia. 2010;53:1656–1668. doi: 10.1007/s00125-010-1733-9.
    1. Franklin I., Gromada J., Gjinovci A., Theander S., Wollheim C.B. Β-cell secretory products activate α-cell ATP-dependent potassium channels to inhibit glucagon release. Diabetes. 2005;54:1808–1815. doi: 10.2337/diabetes.54.6.1808.
    1. Jansen J., Rosenkranz E., Overbeck S., Warmuth S., Mocchegiani E., Giacconi R., Weiskirchen R., Karges W., Rink L. Disturbed zinc homeostasis in diabetic patients by in vitro and in vivo analysis of insulinomimetic activity of zinc. J. Nutr. Biochem. 2012;23:1458–1466. doi: 10.1016/j.jnutbio.2011.09.008.
    1. Jayawardena R., Ranasinghe P., Galappatthy P., Malkanthi R., Constantine G., Katulanda P. Effects of zinc supplementation on diabetes mellitus: A systematic review and meta-analysis. Diabetol. Metab. Syndr. 2012;4:13. doi: 10.1186/1758-5996-4-13.
    1. Valera P., Zavattari P., Sanna A., Pretti S., Marcello A., Mannu C., Targhetta C., Bruno G., Songini M. Zinc and other metals deficiencies and risk of type 1 diabetes: An ecological study in the high risk sardinia island. PLoS ONE. 2015;10 doi: 10.1371/journal.pone.0141262.
    1. Hirano T., Taga T., Yasukawa K., Nakajima K., Nakano N., Takatsuki F., Shimizu M., Murashima A., Tsunasawa S., Sakiyama F., et al. Human B-cell differentiation factor defined by an anti-peptide antibody and its possible role in autoantibody production. Proc. Natl. Acad. Sci. USA. 1987;84:228–231. doi: 10.1073/pnas.84.1.228.
    1. Daviglus M.L., Bell C.C., Berrettini W., Bowen P.E., Connolly E.S., Jr., Cox N.J., Dunbar-Jacob J.M., Granieri E.C., Hunt G., McGarry K., et al. Nih state-of-the-science conference statement: Preventing alzheimer’s disease and cognitive decline. NIH Consens. State Sci. Statements. 2010;27:1–30.
    1. Szewczyk B. Zinc homeostasis and neurodegenerative disorders. Front. Aging Neurosci. 2013;5:33. doi: 10.3389/fnagi.2013.00033.
    1. Lyubartseva G., Smith J.L., Markesbery W.R., Lovell M.A. Alterations of zinc transporter proteins ZNT-1, ZNT-4 and ZNT-6 in preclinical alzheimer’s disease brain. Brain Pathol. 2010;20:343–350. doi: 10.1111/j.1750-3639.2009.00283.x.
    1. Smith J., Xiong S., Markesbery W., Lovell M. Altered expression of zinc transporters-4 and-6 in mild cognitive impairment, early and late Alzheimer’s disease brain. Neuroscience. 2006;140:879–888. doi: 10.1016/j.neuroscience.2006.02.049.
    1. Lovell M.A., Smith J.L., Xiong S., Markesbery W.R. Alterations in zinc transporter protein-1 (ZNT-1) in the brain of subjects with mild cognitive impairment, early, and late-stage Alzheimer’s disease. Neurotox. Res. 2005;7:265–271. doi: 10.1007/BF03033884.
    1. Yu W.H., Lukiw W.J., Bergeron C., Niznik H.B., Fraser P.E. Metallothionein iii is reduced in Alzheimer’s disease. Brain Res. 2001;894:37–45. doi: 10.1016/S0006-8993(00)03196-6.
    1. Uchida Y., Takio K., Titani K., Ihara Y., Tomonaga M. The growth inhibitory factor that is deficient in the alzheimer’s disease brain is a 68 amino acid metallothionein-like protein. Neuron. 1991;7:337–347. doi: 10.1016/0896-6273(91)90272-2.
    1. Erickson J.C., Sewell A.K., Jensen L.T., Winge D.R., Palmiter R.D. Enhanced neurotrophic activity in Alzheimer’s disease cortex is not associated with down-regulation of metallothionein-III (GIF) Brain Res. 1994;649:297–304. doi: 10.1016/0006-8993(94)91076-6.
    1. Wu H.Y., Hudry E., Hashimoto T., Kuchibhotla K., Rozkalne A., Fan Z., Spires-Jones T., Xie H., Arbel-Ornath M., Grosskreutz C.L., et al. Amyloid beta induces the morphological neurodegenerative triad of spine loss, dendritic simplification, and neuritic dystrophies through calcineurin activation. J. Neurosci. Off. J. Soc. Neurosci. 2010;30:2636–2649. doi: 10.1523/JNEUROSCI.4456-09.2010.
    1. Reese L.C., Zhang W., Dineley K.T., Kayed R., Taglialatela G. Selective induction of calcineurin activity and signaling by oligomeric amyloid beta. Aging Cell. 2008;7:824–835. doi: 10.1111/j.1474-9726.2008.00434.x.
    1. Panayi A.E., Spyrou N.M., Iversen B.S., White M.A., Part P. Determination of cadmium and zinc in Alzheimer’s brain tissue using inductively coupled plasma mass spectrometry. J. Neurol. Sci. 2002;195:1–10. doi: 10.1016/S0022-510X(01)00672-4.
    1. Samudralwar D.L., Diprete C.C., Ni B.F., Ehmann W.D., Markesbery W.R. Elemental imbalances in the olfactory pathway in Alzheimer’s disease. J. Neurol. Sci. 1995;130:139–145. doi: 10.1016/0022-510X(95)00018-W.
    1. Cuajungco M.P., Faget K.Y. Zinc takes the center stage: Its paradoxical role in Alzheimer’s disease. Brain Res. Brain Res. Rev. 2003;41:44–56. doi: 10.1016/S0165-0173(02)00219-9.
    1. Lovell M.A., Xie C., Markesbery W.R. Protection against amyloid beta peptide toxicity by zinc. Brain Res. 1999;823:88–95. doi: 10.1016/S0006-8993(99)01114-2.
    1. Garai K., Sengupta P., Sahoo B., Maiti S. Selective destabilization of soluble amyloid beta oligomers by divalent metal ions. Biochem. Biophys. Res. Commun. 2006;345:210–215. doi: 10.1016/j.bbrc.2006.04.056.
    1. Lee J.Y., Cole T.B., Palmiter R.D., Suh S.W., Koh J.Y. Contribution by synaptic zinc to the gender-disparate plaque formation in human Swedish mutant APP transgenic mice. Proc. Natl. Acad. Sci. USA. 2002;99:7705–7710. doi: 10.1073/pnas.092034699.
    1. Atrian-Blasco E., Conte-Daban A., Hureau C. Mutual interference of Cu and Zn ions in Alzheimer’s disease: Perspectives at the molecular level. Dalton Trans. 2017;46:12750–12759. doi: 10.1039/C7DT01344B.

Source: PubMed

3
購読する