Lactobacillus plantarum TWK10 Improves Muscle Mass and Functional Performance in Frail Older Adults: A Randomized, Double-Blind Clinical Trial

Mon-Chien Lee, Yu-Tsai Tu, Chia-Chia Lee, Shiow-Chwen Tsai, Han-Yin Hsu, Tsung-Yu Tsai, Te-Hua Liu, San-Land Young, Jin-Seng Lin, Chi-Chang Huang, Mon-Chien Lee, Yu-Tsai Tu, Chia-Chia Lee, Shiow-Chwen Tsai, Han-Yin Hsu, Tsung-Yu Tsai, Te-Hua Liu, San-Land Young, Jin-Seng Lin, Chi-Chang Huang

Abstract

Sarcopenia is a condition in which there is a loss of muscle caused by aging and it is one of the most significant factors that affects physical fragility. In recent years, the role of the gut-muscle axis has garnered attention as, along with the gut microbiota, it potentially plays a significant role in muscle regeneration, in addition to nutritional supplements and exercise training. Past studies have found that supplementation with Lactobacillus plantarum TWK10 could effectively increase the muscle mass of animals or adult humans. Therefore, in this study, we investigated whether the supplementation of L. plantarum TWK10 produces increased muscle mass and improves the functional performance of elderly persons with mild fragility. A total of 68 elderly subjects were recruited, of which 13 subjects were excluded or withdrew from the study. We adopted a double-blind design, and the 55 subjects were randomly divided into three groups: the placebo group, the TWK10 low-dose group (2 × 1010 CFU/day) (TWK10-L), and the TWK10 high-dose group (6 × 1010 colony-forming unit (CFU)/day) (TWK10-H). For 18 weeks, all subjects were required to regularly take experimental samples, perform functional activity testing, and have their body composition analyzed before the study and every six weeks after the intervention. Finally, 17 subjects in the placebo group, 12 subjects in the TWK10-L group, and 13 subjects in the TWK10-H group finished the study. It was found that supplementation with TWK10 had a tendency to increase and improve muscle mass, left hand grip strength, lower limb muscle strength, and gait speed and balance after the sixth week, especially in the TWK10-H group, and, as the supplement time was longer up to the 18th week, it had an even greater effect (p < 0.05). In conclusion, consecutive supplementation of L. plantarum TWK10 for more than six weeks could effectively improve the muscle strength and endurance of the elderly, reducing sarcopenia and physical fragility. This trial was registered as NCT04893746.

Keywords: Lactobacillus plantarum; aging; elderly; muscle mass; physical fragility; sarcopenia.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Experimental procedure description.
Figure 2
Figure 2
Effect of L. plantarum TWK10 supplementation on the (A) right and (B) left hand grip strength of elderly participants. Data are expressed as mean ± SD. * p < 0.05 vs. baseline.
Figure 3
Figure 3
Effect of TWK10 supplementation in elderly on (A) 3 m timed up and go test, (B) 10 m walk test, and (C) 30 s chair stand test at baseline, 6th, 12th, and 18th weeks, respectively, in placebo group (n = 17), TWK10-L (n = 12), and TWK10-H (n = 13) groups. Data are expressed as mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. baseline of each group. ## p < 0.01 vs. between groups at same time point.
Figure 4
Figure 4
Effect of TWK10 supplementation in elderly on (A) muscle mass, (B) fat mass, (C) relative muscle mass, and (D) relative fat mass at baseline, 6th, 12th, and 18th weeks, respectively, in placebo group (n = 17), TWK10-L (n = 12), and TWK10-H (n = 13). Data are expressed as mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. baseline of each group.
Figure 5
Figure 5
Effect of L. plantarum TWK10 supplementation on the (A) bone mineral density (BMD) and (B) T-score of elderly participants. Data are expressed as mean ± SD.

References

    1. Suzman R., Beard J.R., Boerma T., Chatterji S. Health in an ageing world—What do we know? Lancet. 2015;385:484–486. doi: 10.1016/S0140-6736(14)61597-X.
    1. Marzetti E., Calvani R., Tosato M., Cesari M., Di Bari M., Cherubini A., Collamati A., D’Angelo E., Pahor M., Bernabei R., et al. SPRINTT Consortium. Sarcopenia: An overview. Aging Clin. Exp. Res. 2017;29:11–17. doi: 10.1007/s40520-016-0704-5.
    1. Dawson A., Dennison E. Measuring the musculoskeletal aging phenotype. Maturitas. 2016;93:13–17. doi: 10.1016/j.maturitas.2016.04.014.
    1. Rosenberg I.H. Sarcopenia: Origins and clinical relevance. J. Nutr. 1997;127:990S–991S. doi: 10.1093/jn/127.5.990S.
    1. Cruz-Jentoft A.J., Bahat G., Bauer J., Boirie Y., Bruyère O., Cederholm T., Cooper C., Landi F., Rolland Y., Sayer A.A., et al. Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019;48:16–31. doi: 10.1093/ageing/afy169.
    1. Mijnarends D.M., Schols J.M., Meijers J.M., Tan F.E., Verlaan S., Luiking Y.C., Morley J.E., Halfens R.J. Instruments to assess sarcopenia and physical frailty in older people living in a community (care) setting: Similarities and discrepancies. J. Am. Med. Dir. Assoc. 2015;16:301–308. doi: 10.1016/j.jamda.2014.11.011.
    1. Clegg A., Young J., Iliffe S., Rikkert M.O., Rockwood K. Frailty in elderly people. Lancet. 2013;381:752–762. doi: 10.1016/S0140-6736(12)62167-9.
    1. Dent E., Morley J.E., Cruz-Jentoft A.J., Woodhouse L., Rodríguez-Mañas L., Fried L.P., Woo J., Aprahamian I., Sanford A., Lundy J., et al. Physical Frailty: ICFSR International Clinical Practice Guidelines for Identification and Management. J. Nutr. Health Aging. 2019;23:771–787. doi: 10.1007/s12603-019-1273-z.
    1. Lin C.H., Liao C.C., Huang C.H., Tung Y.T., Chang H.C., Hsu M.C., Huang C.C. Proteomics Analysis to Identify and Characterize the Biomarkers and Physical Activities of Non-Frail and Frail Older Adults. Int. J. Med. Sci. 2017;14:231–239. doi: 10.7150/ijms.17627.
    1. Eckardt N. Lower-extremity resistance training on unstable surfaces improves proxies of muscle strength, power and balance in healthy older adults: A randomised control trial. BMC Geriatr. 2016;16:191. doi: 10.1186/s12877-016-0366-3.
    1. Naczk M., Marszalek S., Naczk A. Inertial Training Improves Strength, Balance, and Gait Speed in Elderly Nursing Home Residents. Clin. Interv. Aging. 2020;15:177–184. doi: 10.2147/CIA.S234299.
    1. Liguori I., Russo G., Aran L., Bulli G., Curcio F., Della-Morte D., Gargiulo G., Testa G., Cacciatore F., Bonaduce D., et al. Sarcopenia: Assessment of disease burden and strategies to improve outcomes. Clin. Interv. Aging. 2018;13:913–927. doi: 10.2147/CIA.S149232.
    1. Rodrigo-Claverol M., Casanova-Gonzalvo C., Malla-Clua B., Rodrigo-Claverol E., Jové-Naval J., Ortega-Bravo M. Animal-Assisted Intervention Improves Pain Perception in Polymedicated Geriatric Patients with Chronic Joint Pain: A Clinical Trial. Int. J. Environ. Res. Public Health. 2019;16:2843. doi: 10.3390/ijerph16162843.
    1. Landi F., Calvani R., Tosato M., Martone A.M., Ortolani E., Savera G., Sisto A., Marzetti E. Anorexia of Aging: Risk Factors, Consequences, and Potential Treatments. Nutrients. 2016;8:69. doi: 10.3390/nu8020069.
    1. Zhao J., Huang Y., Yu X. A Narrative Review of Gut-Muscle Axis and Sarcopenia: The Potential Role of Gut Microbiota. Int. J. Gen. Med. 2021;14:1263–1273. doi: 10.2147/IJGM.S301141.
    1. Martí J.M., Martínez-Martínez D., Rubio T., Gracia C., Peña M., Latorre A., Moya A.P., Garay C. Health and Disease Imprinted in the Time Variability of the Human Microbiome. mSystems. 2017;2:e00144–e00216. doi: 10.1128/mSystems.00144-16.
    1. Ticinesi A., Mancabelli L., Tagliaferri S., Nouvenne A., Milani C., Del Rio D., Lauretani F., Maggio M.G., Ventura M., Meschi T. The Gut-Muscle Axis in Older Subjects with Low Muscle Mass and Performance: A Proof of Concept Study Exploring Fecal Microbiota Composition and Function with Shotgun Metagenomics Sequencing. Int. J. Mol. Sci. 2020;21:8946. doi: 10.3390/ijms21238946.
    1. Food and Agricultural Organization of the United Nations. World Health Organization . Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria. Joint FAO/WHO Expert Consultation; Córdoba, Argentina: 2001.
    1. Van Tongeren S.P., Slaets J.P., Harmsen H.J., Welling G.W. Fecal microbiota composition and frailty. Appl. Environ. Microbiol. 2005;71:6438–6442. doi: 10.1128/AEM.71.10.6438-6442.2005.
    1. Kaźmierczak-Siedlecka K., Folwarski M., Skonieczna-Żydecka K., Ruszkowski J., Makarewicz W. The use of Lactobacillus plantarum 299v (DSM 9843) in cancer patients receiving home enteral nutrition—Study protocol for a randomized, double-blind, and placebo-controlled trial. Nutr. J. 2020;19:98. doi: 10.1186/s12937-020-00598-w.
    1. Bested A.C., Logan A.C., Selhub E.M. Intestinal microbiota, probiotics and mental health: From Metchnikoff to modern advances: Part II—Contemporary contextual research. Gut Pathog. 2013;5:3. doi: 10.1186/1757-4749-5-3.
    1. Chen Y.M., Wei L., Chiu Y.S., Hsu Y.J., Tsai T.Y., Wang M.F., Huang C.C. Lactobacillus plantarum TWK10 Supplementation Improves Exercise Performance and Increases Muscle Mass in Mice. Nutrients. 2016;8:205. doi: 10.3390/nu8040205.
    1. Huang W.C., Lee M.C., Lee C.C., Ng K.S., Hsu Y.J., Tsai T.Y., Young S.L., Lin J.S., Huang C.C. Effect of Lactobacillus plantarum TWK10 on Exercise Physiological Adaptation, Performance, and Body Composition in Healthy Humans. Nutrients. 2019;11:2836. doi: 10.3390/nu11112836.
    1. Yang L., Koyanagi A., Smith L., Hu L., Colditz G.A., Toriola A.T., López Sánchez G.F., Vancampfort D., Hamer M., Stubbs B., et al. Hand grip strength and cognitive function among elderly cancer survivors. PLoS ONE. 2018;13:e0197909. doi: 10.1371/journal.pone.0197909.
    1. Vieira de Moraes Filho A., Chaves S.N., Martins W.R., Tolentino G.P., de Cássia Pereira Pinto Homem R., Landim de Farias G., Fischer B.L., Oliveira J.A., Pereira S.K.A., Vidal S.E., et al. Progressive Resistance Training Improves Bradykinesia, Motor Symptoms and Functional Performance in Patients with Parkinson’s Disease. Clin. Interv. Aging. 2020;15:87–95. doi: 10.2147/CIA.S231359.
    1. Krugh M., Langaker M.D. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2021. Dual Energy X-ray Absorptiometry.
    1. Osawa R., Ikegami S., Horiuchi H., Tokida R., Kato H., Takahashi J. Osteoporosis Detection by Physical Function Tests in Resident Health Exams: A Japanese Cohort Survey Randomly Sampled from a Basic Resident Registry. J. Clin. Med. 2021;10:1896. doi: 10.3390/jcm10091896.
    1. Mitchell W.K., Williams J., Atherton P., Larvin M., Lund J., Narici M. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength—A quantitative review. Front. Physiol. 2012;3:260. doi: 10.3389/fphys.2012.00260.
    1. Soysal P., Isik A.T., Carvalho A.F., Fernandes B.S., Solmi M., Schofield P., Veronese N., Stubbs B. Oxidative stress and frailty: A systematic review and synthesis of the best evidence. Maturitas. 2017;99:66–72. doi: 10.1016/j.maturitas.2017.01.006.
    1. Wilson D., Jackson T., Sapey E., Lord J.M. Frailty and sarcopenia: The potential role of an aged immune system. Ageing Res. Rev. 2017;36:1–10. doi: 10.1016/j.arr.2017.01.006.
    1. Marchesi J.R., Adams D.H., Fava F., Hermes G.D., Hirschfield G.M., Hold G., Quraishi M.N., Kinross J., Smidt H., Tuohy K.M., et al. The gut microbiota and host health: A new clinical frontier. Gut. 2016;65:330–339. doi: 10.1136/gutjnl-2015-309990.
    1. Neis E.P., Dejong C.H., Rensen S.S. The role of microbial amino acid metabolism in host metabolism. Nutrients. 2015;7:2930–2946. doi: 10.3390/nu7042930.
    1. Dukes A., Davis C., El Refaey M., Upadhyay S., Mork S., Arounleut P., Johnson M.H., Hill W.D., Isales C.M., Hamrick M.W. The aromatic amino acid tryptophan stimulates skeletal muscle IGF1/p70s6k/mTor signaling in vivo and the expression of myogenic genes in vitro. Nutrition. 2015;31:1018–1024. doi: 10.1016/j.nut.2015.02.011.
    1. Bindels L.B., Delzenne N.M. Muscle wasting: The gut microbiota as a new therapeutic target? Int. J. Biochem. Cell Biol. 2013;45:2186–2190. doi: 10.1016/j.biocel.2013.06.021.
    1. Maruta H., Yoshimura Y., Araki A., Kimoto M., Takahashi Y., Yamashita H. Activation of AMP-Activated Protein Kinase and Stimulation of Energy Metabolism by Acetic Acid in L6 Myotube Cells. PLoS ONE. 2016;11:e0158055. doi: 10.1371/journal.pone.0158055.
    1. Leonel A.J., Alvarez-Leite J.I. Butyrate: Implications for intestinal function. Curr. Opin. Clin. Nutr. Metab. Care. 2012;15:474–479. doi: 10.1097/MCO.0b013e32835665fa.
    1. Walsh M.E., Bhattacharya A., Sataranatarajan K., Qaisar R., Sloane L., Rahman M.M., Kinter M., Van Remmen H. The histone deacetylase inhibitor butyrate improves metabolism and reduces muscle atrophy during aging. Aging Cell. 2015;14:957–970. doi: 10.1111/acel.12387.
    1. Beaudart C., Rolland Y., Cruz-Jentoft A.J., Bauer J.M., Sieber C., Cooper C., Al-Daghri N., Araujo de Carvalho I., Bautmans I., Bernabei R., et al. Assessment of Muscle Function and Physical Performance in Daily Clinical Practice: A position paper endorsed by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) Calcif. Tissue Int. 2019;105:1–14. doi: 10.1007/s00223-019-00545-w.
    1. Wang Y.C., Bohannon R.W., Kapellusch J., Washburn D., Li X., Yen S.C., Rahman M.H. Between-side differences in hand-grip strength across the age span: Findings from 2011–2014 NHANES and 2011 NIH Toolbox studies. Laterality. 2019;24:697–706. doi: 10.1080/1357650X.2019.1604727.
    1. Batista F.S., Gomes G.A., Neri A.L., Guariento M.E., Cintra F.A., Sousa Mda L., D’Elboux M.J. Relationship between lower-limb muscle strength and frailty among elderly people. Sao Paulo Med. J. 2012;130:102–108. doi: 10.1590/S1516-31802012000200006.
    1. Perera S., Patel K.V., Rosano C., Rubin S.M., Satterfield S., Harris T., Ensrud K., Orwoll E., Lee C.G., Chandler J.M., et al. Gait Speed Predicts Incident Disability: A Pooled Analysis. J. Gerontol. A Biol. Sci. Med. Sci. 2016;71:63–71. doi: 10.1093/gerona/glv126.
    1. Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018;1693:128–133. doi: 10.1016/j.brainres.2018.03.015.
    1. Román E., Nieto J.C., Gely C., Vidal S., Pozuelo M., Poca M., Juárez C., Guarner C., Manichanh C., Soriano G. Effect of a Multistrain Probiotic on Cognitive Function and Risk of Falls in Patients with Cirrhosis: A Randomized Trial. Hepatol. Commun. 2019;3:632–645. doi: 10.1002/hep4.1325.
    1. Lima R.M., de Oliveira R.J., Raposo R., Neri S.G.R., Gadelha A.B. Stages of sarcopenia, bone mineral density, and the prevalence of osteoporosis in older women. Arch. Osteoporos. 2019;14:38. doi: 10.1007/s11657-019-0591-4.
    1. Nielsen B.R., Andersen H.E., Haddock B., Hovind P., Schwarz P., Suetta C. Prevalence of muscle dysfunction concomitant with osteoporosis in a home-dwelling Danish population aged 65–93 years—The Copenhagen Sarcopenia Study. Exp. Gerontol. 2020;138:110974. doi: 10.1016/j.exger.2020.110974.

Source: PubMed

3
購読する