Advances in diagnosing and managing antibody-mediated rejection

Stanley C Jordan, Nancy Reinsmoen, Alice Peng, Chih-Hung Lai, Kai Cao, Rafael Villicana, Mieko Toyoda, Joseph Kahwaji, Ashley A Vo, Stanley C Jordan, Nancy Reinsmoen, Alice Peng, Chih-Hung Lai, Kai Cao, Rafael Villicana, Mieko Toyoda, Joseph Kahwaji, Ashley A Vo

Abstract

Antibody-mediated rejection (AMR) is a unique, significant, and often severe form of allograft rejection that is not amenable to treatment with standard immunosuppressive medications. Significant advances have occurred in our ability to predict patients at risk for, and to diagnose, AMR. These advances include the development of newer anti-human leukocyte antigen (HLA)-antibody detection techniques and assays for non-HLA antibodies associated with AMR. The pathophysiology of AMR suggests a prime role for antibodies, B cells and plasma cells, but other effector molecules, especially the complement system, point to potential targets that could modify the AMR process. An emerging and potentially larger problem is the development of chronic AMR (CAMR) resulting from de novo donor-specific anti-HLA antibodies (DSA) that emerge more than 100 days posttransplantation. Therapeutic options include: (1) High-dose intravenously administered immunoglobulin (IVIG), which has many potential benefits. (2) The use of IVIG+rituximab (anti-CD20, anti-B cell). (3) The combination of plasmapheresis (PP)+low-dose IVIG with or without rituximab. Data support the efficacy of all of the above approaches. Newer approaches to treating AMR include using the proteosome inhibitor (bortezomib), which induces apoptosis in plasma cells, and eculizumab (anti-C5, anticomplement monoclonal antibody).

Figures

Fig. 1
Fig. 1
a Donor-specific antibody (DSA) pattern for a highly human leukocyte antigen (HLA)-sensitized patient who had awaited deceased-donor (DD) transplantation for >10 years. The patient was treated with intravenously administered immunoglobulin (IVIG) + rituximab as per protocol and received a DD transplantation shortly after completing desensitization. DSA levels rapidly decreased from >200,000 standard fluorescent intensity (SFI) units to unmeasurable. At the time of writing this article, the patient was >1 year posttransplant without antibody-mediated rejection (AMR), with a serum creatinine (Cr) 0.8 mg/dl. b DSA pattern from a patient who received a living-donor (LD) kidney transplant approximately 2 years ago. The patient exhibited DSAs to A2, DR53, and DQ6. After desensitization, good responses were seen, which allowed transplantation. Approximately 3 months posttransplant, the patient experienced AMR, with an increase in DSAs. These responded somewhat to IVIG + rituximab treatment. Serum Cr was stable at 1.4 mg/dl for 2 years, and no proteinuria has been observed
Fig. 2
Fig. 2
Relationship among donor-specific antibody (DSA), flow cytometry cross match (FCMX) results and risk for antibody-mediated rejection (AMR) in patients desensitized with intravenously administered immunoglobulin (IVIG) + rituximab. We show that reduction, but not elimination, of DSA to levels of ~100,000 standard fluorescent intensity (SFI) correlates with a FCMX of ~200–225 mean channel shifts (MCS). This usually allows transplantation of highly human leukocyte antigen (HLA)-sensitized patients with a low risk of AMR. However, patients who demonstrate DSA 100,000–200,000 SFI and FCMX >250 channel shifts (CS) are more likely to experience AMR. Patients who demonstrate complement-dependent cytotoxicity (CDC+) cross matches have FCMXs >300 MCS and DSA levels >200,000. These patients are at an extremely high risk for AMR if transplanted. The line shows the hypothetical relationship between DSA and FCMX results. A normal FCMX is defined as 50 CS or less and an SFI DSA level of 10,000 or less
Fig. 3
Fig. 3
Outcomes of cardiac transplant recipients followed for >2 years. Patients were divided into those who had persistent demonstration of antiendothelial cell antibody (AECA+) posttransplant vs patients who never demonstrated positivity (AECA−) posttransplant. The importance of non-human leukocyte antigen (non-HLA) antibodies directed at endothelial cell targets not present on lymphocytes can cause antibody-mediated rejection (AMR) and graft loss [25]
Fig. 4
Fig. 4
Cedars-Sinai Medical Center protocol for treating antibody-mediated rejection (AMR) that is C4d+. After AMR diagnosis by biopsy, patients are treated with pulse Solumedrol (SM) (10 mg/kg) daily × 3 on day 1 and intravenously administered immunoglobulin (IVIG) 2 g/kg (maximum dose 140 g), followed on day 2 by rituximab 375 mg/m2 . A repeat IVIG dose is usually given at 30–60 days after AMR diagnosis
Fig. 5
Fig. 5
Cedars-Sinai Medical Center protocol for treating more severe antibody-mediated rejection (AMR) associated with glomerular thrombi and graft dysfunction [thrombotic microangiopathy (TMA)]. Here, early plasmapheresis (PP) is essential to remove antibody and other inflammatory mediators before treatment with intravenously administered immunoglobulin (IVIG) and rituximab. In our protocol, we do not use low-dose IVIG after each plasmapheresis but replace it with albumin and fresh-frozen plasma. IVIG 2g/kg (maximum dose 140 g) is given at the completion of plasmapheresis treatment, followed by rituximab 375 mg/m2. Renal function and donor-specific antibodies (DSA) are monitored posttreatment
Fig. 6
Fig. 6
Outcomes of two patients who developed class II donor-specific antibodies (DSA) 3–4 years posttransplant associated with the onset of proteinuria with minimal changes in allograft function. The biopsy for one patient is shown, but both patients had similar findings of transplant glomerulopathy. Both patients showed a significant reduction in class II DSAs, with stabilization of renal function and some reduction in proteinuria after treatment with intravenously administered immunoglobulin (IVIG) + rituximab

References

    1. Evans RW, Manninen DL, Garrison LP, Jr, Hart LG, Blagg CR, Gutman RA, Hull AR, Lowrie EG. The quality of life of patients with end-stage renal disease. N Engl J Med. 1985;312:553–559. doi: 10.1056/NEJM198502283120905.
    1. Port FK, Wolfe RA, Mauger EA, Berling DP, Jiang K. Comparison of survival probabilities for dialysis patients vs cadaveric renal transplant recipients. JAMA. 1993;270:1339–1343. doi: 10.1001/jama.270.11.1339.
    1. Russell JD, Beecroft ML, Ludwin D, Churchill DN. The quality of life in renal transplantation–a prospective study. Transplantation. 1992;54:656–660. doi: 10.1097/00007890-199210000-00018.
    1. Organ Procurement Transplantation Network/Scientific Registry of Transplant Recipients: OPTN. (2009);
    1. United Network for Organ Sharing Data Base as of 5/30/2008.
    1. Jordan SC, Tyan D, Stablein D, McIntosh M, Rose S, Vo A, Toyoda M, Davis C, Shapiro R, Adey D, Milliner D, Graff R, Steiner R, Ciancio G, Sahney S, Light J. Evaluation of intravenous immunoglobulin as an agent to lower allosensitization and improve transplantation in highly sensitized adult patients with end-stage renal disease: report of the NIH IG02 trial. J Am Soc Nephrol. 2004;15:3256–3262. doi: 10.1097/01.ASN.0000145878.92906.9F.
    1. Vo AA, Lukovsky M, Toyoda M, Wang J, Reinsmoen NL, Lai CH, Peng A, Villicana R, Jordan SC. Rituximab and intravenous immune globulin for desensitization during renal transplantation. N Engl J Med. 2008;359:242–251. doi: 10.1056/NEJMoa0707894.
    1. Montgomery RA, Locke JE, King KE, Segev DL, Warren DS, Kraus ES, Cooper M, Simpkins CE, Singer AL, Stewart ZA, Melancon JK, Ratner L, Zachary AA, Haas M. ABO incompatible renal transplantation: a paradigm ready for broad implementation. Transplantation. 2009;87:1246–1255. doi: 10.1097/TP.0b013e31819f2024.
    1. Gloor JM, DeGoey SR, Pineda AA, Moore SB, Prieto M, Nyberg SL, Larson TS, Griffin MD, Textor SC, Velosa JA, Schwab TR, Fix LA, Stegall MD. Overcoming a positive crossmatch in living-donor kidney transplantation. Am J Transplant. 2003;3:1017–1023. doi: 10.1034/j.1600-6143.2003.00180.x.
    1. Montgomery RA, Cooper M, Kraus E, Rabb H, Samaniego M, Simpkins CE, Sonnenday CJ, Ugarte RM, Warren DS, Zachary AA (2003) Renal transplantation at the Johns Hopkins Comprehensive Transplant Center. Clin Transpl: 199–213
    1. Jordan SC, Pescovitz MD. Presensitization: the problem and its management. Clin J Am Soc Nephrol. 2006;1:421–432. doi: 10.2215/CJN.01651105.
    1. Glotz D, Antoine C, Julia P, Pegaz-Fiornet B, Duboust A, Boudjeltia S, Fraoui R, Combes M, Bariety J. Intravenous immunoglobulins and transplantation for patients with anti-HLA antibodies. Transpl Int. 2004;17:1–8. doi: 10.1111/j.1432-2277.2004.tb00376.x.
    1. Schweitzer EJ, Wilson JS, Fernandez-Vina M, Fox M, Gutierrez M, Wiland A, Hunter J, Farney A, Philosophe B, Colonna J, Jarrell BE, Bartlett ST. A high panel-reactive antibody rescue protocol for cross-match-positive live donor kidney transplants. Transplantation. 2000;70:1531–1536. doi: 10.1097/00007890-200011270-00023.
    1. Jordan SC, Vo AA, Tyan D, Nast CC, Toyoda M. Current approaches to treatment of antibody-mediated rejection. Pediatr Transplant. 2005;9:408–415. doi: 10.1111/j.1399-3046.2005.00363.x.
    1. Solez K, Colvin RB, Racusen LC, Haas M, Sis B, Mengel M, Halloran PF, Baldwin W, Banfi G, Collins AB, Cosio F, David DS, Drachenberg C, Einecke G, Fogo AB, Gibson IW, Glotz D, Iskandar SS, Kraus E, Lerut E, Mannon RB, Mihatsch M, Nankivell BJ, Nickeleit V, Papadimitriou JC, Randhawa P, Regele H, Renaudin K, Roberts I, Seron D, Smith RN, Valente M. Banff 07 classification of renal allograft pathology: updates and future directions. Am J Transplant. 2008;8:753–760. doi: 10.1111/j.1600-6143.2008.02159.x.
    1. Everly MJ, Everly JJ, Arend LJ, Brailey P, Susskind B, Govil A, Rike A, Roy-Chaudhury P, Mogilishetty G, Alloway RR, Tevar A, Woodle ES. Reducing de novo donor-specific antibody levels during acute rejection diminishes renal allograft loss. Am J Transplant. 2009;9:1063–1071. doi: 10.1111/j.1600-6143.2009.02577.x.
    1. Singh N, Pirsch J, Samaniego M. Antibody-mediated rejection: treatment alternatives and outcomes. Transplant Rev (Orlando) 2009;23:34–46.
    1. Lefaucheur C, Suberbielle-Boissel C, Hill GS, Nochy D, Andrade J, Antoine C, Gautreau C, Charron D, Glotz D. Clinical relevance of preformed HLA donor-specific antibodies in kidney transplantation. Am J Transplant. 2008;8:324–331. doi: 10.1111/j.1600-6143.2008.02342.x.
    1. Reinsmoen NL, Lai CH, Vo A, Cao K, Ong G, Naim M, Wang Q, Jordan SC. Acceptable donor-specific antibody levels allowing for successful deceased and living donor kidney transplantation after desensitization therapy. Transplantation. 2008;86:820–825. doi: 10.1097/TP.0b013e3181856f98.
    1. Bray RA, Nickerson PW, Kerman RH, Gebel HM. Evolution of HLA antibody detection: technology emulating biology. Immunol Res. 2004;29:41–54. doi: 10.1385/IR:29:1-3:041.
    1. Scornik JC, Clapp W, Patton PR, Werf WJ, Hemming AW, Reed AI, Howard RJ. Outcome of kidney transplants in patients known to be flow cytometry crossmatch positive. Transplantation. 2001;71:1098–1102. doi: 10.1097/00007890-200104270-00015.
    1. Wen R, Wu V, Dmitrienko S, Yu A, Balshaw R, Keown PA. Biomarkers in transplantation: Prospective, blinded measurement of predictive value for the flow cytometry crossmatch after negative antiglobulin crossmatch in kidney transplantation. Kidney Int. 2006;70:1474–1481. doi: 10.1038/sj.ki.5001785.
    1. Vasilescu ER, Ho EK, Colovai AI, Vlad G, Foca-Rodi A, Markowitz GS, D'Agati V, Hardy MA, Ratner LE, Suciu-Foca N. Alloantibodies and the outcome of cadaver kidney allografts. Hum Immunol. 2006;67:597–604. doi: 10.1016/j.humimm.2006.04.012.
    1. Zachary AA, Montgomery RA, Leffell MS. Factors associated with and predictive of persistence of donor-specific antibody after treatment with plasmapheresis and intravenous immunoglobulin. Hum Immunol. 2005;66:364–370. doi: 10.1016/j.humimm.2005.01.032.
    1. Fredrich R, Toyoda M, Czer LS, Galfayan K, Galera O, Trento A, Freimark D, Young S, Jordan SC. The clinical significance of antibodies to human vascular endothelial cells after cardiac transplantation. Transplantation. 1999;67:385–391. doi: 10.1097/00007890-199902150-00008.
    1. Toyoda M, Petrosian A, Jordan SC. Immunological characterization of anti-endothelial cell antibodies induced by cytomegalovirus infection. Transplantation. 1999;68:1311–1318. doi: 10.1097/00007890-199911150-00016.
    1. Dragun D, Hegner B. Non-HLA antibodies post-transplantation: clinical relevance and treatment in solid organ transplantation. Contrib Nephrol. 2009;162:129–139. doi: 10.1159/000170845.
    1. Breimer ME, Rydberg L, Jackson AM, Lucas DP, Zachary AA, Melancon JK, Visger J, Pelletier R, Saidman SL, Williams WW, Jr, Holgersson J, Tyden G, Klintmalm GK, Coultrup S, Sumitran-Holgersson S, Grufman P. Multicenter evaluation of a novel endothelial cell crossmatch test in kidney transplantation. Transplantation. 2009;87:549–556. doi: 10.1097/TP.0b013e3181949d4e.
    1. Grandtnerova B, Mackova N, Hovoricova B, Jahnova E. Hyperacute rejection of living related kidney grafts caused by endothelial cell-specific antibodies: case reports. Transplant Proc. 2008;40:2422–2424. doi: 10.1016/j.transproceed.2008.06.014.
    1. Stastny P, Zou Y, Fan Y, Qin Z, Lavingia B. The emerging issue of MICA antibodies: antibodies to MICA and other antigens of endothelial cells. Contrib Nephrol. 2009;162:99–106. doi: 10.1159/000170842.
    1. Zou Y, Stastny P, Susal C, Dohler B, Opelz G. Antibodies against MICA antigens and kidney-transplant rejection. N Engl J Med. 2007;357:1293–1300. doi: 10.1056/NEJMoa067160.
    1. Jordan SC, Toyoda M, Vo AA. Intravenous immunoglobulin a natural regulator of immunity and inflammation. Transplantation. 2009;88:1–6. doi: 10.1097/TP.0b013e3181a9e89a.
    1. Nimmerjahn F, Ravetch JV. Anti-inflammatory actions of intravenous immunoglobulin. Annu Rev Immunol. 2008;26:513–533. doi: 10.1146/annurev.immunol.26.021607.090232.
    1. Tha-In T, Bayry J, Metselaar HJ, Kaveri SV, Kwekkeboom J. Modulation of the cellular immune system by intravenous immunoglobulin. Trends Immunol. 2008;29:608–615. doi: 10.1016/j.it.2008.08.004.
    1. Clynes R. Protective mechanisms of IVIG. Curr Opin Immunol. 2007;19:646–651. doi: 10.1016/j.coi.2007.09.004.
    1. Kaveri SV, Lacroix-Desmazes S, Bayry J. The antiinflammatory IgG. N Engl J Med. 2008;359:307–309. doi: 10.1056/NEJMcibr0803649.
    1. Arumugam TV, Tang SC, Lathia JD, Cheng A, Mughal MR, Chigurupati S, Magnus T, Chan SL, Jo DG, Ouyang X, Fairlie DP, Granger DN, Vortmeyer A, Basta M, Mattson MP. Intravenous immunoglobulin (IVIG) protects the brain against experimental stroke by preventing complement-mediated neuronal cell death. Proc Natl Acad Sci USA. 2007;104:14104–14109. doi: 10.1073/pnas.0700506104.
    1. Arumugam TV, Selvaraj PK, Woodruff TM, Mattson MP. Targeting ischemic brain injury with intravenous immunoglobulin. Expert Opin Ther Targets. 2008;12:19–29. doi: 10.1517/14728222.12.1.19.
    1. Basta M, Goor F, Luccioli S, Billings EM, Vortmeyer AO, Baranyi L, Szebeni J, Alving CR, Carroll MC, Berkower I, Stojilkovic SS, Metcalfe DD. F(ab)'2-mediated neutralization of C3a and C5a anaphylatoxins: a novel effector function of immunoglobulins. Nat Med. 2003;9:431–438. doi: 10.1038/nm836.
    1. Arumugam TV, Woodruff TM, Lathia JD, Selvaraj PK, Mattson MP, Taylor SM. Neuroprotection in stroke by complement inhibition and immunoglobulin therapy. Neuroscience. 2009;158:1074–1089. doi: 10.1016/j.neuroscience.2008.07.015.
    1. Basta M. Ambivalent effect of immunoglobulins on the complement system: activation versus inhibition. Mol Immunol. 2008;45:4073–4079. doi: 10.1016/j.molimm.2008.07.012.
    1. Thurman JM. Triggers of inflammation after renal ischemia/reperfusion. Clin Immunol. 2007;123:7–13. doi: 10.1016/j.clim.2006.09.008.
    1. Sameulsson A, Towers TL, Ravetch JV. Anti-inflamatory activity of IVIG mediated through the inhibitory Fc receptor. Science. 2001;29:484–6. doi: 10.1126/science.291.5503.484.
    1. Kaneko Y, Nimmerjahn F, Madaio MP, Ravetch JV. Pathology and protection in nephrotoxic nephritis is determined by selective engagement of specific Fc receptors. J Exp Med. 2006;203:789–797. doi: 10.1084/jem.20051900.
    1. Anthony RM, Nimmerjahn F, Ashline DJ, Reinhold VN, Paulson JC, Ravetch JV. Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science. 2008;320:373–376. doi: 10.1126/science.1154315.
    1. Kaneko Y, Nimmerjahn F, Ravetch JV. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science. 2006;313:670–673. doi: 10.1126/science.1129594.
    1. Anthony RM, Wermeling F, Karlsson MC, Ravetch JV. Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc Natl Acad Sci USA. 2008;105:19571–19578. doi: 10.1073/pnas.0810163105.
    1. Jordan SC, Quartel AW, Czer LS, Admon D, Chen G, Fishbein MC, Schwieger J, Steiner RW, Davis C, Tyan DB. Posttransplant therapy using high-dose human immunoglobulin (intravenous gammaglobulin) to control acute humoral rejection in renal and cardiac allograft recipients and potential mechanism of action. Transplantation. 1998;66:800–805. doi: 10.1097/00007890-199809270-00017.
    1. Casadei DH, del CRM, Opelz G, Golberg JC, Argento JA, Greco G, Guardia OE, Haas E, Raimondi EH. A randomized and prospective study comparing treatment with high-dose intravenous immunoglobulin with monoclonal antibodies for rescue of kidney grafts with steroid-resistant rejection. Transplantation. 2001;71:53–58. doi: 10.1097/00007890-200101150-00009.
    1. Luke PP, Scantlebury VP, Jordan ML, Vivas CA, Hakala TR, Jain A, Somani A, Fedorek S, Randhawa P, Shapiro R. Reversal of steroid- and anti-lymphocyte antibody-resistant rejection using intravenous immunoglobulin (IVIG) in renal transplant recipients. Transplantation. 2001;72:419–422. doi: 10.1097/00007890-200108150-00010.
    1. Lefaucheur C, Nochy D, Andrade J, Verine J, Gautreau C, Charron D, Hill GS, Glotz D, Suberbielle-Boissel C. Comparison of combination Plasmapheresis/IVIg/anti-CD20 versus high-dose IVIg in the treatment of antibody-mediated rejection. Am J Transplant. 2009;9:1099–1107. doi: 10.1111/j.1600-6143.2009.02591.x.
    1. Reff ME, Carner K, Chambers KS, Chinn PC, Leonard JE, Raab R, Newman RA, Hanna N, Anderson DR. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood. 1994;83:435–445.
    1. Edwards JC, Szczepanski L, Szechinski J, Filipowicz-Sosnowska A, Emery P, Close DR, Stevens RM, Shaw T. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N Engl J Med. 2004;350:2572–2581. doi: 10.1056/NEJMoa032534.
    1. Salama AD, Pusey CD. Drug insight: rituximab in renal disease and transplantation. Nat Clin Pract Nephrol. 2006;2:221–230. doi: 10.1038/ncpneph0133.
    1. Edwards JC, Cambridge G. B-cell targeting in rheumatoid arthritis and other autoimmune diseases. Nat Rev Immunol. 2006;6:394–403. doi: 10.1038/nri1838.
    1. Stasi R, Cooper N, Poeta G, Stipa E, Laura Evangelista M, Abruzzese E, Amadori S. Analysis of regulatory T-cell changes in patients with idiopathic thrombocytopenic purpura receiving B cell-depleting therapy with rituximab. Blood. 2008;112:1147–1150. doi: 10.1182/blood-2007-12-129262.
    1. Liossis SN, Sfikakis PP. Rituximab-induced B cell depletion in autoimmune diseases: potential effects on T cells. Clin Immunol. 2008;127:280–285. doi: 10.1016/j.clim.2008.01.011.
    1. Genberg H, Hansson A, Wernerson A, Wennberg L, Tyden G. Pharmacodynamics of rituximab in kidney transplantation. Transplantation. 2007;84:S33–36. doi: 10.1097/01.tp.0000296122.19026.0f.
    1. Ramos EJ, Pollinger HS, Stegall MD, Gloor JM, Dogan A, Grande JP. The effect of desensitization protocols on human splenic B-cell populations in vivo. Am J Transplant. 2007;7:402–407. doi: 10.1111/j.1600-6143.2006.01632.x.
    1. Anolik JH, Barnard J, Owen T, Zheng B, Kemshetti S, Looney RJ, Sanz I. Delayed memory B cell recovery in peripheral blood and lymphoid tissue in systemic lupus erythematosus after B cell depletion therapy. Arthritis Rheum. 2007;56:3044–3056. doi: 10.1002/art.22810.
    1. Levesque MC, St Clair EW. B cell-directed therapies for autoimmune disease and correlates of disease response and relapse. J Allergy Clin Immunol. 2008;121:13–21. doi: 10.1016/j.jaci.2007.11.030.
    1. Sarwal M, Chua MS, Kambham N, Hsieh SC, Satterwhite T, Masek M, Salvatierra O., Jr Molecular heterogeneity in acute renal allograft rejection identified by DNA microarray profiling. N Engl J Med. 2003;349:125–138. doi: 10.1056/NEJMoa035588.
    1. Zarkhin V, Li L, Kambham N, Sigdel T, Salvatierra O, Sarwal MM. A randomized, prospective trial of rituximab for acute rejection in pediatric renal transplantation. Am J Transplant. 2008;8:2607–2617. doi: 10.1111/j.1600-6143.2008.02411.x.
    1. Steinmetz OM, Lange-Husken F, Turner JE, Vernauer A, Helmchen U, Stahl RA, Thaiss F, Panzer U. Rituximab removes intrarenal B cell clusters in patients with renal vascular allograft rejection. Transplantation. 2007;84:842–850. doi: 10.1097/01.tp.0000282786.58754.2b.
    1. Becker YT, Becker BN, Pirsch JD, Sollinger HW. Rituximab as treatment for refractory kidney transplant rejection. Am J Transplant. 2004;4:996–1001. doi: 10.1111/j.1600-6143.2004.00454.x.
    1. Kaposztas Z, Podder H, Mauiyyedi S, Illoh O, Kerman R, Reyes M, Pollard V, Kahan BD. Impact of rituximab therapy for treatment of acute humoral rejection. Clin Transplant. 2009;23:63–73. doi: 10.1111/j.1399-0012.2008.00902.x.
    1. Faguer S, Kamar N, Guilbeaud-Frugier C, Fort M, Modesto A, Mari A, Ribes D, Cointault O, Lavayssiere L, Guitard J, Durand D, Rostaing L. Rituximab therapy for acute humoral rejection after kidney transplantation. Transplantation. 2007;83:1277–1280. doi: 10.1097/01.tp.0000261113.30757.d1.
    1. Celik A, Saglam F, Cavdar C, Sifil A, Atila K, Sarioglu S, Bora S, Gulay H, Camsari T. Successful therapy with rituximab of refractory acute humoral renal transplant rejection: a case report. Transplant Proc. 2008;40:302–304. doi: 10.1016/j.transproceed.2007.11.011.
    1. Mulley WR, Hudson FJ, Tait BD, Skene AM, Dowling JP, Kerr PG, Kanellis J. A single low-fixed dose of rituximab to salvage renal transplants from refractory antibody-mediated rejection. Transplantation. 2009;87:286–289. doi: 10.1097/TP.0b013e31819389cc.
    1. Moscoso-Solorzano GT, Baltar JM, Seco M, Lopez-Larrea C, Mastroianni-Kirsztajn G, Ortega F. Single dose of Rituximab plus plasmapheresis in an HIV patient with acute humoral kidney transplant rejection: a case report. Transplant Proc. 2007;39:3460–3462. doi: 10.1016/j.transproceed.2007.09.043.
    1. Wade E, Goral S, Kearns J, Pierce E, Trofe J, Bloom R, Kamoun M (2006) Experience with antibody-mediated rejection in kidney allograft recipients. Clin Transpl:439–446
    1. Yang YW, Lin WC, Wu MS, Lee PH, Tsai MK. Early diagnosis and successful treatment of acute antibody-mediated rejection of a renal transplant. Exp Clin Transplant. 2008;6:211–214.
    1. Vo A, Cao K, Lai C-H, Reinsmoen N, Toyoda M, Ge S, Peng A, Villicana R, Jordan SC. Characteristics of patients who develop antibody-mediated rejection (AMR) post-transplant after desensitization with IVIG + rituximab: analysis of risk factors and outcomes, (Abstract #494) Am J Transplantation. 2009;9:334.
    1. Liu C, Noorchashm H, Sutter JA, Naji M, Prak EL, Boyer J, Green T, Rickels MR, Tomaszewski JE, Koeberlein B, Wang Z, Paessler ME, Velidedeoglu E, Rostami SY, Yu M, Barker CF, Naji A. B lymphocyte-directed immunotherapy promotes long-term islet allograft survival in nonhuman primates. Nat Med. 2007;13:1295–1298. doi: 10.1038/nm1673.
    1. Kessler L, Parissiadis A, Bayle F, Moreau F, Pinget M, Froelich N, Cazenave JP, Berney T, Benhamou PY, Hanau D. Evidence for humoral rejection of a pancreatic islet graft and rescue with rituximab and IV immunoglobulin therapy. Am J Transplant. 2009;9:1961–1966. doi: 10.1111/j.1600-6143.2009.02711.x.
    1. Billing H, Rieger S, Ovens J, Susal C, Melk A, Waldherr R, Opelz G, Tonshoff B. Successful treatment of chronic antibody-mediated rejection with IVIG and rituximab in pediatric renal transplant recipients. Transplantation. 2008;86:1214–1221. doi: 10.1097/TP.0b013e3181880b35.
    1. Fehr T, Rusi B, Fischer A, Hopfer H, Wuthrich RP, Gaspert A. Rituximab and intravenous immunoglobulin treatment of chronic antibody-mediated kidney allograft rejection. Transplantation. 2009;87:1837–1841. doi: 10.1097/TP.0b013e3181a6bac5.
    1. Curran MP, McKeage K. Bortezomib: a review of its use in patients with multiple myeloma. Drugs. 2009;69:859–888. doi: 10.2165/00003495-200969070-00006.
    1. Trivedi HL, Terasaki PI, Feroz A, Everly MJ, Vanikar AV, Shankar V, Trivedi VB, Kaneku H, Idica AK, Modi PR, Khemchandani SI, Dave SD. Abrogation of anti-HLA antibodies via proteasome inhibition. Transplantation. 2009;87:1555–1561. doi: 10.1097/TP.0b013e3181a4b91b.
    1. Everly MJ, Everly JJ, Susskind B, Brailey P, Arend LJ, Alloway RR, Roy-Chaudhury P, Govil A, Mogilishetty G, Rike AH, Cardi M, Wadih G, Tevar A, Woodle ES. Bortezomib provides effective therapy for antibody- and cell-mediated acute rejection. Transplantation. 2008;86:1754–1761. doi: 10.1097/TP.0b013e318190af83.
    1. Parker C. Eculizumab for paroxysmal nocturnal haemoglobinuria. Lancet. 2009;373:759–767. doi: 10.1016/S0140-6736(09)60001-5.
    1. Williams JM, Holzknecht ZE, Plummer TB, Lin SS, Brunn GJ, Platt JL. Acute vascular rejection and accommodation: divergent outcomes of the humoral response to organ transplantation. Transplantation. 2004;78:1471–1478. doi: 10.1097/01.TP.0000140770.81537.64.
    1. Stegall M, Diwan T, Burns J, Dean P. Prevention of acute humoral rejection with C5 inhibition, (Abstract #174) Am J Transplantation. 2009;9:241.

Source: PubMed

3
購読する