Altered neuroendocrine control and association to clinical symptoms in adolescent chronic fatigue syndrome: a cross-sectional study

Vegard Bruun Wyller, Valieria Vitelli, Dag Sulheim, Even Fagermoen, Anette Winger, Kristin Godang, Jens Bollerslev, Vegard Bruun Wyller, Valieria Vitelli, Dag Sulheim, Even Fagermoen, Anette Winger, Kristin Godang, Jens Bollerslev

Abstract

Background: Chronic fatigue syndrome (CFS) is a common and disabling disorder, and a major threat against adolescent health. The pathophysiology is unknown, but alteration of neuroendocrine control systems might be a central element, resulting in attenuation of the hypothalamus-pituitary-adrenalin (HPA) axis and enhancement of the sympathetic/adrenal medulla (SAM) system. This study explored differences in neuroendocrine control mechanisms between adolescent CFS patients and healthy controls, and whether characteristics of the control mechanisms are associated with important clinical variables within the CFS group.

Methods: CFS patients 12-18 years of age were recruited nation-wide to a single referral center as part of the NorCAPITAL project. A broad case definition of CFS was applied. A comparable group of healthy controls were recruited from local schools. A total of nine hormones were assayed and subjected to network analyses using the ARACNE algorithm. Symptoms were charted by a questionnaire, and daily physical activity was recorded by an accelerometer.

Results: A total of 120 CFS patients and 68 healthy controls were included. CFS patients had significantly higher levels of plasma norepinephrine, plasma epinephrine and plasma FT4, and significantly lower levels of urine cortisol/creatinine ratio. Subgrouping according to other case definitions as well as adjusting for confounding factors did not alter the results. Multivariate linear regression models as well as network analyses revealed different interrelations between hormones of the HPA axis, the SAM system, and the thyroid system in CFS patients and healthy controls. Also, single hormone degree centrality was associated with clinical markers within the CFS group.

Conclusion: This study reveals different interrelation between hormones of the HPA axis, the SAM system, and the thyroid system in CFS patients and healthy controls, and an association between hormone control characteristics and important clinical variables in the CFS group. These results add to the growing insight of CFS disease mechanisms. Trial registration Clinical Trials NCT01040429.

Keywords: Adolescence; Chronic fatigue syndrome; Network analyses.

Figures

Fig. 1
Fig. 1
Results of multivariate linear regression modelling in CFS patients (left) and healthy controls (right). a Plasma norepinephrine and urine norepinephrine:creatinine as dependent variables. b Plasma epinephrine and urine epinephrine:creatinine as dependent variables. c Plasma cortisol and urine cortisol:creatinine as dependent variables. P plasma, U urine, Epi epinephrine, FT4 free thyroxine, ACTH adrenocorticotrophic hormone, TSH thyroid stimulating hormone, NorEpi norepinephrine, Cort cortisol, Creat creatinine
Fig. 2
Fig. 2
Results of network analyses (single node diagrams) in CFS patients (left) and healthy controls (right). a Plasma norepinephrine as single node. b Plasma epinephrine as single node. c Plasma cortisol as single node. P plasma, U urine, Epi epinephrine, FT4 free thyroxine, ACTH adrenocorticotrophic hormone, TSH thyroid stimulating hormone, NorEpi norepinephrine, Creat creatinine
Fig. 3
Fig. 3
Results of network analyses for plasma cortisol (single node diagram) in CFS patients having low number of step/day (left) and high number of step/day (right). P plasma, U urine, Epi epinephrine, NorEpi norepinephrine, Cort cortisol; Creat creatinine

References

    1. Institute of Medicine . Beyond myalgic encephalomyelitis/chronic fatigue syndrome: redefining an illness. Washington, DC: The National Academies Press; 2015.
    1. Kennedy G, Underwood C, Belch JJ. Physical and functional impact of chronic fatigue syndrome/myalgic encephalomyelitis in childhood. Pediatrics. 2010;125:e1324–e1330. doi: 10.1542/peds.2009-2644.
    1. Winger A, Kvarstein G, Wyller VB, Ekstedt M, Sulheim D, Fagermoen E, Smastuen MC, Helseth S. Health related quality of life in adolescents with chronic fatigue syndrome: a cross-sectional study. Health Qual Life Outcomes. 2015;96:13.
    1. Missen A, Hollinqworth W, Eaton N, Crawley E. The financial and psychological impacts on mothers of children with chronic fatigue syndrome (CFS/ME) Child Care Health Dev. 2012;38:505–512. doi: 10.1111/j.1365-2214.2011.01298.x.
    1. Nijhof SL, Maijer K, Bleijenberg G, Uiterwaal CS, Kimpen JL, van der Putte EM. Adolscent chronic fatigue syndrome: prevalence, incidence, and morbidity. Pediatrics. 2011;127:e1169–e1175. doi: 10.1542/peds.2010-1147.
    1. Crawley EM, Emond AM, Sterne JA. Unidentified chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is a major cause of school absence: surveillance outcomes from school-based clinics. BMJ Open. 2011;1:e000252. doi: 10.1136/bmjopen-2011-000252.
    1. Papadopoulos AS, Cleare AJ. Hypothalamic–pituitary–adrenal axis dysfunction in chronic fatigue syndrome. Nat Rev Endocrinol. 2011;8:22–32. doi: 10.1038/nrendo.2011.153.
    1. Segal TY, Hindmarsh PC, Viner RM. Disturbed adrenal function in adolescents with chronic fatigue syndrome. J Pediatr Endocrinol Metab. 2005;18:295–301.
    1. Nijhof SL, Rutten JM, Uiterwaal CS, Bleijenberg G, Kimpen JL, Putte EM. The role of hypocortisolism in chronic fatigue syndrome. Psychoneuroendocrinology. 2014;42:199–206. doi: 10.1016/j.psyneuen.2014.01.017.
    1. Sulheim D, Fagermoen E, Winger A, Andersen AM, Godang K, Müller F, Rowe PC, Saul JP, Skovlund E, Øie MG, Wyller VB. Disease mechanisms and clonidine treatment in adolescent chronic fatigue syndrome: a combined cross-sectional and randomized controlled trial. JAMA Pediatr. 2014;168:351–360. doi: 10.1001/jamapediatrics.2013.4647.
    1. Hall DL, Lattei EG, Antoni MH, Fletcher MA, Czaja S, Perdomo D, Klimas NG. Stress management skills, cortisol awakening response, and post-exertional malaise in chronic fatigue syndrome. Psychoneuroendocrinology. 2014;49:26–31. doi: 10.1016/j.psyneuen.2014.06.021.
    1. Wyller VB, Due R, Saul JP, Amlie JP, Thaulow E. Usefulness of an abnormal cardiovascular response during low-grade head-up tilt-test for discriminating adolescents with chronic fatigue from healthy controls. Am J Cardiol. 2007;99:997–1001. doi: 10.1016/j.amjcard.2006.10.067.
    1. Wyller VB, Godang K, Mørkrid L, Saul JP, Thaulow E, Walløe L. Abnormal thermoregulatory responses in adolescents with chronic fatigue syndrome: relation to clinical symptoms. Pediatrics. 2007;120:e129–e137. doi: 10.1542/peds.2006-2759.
    1. Wyller VB, Barbieri R, Saul JP. Blood pressure variability and closed- loop baroreflex assessment in adolescent chronic fatigue syndrome during supine rest and orthostatic stress. Eur J Appl Physiol. 2011;111:497–507. doi: 10.1007/s00421-010-1670-9.
    1. Sulheim D, Hurum H, Helland IB, Thaulow E, Wyller VB. Adolescent chronic fatigue syndrome; a follow-up study displays concurrent improvement of circulatory abnormalities and clinical symptoms. Biopsychosoc Med. 2012;6:10. doi: 10.1186/1751-0759-6-10.
    1. Moorkens G, Berwaerts J, Wynants H, Abs R. Characterisation of pituitary function with emphasis on GH secretion in the chronic fatigue syndrome. Clin Endocrinol. 2000;53:99–106. doi: 10.1046/j.1365-2265.2000.01049.x.
    1. Wyller VB, Malterud K, Eriksen HR. Can sustained arousal explain chronic fatigue syndrome? Behav Brain Funct. 2009;5:10. doi: 10.1186/1744-9081-5-10.
    1. Malloney EM, Boneva R, Nater UM, Reeves WC. Chronic fatigue syndrome and high allostatic load: results from a population-based case-control study in Georgia. Psychosom Med. 2009;71:549–556. doi: 10.1097/PSY.0b013e3181a4fea8.
    1. Fuite J, Vernon SD, Broderick G. Neuroendocrine and immune network re-modeling in chronic fatigue syndrome: an exploratory analysis. Genomics. 2008;92:393–399. doi: 10.1016/j.ygeno.2008.08.008.
    1. Royal College of Paediatrics and Child Health . Evidence based guidelines for the management of CFS/ME (chronic fatigue syndrome/myalgic encephalopathy) in children and young adults. London: Royal College of Paediatrics and Child Health; 2004.
    1. Fukuda K, Straus SE, Hickie I, Sharpe MC, Dobbins JG, Komaroff A. The chronic fatigue syndrome: a comprehensive approach to its definition and study. Ann Int Med. 1994;121:953–959. doi: 10.7326/0003-4819-121-12-199412150-00009.
    1. Carruthers BM, Jain AK, De Meirleir KL, Peterson DL, Klimas NG, Lerner AM, et al. Myalgic encephalomyelitis/chronic fatigue syndrome: clinical working case definition, diagnostic and treatment protocols. J Chron Fatigue Syndr. 2003;11:7–11. doi: 10.1300/J092v11n01_02.
    1. Brurberg KG, Fønhus MS, Larun L, Flottorp S, Malterud K. Case definitions for chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME): a systematic review. BMJ Open. 2014;4:e003973. doi: 10.1136/bmjopen-2013-003973.
    1. Nisenbaum R, Reyes M, Unger ER, Reeves WC. Factor analyses of symptoms among subjects with unexplained chronic fatigue: what can we learn about chronic fatigue syndrome? J Psychosom Res. 2004;56:171–178. doi: 10.1016/S0022-3999(03)00039-4.
    1. Sullivan PF, Pedersen NL, Jacks A, Evengård B. Chronic fatigue in a population sample: definitions and heterogeneity. Psychol Med. 2005;35:1337–1348. doi: 10.1017/S0033291705005210.
    1. Asprusten TT, Fagermoen E, Sulheim D, Skovlund E, Sørensen Ø, Mollnes TE, Wyller VB. Study finding challenge the content validity of the Canadian consensus criteria for adolescent chronic fatigue syndrome. Acta Pediatr. 2015;104:498–503. doi: 10.1111/apa.12950.
    1. Wagner D, Nisenbaum R, Heim C, Jones JF, Unger ER, Reeves WC. Psychometric properties of the CDC symptom inventory for assessment of Chronic Fatigue Syndrome. Popul Health Metr. 2005;3:8. doi: 10.1186/1478-7954-3-8.
    1. Chalder T, Berelowitz G, Pawlikowska T, Watts L, Wessely S, Wright D, Wallace EP. Development of a fatigue scale. J Psychosom Res. 1993;37:147–153. doi: 10.1016/0022-3999(93)90081-P.
    1. Godfrey E, Cleare A, Coddington A, Roberts A, Weinman J, Chalder T. Chronic fatigue syndrome in adolescents: do parental expectations of their child’s intellectual ability match the child’s ability? J Psychosom Res. 2009;67:165–168. doi: 10.1016/j.jpsychores.2009.02.004.
    1. Daviss WB, Birmaher B, Melhem NA, Axelson DA, Michaels SM, Brent DA. Criterion validity of the mood and feelings questionnaire for depressive episodes in clinic and non-clinic subjects. J Child Psychol Psychiatry. 2006;47:927–934. doi: 10.1111/j.1469-7610.2006.01646.x.
    1. Wood A, Kroll L, Moore A, Harrington R. Properties of the mood and feelings questionnaire in adolescent psychiatric outpatients: a research note. J Child Psychol Psychiatry. 1995;36:327–334. doi: 10.1111/j.1469-7610.1995.tb01828.x.
    1. Meeus M, van Eupen I, van Baarle E, De Boeck V, Luyckx A, Kos D, Nijs J. Symptom fluctuations and daily physical activity in patients with chronic fatigue syndrome: a case-control study. Arch Phys Med Rehabil. 2011;92:1820–1826. doi: 10.1016/j.apmr.2011.06.023.
    1. Evering RM, Tönis TM, Vollenbroek-Hutten MM. Deviations in daily physical activity patterns in patients with the chronic fatigue syndrome: a case control study. J Psychosom Res. 2011;71:129–135. doi: 10.1016/j.jpsychores.2011.04.004.
    1. Grant PM, Ryan CG, Tigbe WW, Granat MH. The validation of a novel activity monitor in the measurement of posture and motion during everyday activities. Br J Sports Med. 2006;40:992–997. doi: 10.1136/bjsm.2006.030262.
    1. Ryan CG, Grant PM, Tigbe WW, Granat MH. The validity and reliability of a novel activity monitor as a measure of walking. Br J Sports Med. 2006;40:779–784. doi: 10.1136/bjsm.2006.027276.
    1. Tsunoda M. Recent advances in methods for the analysis of catecholamines and their metabolites. Anal Bioanal Chem. 2006;386:506–514. doi: 10.1007/s00216-006-0675-z.
    1. Hjemdahl P. Catecholamine measurements by high-performance liquid chromatography. Am J Physiol. 1984;247:E13–E20.
    1. Gatti R, Antonelli A, Prearo M, Spinella P, Cappellini E, DePalo EF. Cortisol assays and diagnostic laboratory procedures in human biological fluids. Clin Biochem. 2009;42:1205–1217. doi: 10.1016/j.clinbiochem.2009.04.011.
    1. Rubin D. Multiple imputation for nonresponse in surveys. New York: Wiley; 1987.
    1. R Development Core Team . R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2008.
    1. Margolin A, Nemenman I, Basso K, Wiggins C, Stolovitsky G, Favera RD, Califano A. Aracne: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics. 2004;7(Suppl 1):S7. doi: 10.1186/1471-2105-7-S1-S7.
    1. Margolin A, Wang K, Lim W, Kustagi M, Nemanman I, Califano A. Reverse engineering cellular networks. Nat Protoc. 2006;2006(1):663–672.
    1. Scutari M. Learning bayesian networks with the bnlearn r package. J Stat Softw. 2010;35:1–22. doi: 10.18637/jss.v035.i03.
    1. Csardi G, Nepusz T. The igraph software package for complex network research. InterJ Complex Syst. 2006;1695:1–9.
    1. Wyller VB, Sørensen Ø, Sulheim D, Fagermoen E, Ueland T, Mollnes TE. Plasma cytokine expression in adolescent chronic fatigue syndrome. Brain Behav Immun. 2015;46:80–86. doi: 10.1016/j.bbi.2014.12.025.
    1. Papadimitriou A, Priftis KN. Regulation of the hypothalamic–pituitary–adrenal axis. NeuroImmunoModulation. 2009;16:265–271. doi: 10.1159/000216184.
    1. Vangeel E, Van den Eede F, Hompes T, Izzi B, Del Favero J, Moorkens G, Lambrechts D, Freson K, Claes S. Chronic fatigue syndrome and DNA hypomethylation of the glucocorticoid receptor gene promotor 1F region: association with HPA axis hypofunction and childhood trauma. Psychosom Med. 2015;77:853–862. doi: 10.1097/PSY.0000000000000224.
    1. Pervanidou P, Chrosous GP. Neuroendocrinology of post-traumatic stress disorder. Prog Brain Res. 2010;182:149–160. doi: 10.1016/S0079-6123(10)82005-9.

Source: PubMed

3
購読する