Unlearning chronic pain: A randomized controlled trial to investigate changes in intrinsic brain connectivity following Cognitive Behavioral Therapy

Marina Shpaner, Clare Kelly, Greg Lieberman, Hayley Perelman, Marcia Davis, Francis J Keefe, Magdalena R Naylor, Marina Shpaner, Clare Kelly, Greg Lieberman, Hayley Perelman, Marcia Davis, Francis J Keefe, Magdalena R Naylor

Abstract

Chronic pain is a complex physiological and psychological phenomenon. Implicit learning mechanisms contribute to the development of chronic pain and to persistent changes in the central nervous system. We hypothesized that these central abnormalities can be remedied with Cognitive Behavioral Therapy (CBT). Specifically, since regions of the anterior Default Mode Network (DMN) are centrally involved in emotional regulation via connections with limbic regions, such as the amygdala, remediation of maladaptive behavioral and cognitive patterns as a result of CBT for chronic pain would manifest itself as a change in the intrinsic functional connectivity (iFC) between these prefrontal and limbic regions. Resting-state functional neuroimaging was performed in patients with chronic pain before and after 11-week CBT (n = 19), as well as a matched (ages 19-59, both sexes) active control group of patients who received educational materials (n = 19). Participants were randomized prior to the intervention. To investigate the differential impact of treatment on intrinsic functional connectivity (iFC), we compared pre-post differences in iFC between groups. In addition, we performed exploratory whole brain analyses of changes in fractional amplitude of low frequency fluctuations (fALFF). The course of CBT led to significant improvements in clinical measures of pain and self-efficacy for coping with chronic pain. Significant group differences in pre-post changes in both iFC and fALFF were correlated with clinical outcomes. Compared to control patients, iFC between the anterior DMN and the amygdala/periaqueductal gray decreased following CBT, whereas iFC between the basal ganglia network and the right secondary somatosensory cortex increased following CBT. CBT patients also had increased post-therapy fALFF in the bilateral posterior cingulate and the cerebellum. By delineating neuroplasticity associated with CBT-related improvements, these results add to mounting evidence that CBT is a valuable treatment option for chronic pain.

Keywords: CBT; Chronic pain; Default Mode Network; Functional MRI; Functional connectivity.

Figures

Fig. 1
Fig. 1
Probabailistic independent component analysis. ICA of the entire dataset resulted in a) four Default Mode Networks (DMNs), including anterior DMN (IC7); all ICs are overlaid onto the MNI template at z = 34; b) two salience networks; and c) a single basal ganglia (BG) network. The blue color bar represents the z statistic thresholded at P > 0.5 following alternative hypothesis testing (indicating that the probability of being active exceeds the probability of being noise). All images are displayed in radiological coordinates with left on the right side.
Fig. 2
Fig. 2
Decreased connectivity between aDMN and left amygdala and periaqueductal gray after CBT. a) Dual regression of the aDMN network revealed lower connectivity to the left amygdala (L Amg) and periaqueductal gray (PAG) after CBT shown in red (the color bar represents the corrected P value following RANDOMISE and TFCE). Regions of the aDMN are in blue (posterior cingulate cortex, PCC; bilateral hippocampus; and bilateral orbitofrontal cortex, OFC); the blue color bar represents the z statistic thresholded at P > 0.5 for alternative hypothesis testing (indicating that the probability of being active exceeds the probability of being noise).b) The decreased connectivity between aDMN and L Amg correlated with increased Self-Efficacy for Coping with Symptoms; and c) decreased connectivity between aDMN and PAG correlated with increased Self-Efficacy for Pain Management. Panels b and c depict regression lines (blue) as well as individual data points; the CBT group is pink and the EDU group is blue. All images are displayed in radiological coordinates with left on the right side.
Fig. 3
Fig. 3
Increased connectivity between basal ganglia and right secondary somatosensory cortex after CBT. a) Dual regression of the basal ganglia (BG) network revealed higher connectivity to the right secondary somatosensory cortex (R S2) after CBT in green (the color bar represents the corrected P value following RANDOMISE and TFCE). Regions of the BG are in blue (nucleus accumbens, NAcc, and putamen); b) the increased connectivity between BG and R S2 correlated with decreased Pain Symptoms; and c) the increased connectivity between BG and R S2 correlated with increased Self-Efficacy for Pain Management. Panels b and c depict regression lines (blue) as well as individual data points; the CBT group is pink and the EDU group is blue. All images are displayed in radiological coordinates with left on the right side.
Fig. 4
Fig. 4
Increased fALFF in the cerebellum and the posterior cingulate cortex as well as increased connectivity between the two regions following CBT. a) Whole brain analysis of changes in regional fALFF revealed increased fluctuations in the cerebellum and the posterior cingulate cortex (PCC) (see left panel in blue). When the peak of the cerebellar cluster was used as a seed for connectivity analysis, there was higher connectivity to the PCC after CBT (right panel in red-yellow). Maps are a result of exploratory OLS analysis, cluster corrected for multiple comparisons at P < 0.05. b) The increased fALFF in the cerebellum correlated with increased Self-Efficacy for Pain Management. c) The increased fALFF in the cerebellum also correlated with decreased Total Pain Experience. Panels b and c depict regression lines (blue) as well as individual data points; the CBT group is pink and the EDU group is blue. All images are displayed in radiological coordinates with left on the right side.

References

    1. Absinta M., Rocca M.A., Colombo B., Falini A., Comi G., Filippi M. Selective decreased grey matter volume of the pain-matrix network in cluster headache. Cephalalgia: an International Journal of Headache. 2012;32:109–115.
    1. Alloway K.D., Lou L., Nwabueze-Ogbo F., Chakrabarti S. Topography of cortical projections to the dorsolateral neostriatum in rats: multiple overlapping sensorimotor pathways. Journal of Comparative Neurology. 2006;499:33–48.
    1. Alloway K.D., Mutic J.J., Hoffer Z.S., Hoover J.E. Overlapping corticostriatal projections from the rodent vibrissal representations in primary and secondary somatosensory cortex. Journal of Comparative Neurology. 2000;426:51–67.
    1. An X., Bandler R., Ongür D., Price J.L. Prefrontal cortical projections to longitudinal columns in the midbrain periaqueductal gray in macaque monkeys. Journal of Comparative Neurology. 1998;401:455–479.
    1. Anderson K.O., Dowds B.N., Pelletz R.E., Edwards W.T., Peeters-Asdourian C. Development and initial validation of a scale to measure self-efficacy beliefs in patients with chronic pain. Pain. 1995;63:77–84.
    1. Apkarian A.V., Sosa Y., Krauss B.R., Thomas P.S., Fredrickson B.E., Levy R.E., Harden R.N., Chialvo D.R. Chronic pain patients are impaired on an emotional decision-making task. Pain. 2004;108:129–136.
    1. Apkarian A.V. The brain in chronic pain: clinical implications. Pain Management. 2011;1:577–586.
    1. Apkarian A.V., Bushnell M.C., Treede R.D., Zubieta J.K. Human brain mechanisms of pain perception and regulation in health and disease. European Journal of Pain (London, England) 2005;9:463–484.
    1. Arsalidou M., Duerden E.G., Taylor M.J. The centre of the brain: topographical model of motor, cognitive, affective, and somatosensory functions of the basal ganglia. Human Brain Mapping. 2013;34:3031–3054.
    1. Baliki M.N., Baria A.T., Apkarian A.V. The cortical rhythms of chronic back pain. Journal of Neuroscience: the Official Journal of the Society for Neuroscience. 2011;31:13981–13990.
    1. Baliki M.N., Geha P.Y., Apkarian A.V., Chialvo D.R. Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. Journal of Neuroscience: the Official Journal of the Society for Neuroscience. 2008;28:1398–1403.
    1. Baliki M.N., Geha P.Y., Fields H.L., Apkarian A.V. Predicting value of pain and analgesia: nucleus accumbens response to noxious stimuli changes in the presence of chronic pain. Neuron. 2010;66:149–160.
    1. Baliki M.N., Petre B., Torbey S., Herrmann K.M., Huang L., Schnitzer T.J., Fields H.L., Apkarian A.V. Corticostriatal functional connectivity predicts transition to chronic back pain. Nature Neuroscience. 2012;15:1117–1119.
    1. Baliki M.N., Schnitzer T.J., Bauer W.R., Apkarian A.V. Brain morphological signatures for chronic pain. PloS One. 2011;6:e26010.
    1. Beck A.T., Ward C.H., Mendelson M., Mock J., Erbaugh J. An inventory for measuring depression. Archives of General Psychiatry. 1961;4:561–571.
    1. Beckmann C.F., DeLuca M., Devlin J.T., Smith S.M. Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 2005;360:1001–1013.
    1. Beckmann C.F., Smith S.M. Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Transactions on Medical Imaging. 2004;23:137–152.
    1. Behzadi Y., Restom K., Liau J., Liu T.T. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage. 2007;37:90–101.
    1. Bernardy K., Füber N., Köllner V., Häuser W. Efficacy of cognitive-behavioral therapies in fibromyalgia syndrome—a systematic review and metaanalysis of randomized controlled trials. Journal of Rheumatology. 2010;37:1991–2005.
    1. Bingel U., Lorenz J., Schoell E., Weiller C., Büchel C. Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network. Pain. 2006;120:8–15.
    1. Bingel U., Tracey I. Imaging CNS modulation of pain in humans. Physiology (Bethesda, Md.) 2008;23:371–380.
    1. Bittar R.G., Kar-Purkayastha I., Owen S.L., Bear R.E., Green A., Wang S., Aziz T.Z. Deep brain stimulation for pain relief: a meta-analysis. Journal of Clinical Neuroscience: Official Journal of the Neurosurgical Society of Australasia. 2005;12:515–519.
    1. Brown V.M., LaBar K.S., Haswell C.C., Gold A.L., Mid-Atlantic MIRECC Workgroup. McCarthy G., Morey R.A. Altered resting-state functional connectivity of basolateral and centromedial amygdala complexes in posttraumatic stress disorder. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology. 2014;39:351–359.
    1. Buckalew N., Haut M.W., Morrow L., Weiner D. Chronic pain is associated with brain volume loss in older adults: preliminary evidence. Pain Medicine (Malden, Mass.) 2008;9:240–248.
    1. Buckner R.L., Andrews-Hanna J.R., Schacter D.L. The brain's default network: anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences. 2008;1124:1–38.
    1. Buffington A.L., Hanlon C.A., McKeown M.J. Acute and persistent pain modulation of attention-related anterior cingulate fMRI activations. Pain. 2005;113:172–184.
    1. Cauda F., D'Agata F., Sacco K., Duca S., Cocito D., Paolasso I., Isoardo G., Geminiani G. Altered resting state attentional networks in diabetic neuropathic pain. Journal of Neurology, Neurosurgery, and Psychiatry. 2010;81:806–811.
    1. Cauda F., Sacco K., D'Agata F., Duca S., Cocito D., Geminiani G., Migliorati F., Isoardo G. Low-frequency BOLD fluctuations demonstrate altered thalamocortical connectivity in diabetic neuropathic pain. BMC Neuroscience. 2009;10:138.
    1. Ceko M., Bushnell M.C., Fitzcharles M.A., Schweinhardt P. Fibromyalgia interacts with age to change the brain. NeuroImage. Clinical. 2013;3:249–260.
    1. Cifre I., Sitges C., Fraiman D., Muñoz M.Á, Balenzuela P., González-Roldán A., Martínez-Jauand M., Birbaumer N., Chialvo D.R., Montoya P. Disrupted functional connectivity of the pain network in fibromyalgia. Psychosomatic Medicine. 2012;74:55–62.
    1. Cox R.W. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, an International Journal. 1996;29:162–173.
    1. Denison E., Asenlöf P., Lindberg P. Self-efficacy, fear avoidance, and pain intensity as predictors of disability in subacute and chronic musculoskeletal pain patients in primary health care. Pain. 2004;111:245–252.
    1. Eippert F., Bingel U., Schoell E.D., Yacubian J., Klinger R., Lorenz J., Büchel C. Activation of the opioidergic descending pain control system underlies placebo analgesia. Neuron. 2009;63:533–543.
    1. Ellingsen D.M., Wessberg J., Eikemo M., Liljencrantz J., Endestad T., Olausson H., Leknes S. Placebo improves pleasure and pain through opposite modulation of sensory processing. Proceedings of the National Academy of Sciences of the United States of America. 2013;110:17993–17998.
    1. Etkin A., Egner T., Kalisch R. Emotional processing in anterior cingulate and medial prefrontal cortex. Trends in Cognitive Sciences. 2011;15:85–93.
    1. Fendt M., Fanselow M.S. The neuroanatomical and neurochemical basis of conditioned fear. Neuroscience and Biobehavioral Reviews. 1999;23:743–760.
    1. Filippini N., MacIntosh B.J., Hough M.G., Goodwin G.M., Frisoni G.B., Smith S.M., Matthews P.M., Beckmann C.F., Mackay C.E. Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proceedings of the National Academy of Sciences of the United States of America. 2009;106:7209–7214.
    1. Fino E., Glowinski J., Venance L. Bidirectional activity-dependent plasticity at corticostriatal synapses. Journal of Neuroscience: the Official Journal of the Society for Neuroscience. 2005;25:11279–11287.
    1. Flor H. New developments in the understanding and management of persistent pain. Current Opinion in Psychiatry. 2012;25:109–113.
    1. Geha P.Y., Baliki M.N., Chialvo D.R., Harden R.N., Paice J.A., Apkarian A.V. Brain activity for spontaneous pain of postherpetic neuralgia and its modulation by lidocaine patch therapy. Pain. 2007;128:88–100.
    1. Gerstner G., Ichesco E., Quintero A., Schmidt-Wilcke T. Changes in regional gray and white matter volume in patients with myofascial-type temporomandibular disorders: a voxel-based morphometry study. Journal of Orofacial Pain. 2011;25:99–106.
    1. Giesecke T., Gracely R.H., Grant M.A., Nachemson A., Petzke F., Williams D.A., Clauw D.J. Evidence of augmented central pain processing in idiopathic chronic low back pain. Arthritis and Rheumatism. 2004;50:613–623.
    1. Gotts S.J., Saad Z.S., Jo H.J., Wallace G.L., Cox R.W., Martin A. The perils of global signal regression for group comparisons: a case study of autism spectrum disorders. Frontiers in Human Neuroscience. 2013;7:356.
    1. Gracely R.H., Geisser M.E., Giesecke T., Grant M.A., Petzke F., Williams D.A., Clauw D.J. Pain catastrophizing and neural responses to pain among persons with fibromyalgia. Brain: A Journal of Neurology. 2004;127:835–843.
    1. Gracely R.H., Petzke F., Wolf J.M., Clauw D.J. Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis and Rheumatism. 2002;46:1333–1343.
    1. Green A.L., Wang S., Owen S.L., Xie K., Bittar R.G., Stein J.F., Paterson D.J., Aziz T.Z. Stimulating the human midbrain to reveal the link between pain and blood pressure. Pain. 2006;124:349–359.
    1. Greve D.N., Fischl B. Accurate and robust brain image alignment using boundary-based registration. Neuroimage. 2009;48:63–72.
    1. Gulliksson M., Burell G., Vessby B., Lundin L., Toss H., Svärdsudd K. Randomized controlled trial of cognitive behavioral therapy vs standard treatment to prevent recurrent cardiovascular events in patients with coronary heart disease: Secondary Prevention in Uppsala Primary Health Care Project (SUPRIM) Archives of Internal Medicine. 2011;171:134–140.
    1. Haber S.N. The primate basal ganglia: parallel and integrative networks. Journal of Chemical Neuroanatomy. 2003;26:317–330.
    1. Hahn A., Stein P., Windischberger C., Weissenbacher A., Spindelegger C., Moser E., Kasper S., Lanzenberger R. Reduced resting-state functional connectivity between amygdala and orbitofrontal cortex in social anxiety disorder. Neuroimage. 2011;56:881–889.
    1. Holzel B.K., Lazar S.W., Gard T., Schuman-Olivier Z., Vago D.R., Ott U. How Does mindfulness meditation work? Proposing mechanisms of action from a conceptual and neural perspective. Perspectives on Psychological Science. 2011;6:537–559.
    1. Howard M.A., Sanders D., Krause K., O'Muircheartaigh J., Fotopoulou A., Zelaya F., Thacker M., Massat N., Huggins J.P., Vennart W., Choy E., Daniels M., Williams S.C. Alterations in resting-state regional cerebral blood flow demonstrate ongoing pain in osteoarthritis: an arterial spin-labeled magnetic resonance imaging study. Arthritis and Rheumatism. 2012;64:3936–3946.
    1. Jenkinson M., Bannister P., Brady M., Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage. 2002;17:825–841.
    1. Kim J., Loggia M.L., Edwards R.R., Wasan A.D., Gollub R.L., Napadow V. Sustained deep-tissue pain alters functional brain connectivity. Pain. 2013;154:1343–1351.
    1. Kong J., Tu P.C., Zyloney C., Su T.P. Intrinsic functional connectivity of the periaqueductal gray, a resting fMRI study. Behavioural Brain Research. 2010;211:215–219.
    1. Kucyi A., Salomons T.V., Davis K.D. Mind wandering away from pain dynamically engages antinociceptive and default mode brain networks. Proceedings of the National Academy of Sciences of the United States of America. 2013;110:18692–18697.
    1. Lawson K., Reesor K.A., Keefe F.J., Turner J.A. Dimensions of pain-related cognitive coping: cross-validation of the factor structure of the coping strategy questionnaire. Pain. 1990;43:195–204.
    1. LeResche L., Mancl L., Sherman J.J., Gandara B., Dworkin S.F. Changes in temporomandibular pain and other symptoms across the menstrual cycle. Pain. 2003;106:253–261.
    1. Liao W., Qiu C., Gentili C., Walter M., Pan Z., Ding J., Zhang W., Gong Q., Chen H. Altered effective connectivity network of the amygdala in social anxiety disorder: a resting-state FMRI study. PloS One. 2010;5:e15238.
    1. Linnman C., Moulton E.A., Barmettler G., Becerra L., Borsook D. Neuroimaging of the periaqueductal gray: state of the field. NeuroImage. 2012;60:505–522.
    1. Loggia M.L., Edwards R.R., Kim J., Vangel M.G., Wasan A.D., Gollub R.L., Harris R.E., Park K., Napadow V. Disentangling linear and nonlinear brain responses to evoked deep tissue pain. Pain. 2012;153:2140–2151.
    1. Loggia M.L., Kim J., Gollub R.L., Vangel M.G., Kirsch I., Kong J., Wasan A.D., Napadow V. Default mode network connectivity encodes clinical pain: an arterial spin labeling study. Pain. 2013;154:24–33.
    1. Maeda Y., Kettner N., Lee J., Kim J., Cina S., Malatesta C., Gerber J., McManus C., Im J., Libby A., Mezzacappa P., Morse L.R., Park K., Audette J., Napadow V. Acupuncture-evoked response in somatosensory and prefrontal cortices predicts immediate pain reduction in carpal tunnel syndrome. Evidence-Based Complementary and Alternative Medicine: ECAM. 2013;2013:795906.
    1. Malinen S., Vartiainen N., Hlushchuk Y., Koskinen M., Ramkumar P., Forss N., Kalso E., Hari R. Aberrant temporal and spatial brain activity during rest in patients with chronic pain. Proc Natl Acad Sci U.S.A. 2010
    1. Mansour A.R., Baliki M.N., Huang L., Torbey S., Herrmann K.M., Schnitzer T.J., Apkarian A.V. Brain white matter structural properties predict transition to chronic pain. Pain. 2013;154:2160–2168.
    1. May A. Structural brain imaging: a window into chronic pain. Neuroscientist: A Review Journal Bringing Neurobiology, Neurology and Psychiatry. 2011;17:209–220.
    1. McCabe C., Mishor Z. Antidepressant medications reduce subcortical–cortical resting-state functional connectivity in healthy volunteers. Neuroimage. 2011;57:1317–1323.
    1. Milad M.R., Wright C.I., Orr S.P., Pitman R.K., Quirk G.J., Rauch S.L. Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biological Psychiatry. 2007;62:446–454.
    1. Moayedi M., Weissman-Fogel I., Crawley A.P., Goldberg M.B., Freeman B.V., Tenenbaum H.C., Davis K.D. Contribution of chronic pain and neuroticism to abnormal forebrain gray matter in patients with temporomandibular disorder. Neuroimage. 2011;55:277–286.
    1. Mobbs D., Marchant J.L., Hassabis D., Seymour B., Tan G., Gray M., Petrovic P., Dolan R.J., Frith C.D. From threat to fear: the neural organization of defensive fear systems in humans. Journal of Neuroscience: the Official Journal of the Society for Neuroscience. 2009;29:12236–12243.
    1. Molnar-Szakacs I., Uddin L.Q. Self-processing and the default mode network: interactions with the mirror neuron system. Frontiers in Human Neuroscience. 2013;7:571.
    1. Monk C.S., Telzer E.H., Mogg K., Bradley B.P., Mai X., Louro H.M., Chen G., McClure-Tone E.B., Ernst M., Pine D.S. Amygdala and ventrolateral prefrontal cortex activation to masked angry faces in children and adolescents with generalized anxiety disorder. Archives of General Psychiatry. 2008;65:568–576.
    1. Moulton E.A., Elman I., Pendse G., Schmahmann J., Becerra L., Borsook D. Aversion-related circuitry in the cerebellum: responses to noxious heat and unpleasant images. Journal of Neuroscience: the Official Journal of the Society for Neuroscience. 2011;31:3795–3804.
    1. Moulton E.A., Schmahmann J.D., Becerra L., Borsook D. The cerebellum and pain: passive integrator or active participator? Brain Research Reviews. 2010;65:14–27.
    1. Murphy K., Birn R.M., Handwerker D.A., Jones T.B., Bandettini P.A. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage. 2009;44:893–905.
    1. Napadow V., Dhond R., Conti G., Makris N., Brown E.N., Barbieri R. Brain correlates of autonomic modulation: combining heart rate variability with fMRI. Neuroimage. 2008;42:169–177.
    1. Napadow V., Kim J., Clauw D.J., Harris R.E. Decreased intrinsic brain connectivity is associated with reduced clinical pain in fibromyalgia. Arthritis and Rheumatism. 2012;64:2398–2403.
    1. Napadow V., LaCount L., Park K., As-Sanie S., Clauw D.J., Harris R.E. Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis and Rheumatism. 2010;62:2545–2555.
    1. Naylor M.R., Helzer J.E., Naud S., Keefe F.J. Automated telephone as an adjunct for the treatment of chronic pain: a pilot study. Journal of Pain: Official Journal of the American Pain Society. 2002;3:429–438.
    1. Naylor M.R., Keefe F.J., Brigidi B., Naud S., Helzer J.E. Therapeutic interactive voice response for chronic pain reduction and relapse prevention. Pain. 2008;134:335–345.
    1. Nicassio P.M., Schoenfeld-Smith K., Radojevic V., Schuman C. Pain coping mechanisms in fibromyalgia: relationship to pain and functional outcomes. Journal of Rheumatology. 1995;22:1552–1558.
    1. Ossewaarde L., Hermans E.J., van Wingen G.A., Kooijman S.C., Johansson I.M., Bäckström T., Fernández G. Neural mechanisms underlying changes in stress-sensitivity across the menstrual cycle. Psychoneuroendocrinology. 2010;35:47–55.
    1. Otti A., Guendel H., Wohlschläger A., Zimmer C., Noll-Hussong M. Frequency shifts in the anterior default mode network and the salience network in chronic pain disorder. BMC Psychiatry. 2013;13:84.
    1. Parks E.L., Geha P.Y., Baliki M.N., Katz J., Schnitzer T.J., Apkarian A.V. Brain activity for chronic knee osteoarthritis: dissociating evoked pain from spontaneous pain. European Journal of Pain (London, England) 2011;15:843.
    1. Phelps E.A., Delgado M.R., Nearing K.I., LeDoux J.E. Extinction learning in humans: role of the amygdala and vmPFC. Neuron. 2004;43:897–905.
    1. Postuma R.B., Dagher A. Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cerebral Cortex (New York, N.Y.: 1991) 2006;16:1508–1521.
    1. Power J.D., Barnes K.A., Snyder A.Z., Schlaggar B.L., Petersen S.E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage. 2012;59:2142–2154.
    1. Power J.D., Mitra A., Laumann T.O., Snyder A.Z., Schlaggar B.L., Petersen S.E. Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage. 2014;84:320–341.
    1. Prater K.E., Hosanagar A., Klumpp H., Angstadt M., Phan K.L. Aberrant amygdala–frontal cortex connectivity during perception of fearful faces and at rest in generalized social anxiety disorder. Depression and Anxiety. 2013;30:234–241.
    1. Price D.D., Verne G.N., Schwartz J.M. Plasticity in brain processing and modulation of pain. Progress in Brain Research. 2006;157:333–352.
    1. Protopopescu X., Pan H., Altemus M., Tuescher O., Polanecsky M., McEwen B., Silbersweig D., Stern E. Orbitofrontal cortex activity related to emotional processing changes across the menstrual cycle. Proceedings of the National Academy of Sciences of the United States of America. 2005;102:16060–16065.
    1. Rescorla R.A. Experimental extinction. In: Mowrer R.R., Klein S.B., editors. Handbook of Contemporary Learning Theories. Lawrence Erlbaum Associates; Mahwah, NJ: 2001. pp. 119–154.
    1. Rogers W.H., Wittink H.M., Ashburn M.A., Cynn D., Carr D.B. Using the “TOPS,” an outcomes instrument for multidisciplinary outpatient pain treatment. Pain Medicine (Malden, Mass.) 2000;1:55–67.
    1. Saad Z.S., Gotts S.J., Murphy K., Chen G., Jo H.J., Martin A., Cox R.W. Trouble at rest: how correlation patterns and group differences become distorted after global signal regression. Brain Connectivity. 2012;2:25–32.
    1. Satterthwaite T.D., Elliott M.A., Gerraty R.T., Ruparel K., Loughead J., Calkins M.E., Eickhoff S.B., Hakonarson H., Gur R.C., Gur R.E., Wolf D.H. An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage. 2013;64:240–256.
    1. Schweinhardt P., Kuchinad A., Pukall C.F., Bushnell M.C. Increased gray matter density in young women with chronic vulvar pain. Pain. 2008;140:411–419.
    1. Seminowicz D.A., Labus J.S., Bueller J.A., Tillisch K., Naliboff B.D., Bushnell M.C., Mayer E.A. Regional gray matter density changes in brains of patients with irritable bowel syndrome. Gastroenterology. 2010;139:48–57.
    1. Seminowicz D.A., Wideman T.H., Naso L., Hatami-Khoroushahi Z., Fallatah S., Ware M.A., Jarzem P., Bushnell M.C., Shir Y., Ouellet J.A., Stone L.S. Effective treatment of chronic low back pain in humans reverses abnormal brain anatomy and function. Journal of Neuroscience: the Official Journal of the Society for Neuroscience. 2011;31:7540–7550.
    1. Sherman J.J., LeResche L. Does experimental pain response vary across the menstrual cycle? A methodological review. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 2006;291:R245–R256.
    1. Sprenger C., Bingel U., Büchel C. Treating pain with pain: supraspinal mechanisms of endogenous analgesia elicited by heterotopic noxious conditioning stimulation. Pain. 2011;152:428–439.
    1. Starr C.J., Sawaki L., Wittenberg G.F., Burdette J.H., Oshiro Y., Quevedo A.S., McHaffie J.G., Coghill R.C. The contribution of the putamen to sensory aspects of pain: insights from structural connectivity and brain lesions. Brain: A Journal of Neurology. 2011;134:1987–2004.
    1. Sullivan M., Bishop S., Pivik J. The pain catastrophizing scale: development and validation. Psychological Assessment. 1995;7:524–532.
    1. Tousignant-Laflamme Y., Marchand S. Autonomic reactivity to pain throughout the menstrual cycle in healthy women. Clinical Autonomic Research: Official Journal of the Clinical Autonomic Research Society. 2009;19:167–173.
    1. Valet M., Gündel H., Sprenger T., Sorg C., Mühlau M., Zimmer C., Henningsen P., Tölle T.R. Patients with pain disorder show gray-matter loss in pain-processing structures: a voxel-based morphometric study. Psychosomatic Medicine. 2009;71:49–56.
    1. Veehof M.M., Oskam M.J., Schreurs K.M., Bohlmeijer E.T. Acceptance-based interventions for the treatment of chronic pain: a systematic review and meta-analysis. Pain. 2011;152:533–542.
    1. Vickers A.J., Cronin A.M., Maschino A.C., Lewith G., MacPherson H., Foster N.E., Sherman K.J., Witt C.M., Linde K., Acupuncture Trialists' Collaberation Acupuncture for chronic pain: individual patient data meta-analysis. Archives of Internal Medicine. 2012;172:1444–1453.
    1. Wager T.D., Scott D.J., Zubieta J.K. Placebo effects on human mu-opioid activity during pain. Proceedings of the National Academy of Sciences of the United States of America. 2007;104:11056–11061.
    1. Weissman-Fogel I., Moayedi M., Tenenbaum H.C., Goldberg M.B., Freeman B.V., Davis K.D. Abnormal cortical activity in patients with temporomandibular disorder evoked by cognitive and emotional tasks. Pain. 2011;152:384–396.
    1. Williams A.C., Eccleston C., Morley S. Psychological therapies for the management of chronic pain (excluding headache) in adults. Cochrane Database of Systematic Reviews. 2012;11 CD007407.
    1. Yan C.G., Craddock R.C., Zuo X.N., Zang Y.F., Milham M.P. Standardizing the intrinsic brain: towards robust measurement of inter-individual variation in 1000 functional connectomes. Neuroimage. 2013;80:246–262.
    1. Yen C.P., Kung S.S., Su Y.F., Lin W.C., Howng S.L., Kwan A.L. Stereotactic bilateral anterior cingulotomy for intractable pain. Journal of Clinical Neuroscience: Official Journal of the Neurosurgical Society of Australasia. 2005;12:886–890.
    1. Yuan K., Zhao L., Cheng P., Yu D., Zhao L., Dong T., Xing L., Bi Y., Yang X., von Deneen K.M., Liang F., Gong Q., Qin W., Tian J. Altered structure and resting-state functional connectivity of the basal ganglia in migraine patients without aura. Journal of Pain: Official Journal of the American Pain Society. 2013;14:836–844.
    1. Zou Q.H., Zhu C.Z., Yang Y., Zuo X.N., Long X.Y., Cao Q.J., Wang Y.F., Zang Y.F. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. Journal of Neuroscience Methods. 2008;172:137–141.
    1. Zuo X.N., Di Martino A., Kelly C., Shehzad Z.E., Gee D.G., Klein D.F., Castellanos F.X., Biswal B.B., Milham M.P. The oscillating brain: complex and reliable. NeuroImage. 2010;49:1432–1445.

Source: PubMed

3
購読する