Blood pressure reduction does not reduce perihematoma oxygenation: a CT perfusion study

Mahesh P Kate, Mikkel B Hansen, Kim Mouridsen, Leif Østergaard, Victor Choi, Bronwen E Gould, Rebecca McCourt, Michael D Hill, Andrew M Demchuk, Shelagh B Coutts, Dariush Dowlatshahi, Derek J Emery, Brian H Buck, Kenneth S Butcher, ICHADAPT Investigators, Mahesh P Kate, Mikkel B Hansen, Kim Mouridsen, Leif Østergaard, Victor Choi, Bronwen E Gould, Rebecca McCourt, Michael D Hill, Andrew M Demchuk, Shelagh B Coutts, Dariush Dowlatshahi, Derek J Emery, Brian H Buck, Kenneth S Butcher, ICHADAPT Investigators

Abstract

Blood pressure (BP) reduction after intracerebral hemorrhage (ICH) is controversial, because of concerns that this may cause critical reductions in perihematoma perfusion and thereby precipitate tissue damage. We tested the hypothesis that BP reduction reduces perihematoma tissue oxygenation.Acute ICH patients were randomized to a systolic BP target of <150 or <180 mm Hg. Patients underwent CT perfusion (CTP) imaging 2 hours after randomization. Maps of cerebral blood flow (CBF), maximum oxygen extraction fraction (OEF(max)), and the resulting maximum cerebral metabolic rate of oxygen (CMRO2(max)) permitted by local hemodynamics, were calculated from raw CTP data.Sixty-five patients (median (interquartile range) age 70 (20)) were imaged at a median (interquartile range) time from onset to CTP of 9.8 (13.6) hours. Mean OEF(max) was elevated in the perihematoma region (0.44±0.12) relative to contralateral tissue (0.36±0.11; P<0.001). Perihematoma CMRO2(max) (3.40±1.67 mL/100 g per minute) was slightly lower relative to contralateral tissue (3.63±1.66 mL/100 g per minute; P=0.025). Despite a significant difference in systolic BP between the aggressive (140.5±18.7 mm Hg) and conservative (163.0±10.6 mm Hg; P<0.001) treatment groups, perihematoma CBF was unaffected (37.2±11.9 versus 35.8±9.6 mL/100 g per minute; P=0.307). Similarly, aggressive BP treatment did not affect perihematoma OEF(max) (0.43±0.12 versus 0.45±0.11; P=0.232) or CMRO2(max) (3.16±1.66 versus 3.68±1.85 mL/100 g per minute; P=0.857). Blood pressure reduction does not affect perihematoma oxygen delivery. These data support the safety of early aggressive BP treatment in ICH.

Figures

Figure 1
Figure 1
Examples of cerebral blood flow (CBF), cerebral blood volume (CBV), maximum oxygen extraction fraction (OEFmax), and cerebral metabolic rate of oxygen (CMRO2max) maps in patients randomized to <180 and <150 mm Hg blood pressure (BP) target groups. Histograms indicate mean±s.d. in the perihematoma and contralateral homologous regions.
Figure 2
Figure 2
Linear regression plots demonstrating the lack of relationship between all perfusion parameters and hematoma volume in the two different blood pressure treatment target groups (max, maximum oxygen extraction fraction; CMRO2max, maximum cerebral metabolic rate of oxygen.

References

    1. Dolinskas CA, Bilaniuk LT, Zimmerman RA, Kuhl DE, Alavi A. Computed tomography of intracerebral hematomas. II. Radionuclide and transmission CT studies of the prihematoma region. Am J Roentgenol. 1977;129:689–692.
    1. Mayer SA, Lignelli A, Fink ME, Kessler DB, Thomas CE, Swarup R, et al. Perilesional blood flow and edema formation in acute intracerebral hemorrhage: a SPECT study. Stroke. 1998;29:1791–1798.
    1. Siddique MS, Fernandes H, Wooldridge TD, Fenwick JD, Slomka P, Mendelow AD. Reversible ischemia around intracerebral hemorrhage: A single-photon emission computerized tomography study. J Neurosurg. 2002;96:736–741.
    1. Sills C, Villar-Cordova C, Pasteur W, Ramirez A, Lamki L, Barron B, et al. Demonstration of hypoperfusion surrounding intracerebral hematoma in humans. J Stroke and Cerebrovasr Dis. 1996;6:17–24.
    1. Uemura K, Shishido F, Higano S, Inugami A, Kanno I, Takahashi K, et al. Positron emission tomography in patients with a primary intracerebral hematoma. Acta Radiol Suppl. 1986;369:426–428.
    1. Butcher KS, Baird T, MacGregor L, Desmond P, Tress B, Davis S. Perihematomal edema in primary intracerebral hemorrhage is plasma derived. Stroke. 2004;35:1879–1885.
    1. Schellinger PD, Fiebach JB, Hoffmann K, Becker K, Orakcioglu B, Kollmar R, et al. Stroke MRI in intracerebral hemorrhage: Is there a perihemorrhaghic penumbra. Stroke. 2003;34:1674–1679.
    1. Herweh C, Juttler E, Schellinger PD, Klotz E, Jenetzky E, Orakcioglu B, et al. Evidence against a perihemorrhagic penumbra provided by perfusion computed tomography. Stroke. 2007;38:2941–2947.
    1. Rosand J, Eskey C, Chang Y, Gonzalez RG, Greenberg SM, Koroshetz WJ. Dynamic single-section CT demontrates reduced cerebral blood flow in acute intracerebral hemorrhage. Cerebrovasc Dis. 2002;14:214–220.
    1. Carhuapoma JR, Wang P, Beauchamp NJ, Keyl PM, Hanley DF, Barker PB. Diffusion-weighted MRI and proton MR spectroscopy imaging in the study of the secondary neuronal injury after intracerebral hemorrhage. Stroke. 2000;31:726–732.
    1. Mendelow AD. Mechanisms of ischemic brain damage with intracerebral hemorrhage. Stroke. 1993;24:115–119.
    1. Zazulia AR, Diringer MN, Videen TO, Adams RE, Yundt K, Aiyagari V, et al. Hypoperfusion without ischemia surrounding acute intracerebral hemorrhage. J Cereb Blood Flow Metab. 2001;21:804–810.
    1. Delcourt C, Huang Y, Wang J, Heeley E, Lindley R, Stapf C, et al. INTERACT2 Investigators. The second (main) phase of an open, randomised, multicentre study to investigate the effectiveness of an intensive blood pressure reduction in acute cerebral hemorrhage trial (INTERACT2) Int J Stroke. 2010;5:110–116.
    1. Qureshi A, Palesch Y. ATACH II. Expansion of recruitment time window in anithypertensive treatment of acute cerebral hemorrhage (ATACH) II trial. J Vasc Interv Neurol. 2012;5:6–9.
    1. Butcher KS, Jeerakathil T, Hill M, Demchuk AM, Dowlatshahi D, Coutts SB, et al. The intracerebral hemorrhage acutely decreasing arterial pressure trial. Stroke. 2013;44:620–629.
    1. Wise RJ, Bernardi S, Frackowiak RS, Legg NJ, Jones T. Serial observations on the pathophysiology of acute stroke. The transition from ischaemia to infarction as reflected in regional oxygen extraction. Brain. 1983;106 (Pt 1:197–222.
    1. Baron JC, Bousser M, Rey A, Guillard A, Comar D, Castaigne P. Reversal of focal "misery-perfusion syndrome" by extra-intracranial arterial bypass in hemodynamic cerebral ischemia. A case study woth 15 O positron emmission tomography. Stroke. 1981;12:454–459.
    1. Østergaard L, Sorensen AG, Chesler DA, Weisskoff RM, Koroshetz WJ, Wu O, et al. Combined diffusion-weighted and perfusion-weighted flow heterogeneity magnetic resonance imaging in acute stroke. Stroke. 2000;31:1097–1103.
    1. Østergaard L, Chesler DA, Weisskoff RM, Sorensen AG, Rosen BR. Modeling cerebral blood flow and flow heterogeneity from magnetic resonance residue data. J Cereb Blood Flow Metab. 1999;19:690–699.
    1. Jespersen SN, Østergaard L. The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism. J Cereb Blood Flow Metab. 2012;32:264–277.
    1. Østergaard L, Jespersen SN, Mouridsen K, Mikkelsen IK, Jonsdottir KY, Tietze A, et al. The role of the cerebral capillaries in acute ischemic stroke: the extended penumbra model. J Cereb Blood Flow Metab. 2013;33:635–648.
    1. Butcher K, Jeerakathil T, Emery D, Dowlatshahi D, Hill MD, Sharma M, et al. The intracerebral haemorrhage acutely decreasing arterial pressure trial: ICH ADAPT. Int J Stroke. 2010;5:227–233.
    1. Mouridsen K, Friston K, Hjort N, Gyldensted L, Østergaard L, Kiebel S. Bayesian estimation of cerebral perfusion using a physiological model of microvasculature. NeuroImage. 2006;33:570–579.
    1. Mouridsen K, Østergaard L, Christensen S, Jespersen SN. Reliable estimation of capillary transit time distributions at voxel-level using DSC-MRI. Proceedings of the International Society for Magnetic Resonance in Medicines 19th Annual Meeting and Exhibition. 2011;3915
    1. Murphy BD, Fox AJ, Lee DH, Sahlas DJ, Black SE, Hogan MJ, et al. Identification of penumbra and infarct in acute ischemic stroke using computed tomography perfusion-derived blood flow and blood volume measurements. Stroke. 2006;37:1771–1777.
    1. Kudo K, Terae S, Katoh C, Oka M, Shiga T, Tamaki N, et al. Quantitative cerebral blood flow measurement with dynamic perfusion ct using the vascular-pixel elimination method: Comparison with h2(15)O positron emission tomography. AJNR Am J Neuroradiol. 2003;24:419–426.
    1. Wintermark M, Thiran JP, Maeder P, Schnyder P, Meuli R. Simultaneous measurement of regional cerebral blood flow by perfusion CT and stable xenon CT: A validation study. AJNR Am J Neuroradiol. 2001;22:905–914.
    1. Zazulia AR, Diringer MN, Derdeyn CP, Powers WJ. Progression of mass effect after intracerebral hemorrhage. Stroke. 1999;30:1167–1173.
    1. Baron JC, Marchal G. Ischemic core and penumbra in human stroke. Stroke. 1999;30:1150–1153.
    1. Hirano T, Read SJ, Abbott DF, Sachinidis JI, Tochon-Danguy HJ, Egan GF, et al. No evidence of hypoxic tissue on 18F-fluoromisonidazole PET after intracerebral hemorrhage. Neurology. 1999;53:2179–2182.
    1. Butcher K, Markus R.The penumbra and intracerebral hemorrhageIn: D GA, JC Baron, SM Davis, F Sharp (eds).. The Ischemic Penumbra: History, Current Status and Implications for Therapy Marcel Dekker: New York; 2007263–280.
    1. Olivot JM, Mlynash M, Kleinman JT, Straka M, Venkatasubramanian C, Bammer R, et al. MRI profile of the perihematomal region in acute intracerebral hemorrhage. Stroke. 2010;41:2681–2683.
    1. Anderson CS, Huang Y, Wang JG, Arima H, Neal B, Peng B, et al. Intensive blood pressure reduction in acute cerebral haemorrhage trial (INTERACT): a randomised pilot trial. Lancet Neurol. 2008;7:391–399.
    1. Anderson CS, Heeley E, Huang Y, Wang J, Stapf C, Delcourt C, et al. Rapid blood-pressure lowering in patients with acute intracerebral hemorrhage. N Engl J Med. 2013;368:2355–2365.

Source: PubMed

3
購読する