Tattoo tomography: Freehand 3D photoacoustic image reconstruction with an optical pattern

Niklas Holzwarth, Melanie Schellenberg, Janek Gröhl, Kris Dreher, Jan-Hinrich Nölke, Alexander Seitel, Minu D Tizabi, Beat P Müller-Stich, Lena Maier-Hein, Niklas Holzwarth, Melanie Schellenberg, Janek Gröhl, Kris Dreher, Jan-Hinrich Nölke, Alexander Seitel, Minu D Tizabi, Beat P Müller-Stich, Lena Maier-Hein

Abstract

Purpose: Photoacoustic tomography (PAT) is a novel imaging technique that can spatially resolve both morphological and functional tissue properties, such as vessel topology and tissue oxygenation. While this capacity makes PAT a promising modality for the diagnosis, treatment, and follow-up of various diseases, a current drawback is the limited field of view provided by the conventionally applied 2D probes.

Methods: In this paper, we present a novel approach to 3D reconstruction of PAT data (Tattoo tomography) that does not require an external tracking system and can smoothly be integrated into clinical workflows. It is based on an optical pattern placed on the region of interest prior to image acquisition. This pattern is designed in a way that a single tomographic image of it enables the recovery of the probe pose relative to the coordinate system of the pattern, which serves as a global coordinate system for image compounding.

Results: To investigate the feasibility of Tattoo tomography, we assessed the quality of 3D image reconstruction with experimental phantom data and in vivo forearm data. The results obtained with our prototype indicate that the Tattoo method enables the accurate and precise 3D reconstruction of PAT data and may be better suited for this task than the baseline method using optical tracking.

Conclusions: In contrast to previous approaches to 3D ultrasound (US) or PAT reconstruction, the Tattoo approach neither requires complex external hardware nor training data acquired for a specific application. It could thus become a valuable tool for clinical freehand PAT.

Keywords: 3D; Optical pattern; Optoacoustic; Photoacoustic; Tomography.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Fig. 1
Fig. 1
Tattoo tomography The approach to 3D image reconstruction comprises four steps. (1) Prior to image acquisition, the optical pattern is placed on the region of interest. (2) Next, a sequence of images is acquired, each showing a part of the pattern as well as the target region. (3) The image features corresponding to the pattern (here: three points) are extracted from each slice and used to recover the pose of the probe relative to the pattern coordinate system. (4) Once all acquired slices have been transformed (T) into a common coordinate system (C), the 3D volume is compounded
Fig. 2
Fig. 2
2D representation of the tattoo containing all relevant variables (left) and corresponding photoacoustic image (right). It shows the pattern (green), and the intersection of the image slice with the pattern (blue line). The image clearly shows three points representing the part of the image that intersects with the optical pattern (l, c, r). Based on the distances dl and dr between neighboring points, the pose of the intersection line represented by a blue line can be unambiguously determined
Fig. 3
Fig. 3
Phantom used for the quantitative validation of reconstruction accuracy. The optical markers (silver spheres) enable the comparison to a baseline 3D reconstruction method. The red box (right: zoomed in) highlights the optical pattern placed on top of the N-wires. The wires have a diameter of 0.4mm, and the holes of the frame are 5mm apart from each other
Fig. 4
Fig. 4
The experimental setup and results of the feasibility demonstration experiment. The IPCAI logo printed on paper is placed underneath a gel pad on top of which the optical pattern is fixed and some ultrasound gel is added (a). A freehand PA scan is acquired (b), which results in a fully image-based and clear reconstruction of the IPCAI logo
Fig. 5
Fig. 5
Good and poor reconstruction of a target region (here the text IPCAI, right) corresponding to a relatively slow and careful image acquisition (top) and a fast and careless acquisition (bottom). The 2D images represent an intersection of the image stack at a fixed y-position before (left) and of the 3D volume after (center) Tattoo reconstruction
Fig. 6
Fig. 6
The 3D model of the N-wire phantom (white) is displayed together with the optical pattern compounded volumes of a single scan (blue, left) and all three scans (blue, red, green, right) after applying an ICP algorithm to register the Tattoo point cloud on the N-wire model (cf. Table 1)
Fig. 7
Fig. 7
Left: Analysis of an in-plane flat surface constraint violation. a Photoacoustic image of a healthy volunteer wrist showing the encoded pattern information. b Distances of the pattern absorption points assuming a flat surface. c Approximation of the real distances via a Bézier curve with two control points. Right: Potential hardware setup to overcome the flat surface constraint

References

    1. Li C, Wang LV. Photoacoustic tomography and sensing in biomedicine. Phys Med Biol. 2009 doi: 10.1088/0031-9155/54/19/R01.
    1. Rosencwaig A, Gersho A. Theory of the photoacoustic effect with solids. J Appl Phys. 1976;47(1):64–69. doi: 10.1063/1.322296.
    1. Regensburger AP, Fonteyne LM, Jüngert J, Wagner AL, Gerhalter T, Nagel AM, Heiss R, Flenkenthaler F, Qurashi M, Neurath MF, Klymiuk N, Kemter E, Fröhlich T, Uder M, Woelfle J, Rascher W, Trollmann R, Wolf E, Waldner MJ, Knieling F. Detection of collagens by multispectral optoacoustic tomography as an imaging biomarker for Duchenne muscular dystrophy. Nat Med. 2019;25(12):1905–1915. doi: 10.1038/s41591-019-0669-y.
    1. Attia ABE, Balasundaram G, Moothanchery M, Dinish US, Bi R, Ntziachristos V, Olivo M. A review of clinical photoacoustic imaging: current and future trends. Photoacoustics. 2019 doi: 10.1016/j.pacs.2019.100144.
    1. Shen F, Shinohara K, Kumar D, Khemka A, Simoneau AR, Werahera PN, Li L, Guo Y, Narayanan R, Wei L, Barqawi A, Crawford ED, Davatzikos C, Suri JS. Three-dimensional sonography with needle tracking: role in diagnosis and treatment of prostate cancer. J Ultrasound Med. 2008;27(6):895–905. doi: 10.7863/jum.2008.27.6.895.
    1. Zhang Q, Liu Z, Carney PR, Yuan Z, Chen H, Roper SN, Jiang H. Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography. Phys Med Biol. 2008;53(7):1921. doi: 10.1088/0031-9155/53/7/008.
    1. Neuschmelting V, Burton NC, Lockau H, Urich A, Harmsen S, Ntziachristos V, Kircher MF (2016) Performance of a multispectral optoacoustic tomography (MSOT) system equipped with 2D vs. 3D handheld probes for potential clinical translation. Photoacoustics 4(1):1–10. 10.1016/j.pacs.2015.12.001
    1. Mercier L, Langø T, Lindseth F, Collins DL. A review of calibration techniques for freehand 3-D ultrasound systems. Ultrasound Med Biol. 2005;31(4):449–471. doi: 10.1016/j.ultrasmedbio.2004.11.015.
    1. Esteban J, Simson W, Witzig SR, Rienmüller A, Virga S, Frisch B, Zettinig O, Drazen S, Yu-Mi R, Navab N, Hennersperger C. Robotic ultrasound-guided facet joint insertion. Int J Comput Assist Radiol Surg. 2018;13(6):895–904. doi: 10.1007/s11548-018-1759-x.
    1. Kirchner T, Wild E, Maier-Hein KH, Maier-Hein L. (2016) Freehand photoacoustic tomography for 3D angiography using local gradient information. SPIE BIOS, Photons Plus Ultrasound Imaging Sens. 2016;9708:97083G. doi: 10.1117/12.2209368.
    1. Sun SY, Anthony BW (2012) Freehand 3D ultrasound volume imaging using a miniature-mobile 6-DOF camera tracking system. In: 9th IEEE international symposium on biomedical imaging, pp 1084-1087.
    1. Chen JF, Fowlkes JB, Carson PL, Rubin JM (1997) Determination of scan-plane motion using speckle decorrelation: theoretical considerations and initial test. Int J Imaging Syst Technol 8(1):38–44. 10.1002/(SICI)1098-1098(1997)8:1%3C38::AID-IMA5%;2-U
    1. Gao H, Huang Q, Xu X, Li X. Wireless and sensorless 3D ultrasound imaging. Neurocomputing. 2016;195:159–171. doi: 10.1016/j.neucom.2015.08.109.
    1. Xu M, Wang LV. Photoacoustic imaging in biomedicine. Rev Sci Instrum. doi. 2006;10(1063/1):2195024.
    1. Prevost R, Salehi M, Jagoda S, Kumar N, Sprung J, Ladikos A, Bauer R, Zettinig O, Wein W. 3D freehand ultrasound without external tracking using deep learning. Med Image Anal. 2018;48:187–202. doi: 10.1016/j.media.2018.06.003.
    1. Lin DJ, Johnson PM, Knoll F, Lui YW. Artificial intelligence for MR image reconstruction: an overview for clinicians. J Magn Reson Imaging. 2020 doi: 10.1002/jmri.27078.
    1. Weiss K, Khoshgoftaar TM, Wang D. A survey of transfer learning. J Big data. 2016;3(1):1–40. doi: 10.1186/s40537-016-0043-6.
    1. Adler TJ, Ayala L, Ardizzone L, Kenngott HG, Vemuri A, Müller-Stich BP, Rother C, Küthe U, Maier-Hein L(2019) Out of distribution detection for intra-operative functional imaging. In: Uncertainty for safe utilization of machine learning in medical imaging and clinical image-based procedures. Springer, Cham, pp 75-82. 10.1007/978-3-030-32689-0_8
    1. Wein W, Lupetti M, Zettinig O, Jagoda S, Salehi M, Markova V, Zonoobi D, Prevost R (2020) Three-dimensional thyroid assessment from untracked 2D ultrasound clips. Medical image computing and computer assisted intervention - MICCAI 2020. Lecture notes in computer science, 12263, Springer, Cham., pp 514–523. 10.1007/978-3-030-59716-0_49
    1. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey CJ, Polat I, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa F, van Mulbregt P, Vijaykumar A, Bardelli AP, Rothberg A, Hilboll A, Kloeckner A, Scopatz A, Lee A, Rokem A, Woods CN, Fulton C, Masson C, Häggsträm C, Fitzgerald C, Nicholson DA, Hagen DR, Pasechnik DV, Olivetti E, Martin E, Wieser E, Silva F, Lenders F, Wilhelm F, Young G, Price GA, Ingold G-E, Allen GE, Lee GR, Audren H, Probst I, Dietrich J, Silterra J, Webber JT, Slavič J, Nothman J, Buchner J, Kulick J, Schönberger JL, de Miranda Cardoso JV, Reimer J, Harrington J, Rodríguez JLC, Nunez-Iglesias J, Kuczynski J, Kuczynski J, Tritz K, Thoma M, Newville M, Kümmerer M, Bolingbroke M, Tartre M, Pak M, Smith NJ, Nowaczyk N, Shebanov N, Pavlyk O, Brodtkorb PA, Lee P, McGibbon RT, Feldbauer R, Lewis S, Tygier S, Sievert S, Vigna S, Peterson S, More S, Pudlik T, Oshima T, Pingel T, Robitaille TP, Spura T, Jones TR, Cera T, Leslie T, Zito T, Krauss T, Upadhyay U, Halchenko YO, Vázquez-Baeza Y (2020) SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods 17(3):261–272. 10.1038/s41592-019-0686-2
    1. Lasso A, Heffter T, Rankin A, Pinter C, Ungi T, Fichtinger G. PLUS: open-source toolkit for ultrasound-guided intervention systems. IEEE Trans Biomed Eng. 2014;61(10):2527–2537. doi: 10.1109/TBME.2014.2322864.
    1. Mozaffarzadeh M, Mahloojifar A, Orooji M, Adabi S, Nasiriavanaki M. Double-stage delay multiply and sum beamforming algorithm: application to linear-array photoacoustic imaging. IEEE Trans Biomed Eng. 2017;65(1):31–42. doi: 10.1109/TBME.2017.2690959.
    1. Rousseau F, Hellier P, Barillot C. Confhusius: a robust and fully automatic calibration method for 3D freehand ultrasound. Med Image Anal. 2005;9(1):25–38. doi: 10.1016/j.media.2004.06.021.
    1. Chen TK, Thurston AD, Ellis RE, Abolmaesumi P. A real-time freehand ultrasound calibration system with automatic accuracy feedback and control. Ultrasound Med Biol. 2009;35(1):79–93. doi: 10.1016/j.ultrasmedbio.2008.07.004.
    1. Nolden M, Zelzer S, Seitel A, Wald D, Müller M, Franz AM, Maleike D, Fangerau M, Baumhauer M, Maier-Hein L, Maier-Hein KH, Meinzer HP, Wolf I. The medical imaging interaction toolkit: challenges and advances. Int J Comput Assist Radiol Surg. 2013;8(4):607–620. doi: 10.1007/s11548-013-0840-8.
    1. Maier-Hein L, Franz AM, Dos Santos TR, Schmidt M, Fangerau M, Meinzer HP, Fitzpatrick JM (2011) Convergent iterative closest-point algorithm to accomodate anisotropic and inhomogenous localization error. IEEE Trans Pattern Anal Mach Intell 34(8):1520–1532. 10.1109/TPAMI.2011.248
    1. Ruggeri M, Saupe D (2008) Isometry-invariant matching of point set surfaces. EG 3DOR 2008 : Eurographics 2008 Workshop on 3D Object Retrieval.

Source: PubMed

3
購読する