Multi-center phase II trial of bortezomib and rituximab maintenance combination therapy in patients with mantle cell lymphoma after consolidative autologous stem cell transplantation

Robert W Chen, Joycelynne M Palmer, Sarah Tomassetti, Leslie L Popplewell, Jessica Alluin, Pritsana Chomchan, Auayporn P Nademanee, Tanya Siddiqi, Ni-Chun Tsai, Lu Chen, Fay Zuo, Rosemarie Abary, Ji-Lian Cai, Alex F Herrera, John J Rossi, Steven T Rosen, Stephen J Forman, Larry W Kwak, Leona A Holmberg, Robert W Chen, Joycelynne M Palmer, Sarah Tomassetti, Leslie L Popplewell, Jessica Alluin, Pritsana Chomchan, Auayporn P Nademanee, Tanya Siddiqi, Ni-Chun Tsai, Lu Chen, Fay Zuo, Rosemarie Abary, Ji-Lian Cai, Alex F Herrera, John J Rossi, Steven T Rosen, Stephen J Forman, Larry W Kwak, Leona A Holmberg

Abstract

Background: Mantle cell lymphoma (MCL) is an aggressive and incurable lymphoma. Standard of care for younger patients with MCL is induction chemotherapy followed by autologous stem cell transplantation (auto-HCT). Rituximab maintenance after auto-HCT has been shown to improve progression-free survival (PFS) and overall survival (OS) in MCL. Bortezomib maintenance therapy has also been shown to be tolerable and feasible in this setting. However, the combination of bortezomib and rituximab as maintenance therapy post-auto-HCT has not been studied.

Methods: We conducted a multicenter, phase II trial of bortezomib given in combination with rituximab as maintenance in MCL patients after consolidative auto-HCT. Enrolled patients (n = 23) received bortezomib 1.3 mg/m2 subcutaneously weekly for 4 weeks every 3 months (up to 24 months) and rituximab 375 mg/m2 intravenously weekly for 4 weeks every 6 months (up to 24 months) for a total duration of 2 years. The primary study endpoint was disease-free survival (DFS).

Results: With a median follow-up of 35.9 months, the 2-year DFS probability was 90.2% (95% CI 66-97), and 2-year OS was 94.7% (95% CI 68-99). The most frequent grade 3/4 toxic events were neutropenia (in 74% of patients) and lymphopenia (in 35%). The incidence of peripheral neuropathy was 48% for grade 1, 9% for grade 2, and 0% for grade 3/4. We also examined the role of quantitative cyclin D1 (CCND1) mRNA in monitoring minimal residual disease.

Conclusion: Combined bortezomib and rituximab as maintenance therapy in MCL patients following auto-HCT is an active and well-tolerated regimen.

Trial registration: ClinicalTrials.gov NCT01267812 , registered Dec 29, 2010.

Keywords: Auto-HCT; Bortezomib; CCND1; MRD; Mantle cell lymphoma; Rituximab.

Conflict of interest statement

Ethics approval and consent to participate

This study was conducted according to the ethical principles for medical research involving human subjects as stated in the Declaration of Helsinki and in the ICH Good Clinical Practice guidelines. The study protocol was reviewed and approved by the Institutional Review Boards of the City of Hope National Medical Center (reference number 10137) and the Fred Hutchinson Cancer Research Center (reference number 2620). All eligible participants had the study, timelines, and outcome measures of the study explained to them. Participants were informed that they are free to discontinue participation at any time without consequence. To indicate consent, all participants signed the written informed consent form.

Consent for publication

Not applicable

Competing interests

RC has received research funding from Takeda/Millennium Pharmaceuticals. RC has been a consultant for Takeda/Millennium. LAH has received research funding from Takeda/Millennium Pharmaceuticals, Seattle Genetics, Merck, and Sanofi. LAH has been a consultant for Seattle Genetics, Jazz, and NCCN. LAH has received royalty from Up-To-Date.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Kaplan-Meier analysis of disease-free and overall survival. The solid line represents overall survival, and the dotted line represents disease-free survival. DFS was calculated from start of treatment to the date of first appearance of disease relapse, or death from any cause. DFS and OS were estimated using the product-limit method of Kaplan and Meier; 95% confidence interval was calculated using Greenwood’s formula
Fig. 2
Fig. 2
Normalized CCND1 levels in patient peripheral blood samples. CCND1 mRNA was assessed using ddPCR on RNA extracted from PBMCs as described in the “Methods” section. Positive controls were the MCL cell line JVM2, and PBMCs from untreated patient with MCL involvement. Negative control was PBMCs from a healthy donor. Shown are results of single samples from patients A1-A18

References

    1. A clinical evaluation of the International Lymphoma Study Group Classification of non-Hodgkin’s lymphoma. The non-Hodgkin’s Lymphoma Classification Project. Blood. 1997;89:3909–18. .
    1. Dreyling M, Lenz G, Hoster E, Van Hoof A, Gisselbrecht C, Schmits R, Metzner B, Truemper L, Reiser M, Steinhauer H, et al. Early consolidation by myeloablative radiochemotherapy followed by autologous stem cell transplantation in first remission significantly prolongs progression-free survival in mantle-cell lymphoma: results of a prospective randomized trial of the European MCL Network. Blood. 2005;105:2677–2684. doi: 10.1182/blood-2004-10-3883.
    1. Lefrere F, Delmer A, Suzan F, Levy V, Belanger C, Djabarri M, Arnulf B, Damaj G, Maillard N, Ribrag V, et al. Sequential chemotherapy by CHOP and DHAP regimens followed by high-dose therapy with stem cell transplantation induces a high rate of complete response and improves event-free survival in mantle cell lymphoma: a prospective study. Leukemia. 2002;16:587–593. doi: 10.1038/sj.leu.2402406.
    1. Geisler CH, Kolstad A, Laurell A, Jerkeman M, Raty R, Andersen NS, Pedersen LB, Eriksson M, Nordstrom M, Kimby E, et al. Nordic MCL2 trial update: six-year follow-up after intensive immunochemotherapy for untreated mantle cell lymphoma followed by BEAM or BEAC + autologous stem-cell support: still very long survival but late relapses do occur. Br J Haematol. 2012;158:355–362. doi: 10.1111/j.1365-2141.2012.09174.x.
    1. Delarue R, Haioun C, Ribrag V, Brice P, Delmer A, Tilly H, Salles G, Van Hoof A, Casasnovas O, Brousse N, et al. CHOP and DHAP plus rituximab followed by autologous stem cell transplantation in mantle cell lymphoma: a phase 2 study from the Groupe d’Etude des Lymphomes de l’Adulte. Blood. 2013;121:48–53. doi: 10.1182/blood-2011-09-370320.
    1. Graf SA, Stevenson PA, Holmberg LA, Till BG, Press OW, Chauncey TR, Smith SD, Philip M, Orozco JJ, Shustov AR, et al. Maintenance rituximab after autologous stem cell transplantation in patients with mantle cell lymphoma. Ann Oncol. 2015;26:2323–2328. doi: 10.1093/annonc/mdv364.
    1. Le Gouill S, Thieblemont C, Oberic L, Moreau A, Bouabdallah K, Dartigeas C, Damaj G, Gastinne T, Ribrag V, Feugier P, et al. Rituximab after autologous stem-cell transplantation in mantle-cell lymphoma. N Engl J Med. 2017;377:1250–1260. doi: 10.1056/NEJMoa1701769.
    1. Kluin-Nelemans HC, Hoster E, Hermine O, Walewski J, Trneny M, Geisler CH, Stilgenbauer S, Thieblemont C, Vehling-Kaiser U, Doorduijn JK, et al. Treatment of older patients with mantle-cell lymphoma. N Engl J Med. 2012;367:520–531. doi: 10.1056/NEJMoa1200920.
    1. Mei MG, Cao TM, Chen L, Song JY, Siddiqi T, Cai JL, Farol LT, Al Malki MM, Salhotra A, Aldoss I, et al. Long-term results of high-dose therapy and autologous stem cell transplantation for mantle cell lymphoma: effectiveness of maintenance rituximab. Biol Blood Marrow Transplant. 2017;23:1861–1869. doi: 10.1016/j.bbmt.2017.07.006.
    1. Till BG, Li H, Bernstein SH, Fisher RI, Burack WR, Rimsza LM, Floyd JD, DaSilva MA, Moore DF, Jr., Pozdnyakova O, et al: Phase II trial of R-CHOP plus bortezomib induction therapy followed by bortezomib maintenance for newly diagnosed mantle cell lymphoma: SWOG S0601. Br J Haematol 2016, 172:208–218.
    1. Tseng YD, Stevenson PA, Cassaday RD, Cowan A, Till BG, Shadman M, Graf SA, Ermoian R, Smith SD, Holmberg LA, et al. Total body irradiation is safe and similarly effective as chemotherapy-only conditioning in autologous stem cell transplantation for mantle cell lymphoma. Biol Blood Marrow Transplant. 2018;24:282–287. doi: 10.1016/j.bbmt.2017.10.029.
    1. O'Connor OA, Wright J, Moskowitz C, Muzzy J, MacGregor-Cortelli B, Stubblefield M, Straus D, Portlock C, Hamlin P, Choi E, et al. Phase II clinical experience with the novel proteasome inhibitor bortezomib in patients with indolent non-Hodgkin’s lymphoma and mantle cell lymphoma. J Clin Oncol. 2005;23:676–684. doi: 10.1200/JCO.2005.02.050.
    1. Fisher RI, Bernstein SH, Kahl BS, Djulbegovic B, Robertson MJ, de Vos S, Epner E, Krishnan A, Leonard JP, Lonial S, et al. Multicenter phase II study of bortezomib in patients with relapsed or refractory mantle cell lymphoma. J Clin Oncol. 2006;24:4867–4874. doi: 10.1200/JCO.2006.07.9665.
    1. Belch A, Kouroukis CT, Crump M, Sehn L, Gascoyne RD, Klasa R, Powers J, Wright J, Eisenhauer EA. A phase II study of bortezomib in mantle cell lymphoma: the National Cancer Institute of Canada Clinical Trials Group trial IND.150. Ann Oncol. 2007;18:116–121. doi: 10.1093/annonc/mdl316.
    1. Kaplan LD, Jung S-H, Stock W, Bartlett NL, Pitcher B, Byrd JC, Blum KA, LaCasce AS, Fulton N, Hsi ED, et al. Bortezomib maintenance (BM) versus consolidation (BC) following aggressive immunochemotherapy and autologous stem cell transplant (ASCT) for untreated mantle cell lymphoma (MCL): CALGB (Alliance) 50403. Blood. 2015;126:337.
    1. Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, Bright IJ, Lucero MY, Hiddessen AL, Legler TC, et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem. 2011;83:8604–8610. doi: 10.1021/ac202028g.
    1. Hindson CM, Chevillet JR, Briggs HA, Gallichotte EN, Ruf IK, Hindson BJ, Vessella RL, Tewari M. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods. 2013;10:1003. doi: 10.1038/nmeth.2633.
    1. Cheson BD, Pfistner B, Juweid ME, Gascoyne RD, Specht L, Horning SJ, Coiffier B, Fisher RI, Hagenbeek A, Zucca E, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007;25:579–586. doi: 10.1200/JCO.2006.09.2403.
    1. Bottcher S, Ritgen M, Buske S, Gesk S, Klapper W, Hoster E, Hiddemann W, Unterhalt M, Dreyling M, Siebert R, et al. Minimal residual disease detection in mantle cell lymphoma: methods and significance of four-color flow cytometry compared to consensus IGH-polymerase chain reaction at initial staging and for follow-up examinations. Haematologica. 2008;93:551–559. doi: 10.3324/haematol.11267.
    1. Pott C. Minimal residual disease detection in mantle cell lymphoma: technical aspects and clinical relevance. Semin Hematol. 2011;48:172–184. doi: 10.1053/j.seminhematol.2011.05.002.
    1. Pott C, Hoster E, Delfau-Larue MH, Beldjord K, Bottcher S, Asnafi V, Plonquet A, Siebert R, Callet-Bauchu E, Andersen N, et al. Molecular remission is an independent predictor of clinical outcome in patients with mantle cell lymphoma after combined immunochemotherapy: a European MCL intergroup study. Blood. 2010;115:3215–3223. doi: 10.1182/blood-2009-06-230250.
    1. Faham M, Zheng J, Moorhead M, Carlton VE, Stow P, Coustan-Smith E, Pui CH, Campana D. Deep-sequencing approach for minimal residual disease detection in acute lymphoblastic leukemia. Blood. 2012;120:5173–5180. doi: 10.1182/blood-2012-07-444042.
    1. Lokvenc M, Kalinova M, Forsterova K, Klener P, Trneny M, Fronkova E, Kodet R. Cyclin D1 mRNA as a molecular marker for minimal residual disease monitoring in patients with mantle cell lymphoma. Ann Hematol. 2018;97:467–474. doi: 10.1007/s00277-017-3210-8.

Source: PubMed

3
購読する