Measurement of the vascular pedicle width predicts fluid repletion: a cross-sectional comparison with inferior vena cava ultrasound and lung comets

Nawal Salahuddin, Iqbal Hussain, Hakam Alsaidi, Quratulain Shaikh, Mini Joseph, Hassan Hawa, Khalid Maghrabi, Nawal Salahuddin, Iqbal Hussain, Hakam Alsaidi, Quratulain Shaikh, Mini Joseph, Hassan Hawa, Khalid Maghrabi

Abstract

Background: Determination of a patient's volume status remains challenging. Ultrasound assessments of the inferior vena cava and lung parenchyma have been shown to reflect fluid status when compared to the more traditional static and dynamic methods. Yet, resource-limited intensive care units (ICUs) may still not have access to bedside ultrasound. The vascular pedicle width (VPW) measured on chest radiographs remains underutilized for fluid assessment. In this study, we aimed to determine the correlation between ultrasound assessment and vascular pedicle width and to identify a discriminant value that predicted a fluid replete state.

Methods: Eighty-four data points of simultaneous VPW and inferior vena cava measurements were collected on mechanically ventilated patients. VPW measurements were compared with lung comet scores, fluid balance, and a composite variable of inferior vena cava diameter greater than or equal to 2 cm and variability less than 15 %.

Results: A VPW of 64 mm accurately predicted fluid repletion with a positive predictive value equal to 88.5 % and an area under the curve (AUC) of 0.843, 95 % CI 0.75-0.93, p < 0.001. VPW closely correlated with inferior vena cava diameter (Pearson's r = 0.64, p = <0.001). Poor correlations were observed between VPW and lung comet score, Pearson's r = 0.12, p = 0.26, fluid balance, Pearson's r = 0.3, p = 0.058, and beta natriuretic peptide, Pearson's r = 0.12, p = 0.26.

Conclusions: This study shows a high predictive ability of the VPW for fluid repletion, as compared to an accepted method of volume assessment. Given the relationship of fluid overload and mortality, these results may assist fluid resuscitation in resource-limited intensive care units.

Keywords: Fluid assessment; Inferior vena cava; Ultrasound; Vascular pedicle width.

Figures

Fig. 1
Fig. 1
Correlation between inferior vena cava diameter and vascular pedicle width. Pearson’s correlation coefficient r = 0.64, p = <0.001
Fig. 2
Fig. 2
Receiver operating characteristic curve of the vascular pedicle width to identify fluid repletion shows excellent diagnostic ability at an optimal VPW cutoff of 64 mm with area under the curve (AUC) = 0.843, 95 % CI 0.75–0.93, p < 0.001)
Fig. 3
Fig. 3
Correlations between vascular pedicle width and lung comet score (a) and vascular pedicle width and net fluid balance (b)
Fig. 4
Fig. 4
Bland-Altman plot comparing the difference (VPW-IVC diameter) with the average (of VPW and IVC diameter)

References

    1. de Almeida JP, Palomba H, Galas FR, Fukushima JT, Duarte FA, Nagaoka D, et al. Positive fluid balance is associated with reduced survival in critically ill patients with cancer. Acta anaesthesiologica Scandinavica. 2012;56(6):712–717. doi: 10.1111/j.1399-6576.2012.02717.x.
    1. Vaara ST, Korhonen AM, Kaukonen KM, Nisula S, Inkinen O, Hoppu S, et al. Fluid overload is associated with an increased risk for 90-day mortality in critically ill patients with renal replacement therapy: data from the prospective FINNAKI study. Crit Care. 2012;16(5):R197. doi: 10.1186/cc11682.
    1. Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, de Boisblanc B, et al. Comparison of two fluid-management strategies in acute lung injury. The New England Journal of Medicine. 2006;354(24):2564–2575. doi: 10.1056/NEJMoa062200.
    1. Tsai YC, Tsai JC, Chen SC, Chiu YW, Hwang SJ, Hung CC, et al. Association of fluid overload with kidney disease progression in advanced CKD: a prospective cohort study. American Journal of Kidney Diseases. 2014;63(1):68–75. doi: 10.1053/j.ajkd.2013.06.011.
    1. Grams ME, Estrella MM, Coresh J, Brower RG, Liu KD. Fluid balance, diuretic use, and mortality in acute kidney injury. Clin J Am Soc Nephrol. 2011;6(5):966–973. doi: 10.2215/CJN.08781010.
    1. Dass B, Shimada M, Kambhampati G, Ejaz NI, Arif AA, Ejaz AA. Fluid balance as an early indicator of acute kidney injury in CV surgery. Clinical Nephrology. 2012;77(6):438–444. doi: 10.5414/CN107278.
    1. Magee G, Zbrozek A. Fluid overload is associated with increases in length of stay and hospital costs: pooled analysis of data from more than 600 US hospitals. Clinicoecon Outcomes Research. 2013;5:289–296. doi: 10.2147/CEOR.S45873.
    1. Stein A, de Souza LV, Belettini CR, Menegazzo WR, Viegas JR, Costa Pereira EM, et al. Fluid overload and changes in serum creatinine after cardiac surgery: predictors of mortality and longer intensive care stay. A prospective cohort study. Crit Care. 2012;16(3):R99. doi: 10.1186/cc11368.
    1. Tchernodrinski S, Lucas BP, Athavale A, Candotti C, Margeta B, Katz A, et al. Inferior vena cava diameter change after intravenous furosemide in patients diagnosed with acute decompensated heart failure. J Clin Ultrasound. 2015;43:187–93. doi: 10.1002/jcu.22173.
    1. Citilcioglu S, Sebe A, Ay MO, Icme F, Avci A, Gulen M, et al. The relationship between inferior vena cava diameter measured by bedside ultrasonography and central venous pressure value. Pak J Med Sci. 2014;30(2):310–315. doi: 10.12669/pjms.302.4375.
    1. Zhang Z, Xu X, Ye S, Xu L. Ultrasonographic measurement of the respiratory variation in the inferior vena cava diameter is predictive of fluid responsiveness in critically ill patients: systematic review and meta-analysis. Ultrasound Med Biol. 2014;40(5):845–853. doi: 10.1016/j.ultrasmedbio.2013.12.010.
    1. Schefold JC, Storm C, Bercker S, Pschowski R, Oppert M, Kruger A, et al. Inferior vena cava diameter correlates with invasive hemodynamic measures in mechanically ventilated intensive care unit patients with sepsis. J Emerg Med. 2010;38(5):632–637. doi: 10.1016/j.jemermed.2007.11.027.
    1. Stawicki SP, Adkins EJ, Eiferman DS, Evans DC, Ali NA, Njoku C, et al. Prospective evaluation of intravascular volume status in critically ill patients: does inferior vena cava collapsibility correlate with central venous pressure? J Trauma Acute Care Surg. 2014;76(4):956–963. doi: 10.1097/TA.0000000000000152.
    1. Lanspa MJ, Grissom CK, Hirshberg EL, Jones JP, Brown SM. Applying dynamic parameters to predict hemodynamic response to volume expansion in spontaneously breathing patients with septic shock: reply. Shock. 2013;39(5):462. doi: 10.1097/SHK.0b013e318291008e.
    1. Barbier C, Loubieres Y, Schmit C, Hayon J, Ricome JL, Jardin F, et al. Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med. 2004;30(9):1740–1746.
    1. Feissel M, Michard F, Faller JP, Teboul JL. The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med. 2004;30(9):1834–1837. doi: 10.1007/s00134-004-2233-5.
    1. Kalantari K, Chang JN, Ronco C, Rosner MH. Assessment of intravascular volume status and volume responsiveness in critically ill patients. Kidney Int. 2013;83(6):1017–1028. doi: 10.1038/ki.2012.424.
    1. Levitov A, Marik PE. Echocardiographic assessment of preload responsiveness in critically ill patients. Cardiol Res Pract. 2012;2012:819696.
    1. Machare-Delgado E, Decaro M, Marik PE. Inferior vena cava variation compared to pulse contour analysis as predictors of fluid responsiveness: a prospective cohort study. J Intensive Care Med. 2011;26(2):116–124. doi: 10.1177/0885066610384192.
    1. Marik PE. Techniques for assessment of intravascular volume in critically ill patients. J Intensive Care Med. 2009;24(5):329–337. doi: 10.1177/0885066609340640.
    1. Moretti R, Pizzi B. Inferior vena cava distensibility as a predictor of fluid responsiveness in patients with subarachnoid hemorrhage. Neurocrit Care. 2010;13(1):3–9. doi: 10.1007/s12028-010-9356-z.
    1. Zechner PM, Aichinger G, Rigaud M, Wildner G, Prause G. Prehospital lung ultrasound in the distinction between pulmonary edema and exacerbation of chronic obstructive pulmonary disease. Am J Emerg Med. 2010;28(3):389. doi: 10.1016/j.ajem.2009.07.021.
    1. Agricola E, Bove T, Oppizzi M, Marino G, Zangrillo A, Margonato A, et al. “Ultrasound comet-tail images”: a marker of pulmonary edema: a comparative study with wedge pressure and extravascular lung water. Chest. 2005;127(5):1690–1695. doi: 10.1378/chest.127.5.1690.
    1. Lichtenstein D, Meziere G. A lung ultrasound sign allowing bedside distinction between pulmonary edema and COPD: the comet-tail artifact. Intensive Care Med. 1998;24(12):1331–1334. doi: 10.1007/s001340050771.
    1. Enghard P, Rademacher S, Nee J, Hasper D, Engert U, Jorres A, et al. Simplified lung ultrasound protocol shows excellent prediction of extravascular lung water in ventilated intensive care patients. Crit Care. 2015;19:36. doi: 10.1186/s13054-015-0756-5.
    1. Miglioranza MH, Gargani L, Sant'Anna RT, Rover MM, Martins VM, Mantovani A, et al. Lung ultrasound for the evaluation of pulmonary congestion in outpatients: a comparison with clinical assessment, natriuretic peptides, and echocardiography. JACC Cardiovasc Imaging. 2013;6(11):1141–1151. doi: 10.1016/j.jcmg.2013.08.004.
    1. Picano E, Frassi F, Agricola E, Gligorova S, Gargani L, Mottola G. Ultrasound lung comets: a clinically useful sign of extravascular lung water. J Am Soc Echocardiogr. 2006;19(3):356–363. doi: 10.1016/j.echo.2005.05.019.
    1. Shyamsundar M, Attwood B, Keating L, Walden AP. Clinical review: the role of ultrasound in estimating extra-vascular lung water. Crit Care. 2013;17(5):237. doi: 10.1186/cc12710.
    1. Kajimoto K, Madeen K, Nakayama T, Tsudo H, Kuroda T, Abe T. Rapid evaluation by lung-cardiac-inferior vena cava (LCI) integrated ultrasound for differentiating heart failure from pulmonary disease as the cause of acute dyspnea in the emergency setting. Cardiovasc Ultrasound. 2012;10(1):49. doi: 10.1186/1476-7120-10-49.
    1. Dunser MW, Baelani I, Ganbold L. A review and analysis of intensive care medicine in the least developed countries. Critical Care Med. 2006;34(4):1234–1242. doi: 10.1097/01.CCM.0000208360.70835.87.
    1. Haniffa R, De Silva AP, Iddagoda S, Batawalage H, De Silva ST, Mahipala PG, et al. A cross-sectional survey of critical care services in Sri Lanka: a lower middle-income country. J Crit Care. 2014;29(5):764–768. doi: 10.1016/j.jcrc.2014.04.021.
    1. Riviello ED, Letchford S, Achieng L, Newton MW. Critical care in resource-poor settings: lessons learned and future directions. Crit Care Med. 2011;39(4):860–867. doi: 10.1097/CCM.0b013e318206d6d5.
    1. Cheng AC, West TE, Limmathurotsakul D, Peacock SJ. Strategies to reduce mortality from bacterial sepsis in adults in developing countries. PLoS Med. 2008;5(8):e175. doi: 10.1371/journal.pmed.0050175.
    1. Silva E, Pedro Mde A, Sogayar AC, Mohovic T, Silva CL, Janiszewski M, et al. Brazilian Sepsis Epidemiological Study (BASES study) Crit Care. 2004;8(4):R251–260. doi: 10.1186/cc2892.
    1. Mahavanakul W, Nickerson EK, Srisomang P, Teparrukkul P, Lorvinitnun P, Wongyingsinn M, et al. Feasibility of modified surviving sepsis campaign guidelines in a resource-restricted setting based on a cohort study of severe S. aureus sepsis [corrected] PloS ONE. 2012;7(2):e29858. doi: 10.1371/journal.pone.0029858.
    1. Wang H, Shi R, Mahler S, Gaspard J, Gorchynski J, D'Etienne J, et al. Vascular pedicle width on chest radiograph as a measure of volume overload: meta-analysis. West J Emerg Med. 2011;12(4):426–432. doi: 10.5811/westjem.2011.3.2023.
    1. Farshidpanah S, Klein W, Matus M, Sai A, Nguyen HB. Validation of the vascular pedicle width as a diagnostic aid in critically ill patients with pulmonary oedema by novice non-radiology physicians-in-training. Anaesth Intensive Care. 2014;42(3):321–329.
    1. Rice TW, Ware LB, Haponik EF, Chiles C, Wheeler AP, Bernard GR, et al. Vascular pedicle width in acute lung injury: correlation with intravascular pressures and ability to discriminate fluid status. Crit Care. 2011;15(2):R86. doi: 10.1186/cc10084.
    1. Ely EW, Haponik EF. Using the chest radiograph to determine intravascular volume status: the role of vascular pedicle width. Chest. 2002;121(3):942–950. doi: 10.1378/chest.121.3.942.
    1. Silva JM, Jr, de Oliveira AM, Nogueira FA, Vianna PM, Pereira Filho MC, Dias LF, et al. The effect of excess fluid balance on the mortality rate of surgical patients: a multicenter prospective study. Crit Care. 2013;17(6):R288. doi: 10.1186/cc13151.
    1. Bendjelid K, Romand JA. Fluid responsiveness in mechanically ventilated patients: a review of indices used in intensive care. Intensive care medicine. 2003;29(3):352–360.
    1. Antonelli M, Levy M, Andrews PJ, Chastre J, Hudson LD, Manthous C, et al. Hemodynamic monitoring in shock and implications for management. International Consensus Conference, Paris, France, 27–28, April 2006. Intensive Care Med. 2007;33(4):575–590. doi: 10.1007/s00134-007-0531-4.
    1. Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, et al. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respirat Crit Care Med. 2000;162(1):134–138. doi: 10.1164/ajrccm.162.1.9903035.
    1. Milne EN, Pistolesi M, Miniati M, Giuntini C. The vascular pedicle of the heart and the vena azygos. Part I: The normal subject. Radiology. 1984;152(1):1–8. doi: 10.1148/radiology.152.1.6729098.
    1. Ely EW, Smith AC, Chiles C, Aquino SL, Harle TS, Evans GW, et al. Radiologic determination of intravascular volume status using portable, digital chest radiography: a prospective investigation in 100 patients. Critical Care Med. 2001;29(8):1502–1512. doi: 10.1097/00003246-200108000-00002.
    1. Martin GS, Ely EW, Carroll FE, Bernard GR. Findings on the portable chest radiograph correlate with fluid balance in critically ill patients. Chest. 2002;122(6):2087–2095. doi: 10.1378/chest.122.6.2087.
    1. Salahuddin NAM, Chishti I, Siddiqui S. Determination of intravascular volume status in critically ill patients using portable chest X-rays: measurement of the vascular pedicle width. Indian J Crit Care Med. 2007;11:192–197. doi: 10.4103/0972-5229.37714.
    1. Thomason JW, Ely EW, Chiles C, Ferretti G, Freimanis RI, Haponik EF. Appraising pulmonary edema using supine chest roentgenograms in ventilated patients. Am J Respirat Crit Care Med. 1998;157(5 Pt 1):1600–1608. doi: 10.1164/ajrccm.157.5.9708118.
    1. Wichansawakul S, Vilaichone W, Tongyoo S, Permpikul C, Wonglaksanapimol S, Daengnim K, et al. Evaluation of correlation between vascular pedicle width and intravascular volume status in Thai critically ill patients. J Med Assoc Thai. 2011;94(Suppl 1):S181–187.
    1. Iqbal M, Ahmed R, Al Balas H, Gharard SU, Alotaibi FD. Left atrial emptying fraction correlation with vascular pedicle width in patients with normal systolic function. J Coll Physicians Surg Pak. 2006;16(5):320–323.
    1. Aloizos SLG, Maragiannis D, Tsigou E, Aravosita P, Evodia E. Comparison of vascular pedicle width and PiCCO-derived haemodynamic measurements in patients in a general intensive care unit. Critical Care. 2007;11(Suppl 2):291. doi: 10.1186/cc5451.
    1. Pistolesi M, Milne EN, Miniati M, Giuntini C. The vascular pedicle of the heart and the vena azygos. Part II: Acquired heart disease. Radiology. 1984;152(1):9–17. doi: 10.1148/radiology.152.1.6729142.
    1. Juhl-Olsen P, Frederiksen CA, Sloth E. Ultrasound assessment of inferior vena cava collapsibility is not a valid measure of preload changes during triggered positive pressure ventilation: a controlled cross-over study. Ultraschall Med. 2012;33(2):152–159. doi: 10.1055/s-0031-1281832.
    1. Mitaka C, Nagura T, Sakanishi N, Tsunoda Y, Amaha K. Two-dimensional echocardiographic evaluation of inferior vena cava, right ventricle, and left ventricle during positive-pressure ventilation with varying levels of positive end-expiratory pressure. Critical Care Med. 1989;17(3):205–210. doi: 10.1097/00003246-198903000-00001.

Source: PubMed

3
購読する