Understanding cardiovascular disease: a journey through the genome (and what we found there)

Enrique Lara-Pezzi, Ana Dopazo, Miguel Manzanares, Enrique Lara-Pezzi, Ana Dopazo, Miguel Manzanares

Abstract

Cardiovascular disease (CVD) is a major cause of mortality and hospitalization worldwide. Several risk factors have been identified that are strongly associated with the development of CVD. However, these explain only a fraction of cases, and the focus of research into the causes underlying the unexplained risk has shifted first to genetics and more recently to genomics. A genetic contribution to CVD has long been recognized; however, with the exception of certain conditions that show Mendelian inheritance, it has proved more challenging than anticipated to identify the precise genomic components responsible for the development of CVD. Genome-wide association studies (GWAS) have provided information about specific genetic variations associated with disease, but these are only now beginning to reveal the underlying molecular mechanisms. To fully understand the biological implications of these associations, we need to relate them to the exquisite, multilayered regulation of protein expression, which includes chromatin remodeling, regulatory elements, microRNAs and alternative splicing. Understanding how the information contained in the DNA relates to the operation of these regulatory layers will allow us not only to better predict the development of CVD but also to develop more effective therapies.

Figures

Fig. 1.
Fig. 1.
Gene activity is controlled by multiple layers of regulation. For RNA to be transcribed, chromatin needs to be unwound so that genes can be accessed by the transcription machinery. Chromatin remodeling is controlled by methylation (Me) and acetylation (Ac) marks on histones that determine how open or closed the chromatin is. Activation of gene transcription is also controlled by enhancer regulatory elements that can sometimes be several kilobases away. Once transcribed, the immature mRNA (pre-mRNA) undergoes splicing to remove introns. The inclusion or exclusion of an exon is subject to variation (alternative splicing), which can generate multiple protein isoforms from a single gene. Splicing regulators are often alternatively spliced themselves (represented by curved arrow). mRNA translation is regulated by a range of non-coding RNAs (ncRNAs), including microRNAs. Some ncRNAs, such as ceRNAs, can regulate the activity of microRNAs (represented by curved arrow). These multiple layers of regulation interact with each other; for instance, chromatin modification and microRNAs both modulate alternative splicing, and ncRNAs can also act as transcriptional enhancers to promote transcription. The different regulatory mechanisms respond to pathological stimuli by changing both the amounts and the isoforms of the multiple proteins that are involved in tissue homeostasis and the development of CVD. Further investigations will determine the potential of each of these layers to be targeted therapeutically.
Fig. 2.
Fig. 2.
Future trends in predicting the risk of CVD. The need to predict the risk of CVD is undeniable. The Framingham Heart Study defined a set of risk factors (represented by blue line) that has been the gold standard since the 1960s. However, these classical risk factors only predict a fraction of CVD. Although large-scale genetic analyses have identified hundreds of risk-associated common sequence variants (green line), these have added little or no additional predictive value to the classical risk score. However, this trend is set to change in the near future, as additional common variants and novel rare variants are identified. Furthermore, once we gain a better understanding of how genes and gene variants interact with each other and with environmental and behavioral factors, a synergistic effect can be expected, and thus our ability to predict CVD before the appearance of symptoms will greatly increase (red line).

References

    1. Baek D., Villén J., Shin C., Camargo F. D., Gygi S. P., Bartel D. P. (2008). The impact of microRNAs on protein output. Nature 455, 64–71
    1. Bamshad M. J., Ng S. B., Bigham A. W., Tabor H. K., Emond M. J., Nickerson D. A., Shendure J. (2011). Exome sequencing as a tool for Mendelian disease gene discovery. Nat. Rev. Genet. 12, 745–755
    1. Bartel D. P., Chen C. Z. (2004). Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat. Rev. Genet. 5, 396–400
    1. Bastiaenen R., Behr E. R. (2011). Sudden death and ion channel disease: pathophysiology and implications for management. Heart 97, 1365–1372
    1. Bellenguez C., Bevan S., Gschwendtner A., Spencer C. C., Burgess A. I., Pirinen M., Jackson C. A., Traylor M., Strange A., Su Z., et al. (2012). Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke. Nat. Genet. 44, 328–333
    1. Birney E., Stamatoyannopoulos J. A., Dutta A., Guigo R., Gingeras T. R., Margulies E. H., Weng Z., Snyder M., Dermitzakis E. T., Thurman R. E., et al. (2007). Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816
    1. Blow M. J., McCulley D. J., Li Z., Zhang T., Akiyama J. A., Holt A., Plajzer-Frick I., Shoukry M., Wright C., Chen F., et al. (2010). ChIP-Seq identification of weakly conserved heart enhancers. Nat. Genet. 42, 806–810
    1. Burton P. R., Clayton C. D., Cardon L. R., Craddock N., Deloukas P., Duncanson A., Kwiatkowski D. P., McCarthy M. I., Ouwehand W. H., Samani N. J., et al. (2007). Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678
    1. Cantor R. M., Lange K., Sinsheimer J. S. (2010). Prioritizing GWAS results: A review of statistical methods and recommendations for their application. Am. J. Hum. Genet. 86, 6–22
    1. Carvajal-Vergara X., Sevilla A., D’Souza S. L., Ang Y. S., Schaniel C., Lee D. F., Yang L., Kaplan A. D., Adler E. D., Rozov R., et al. (2010). Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature 465, 808–812
    1. Cesana M., Cacchiarelli D., Legnini I., Santini T., Sthandier O., Chinappi M., Tramontano A., Bozzoni I. (2011). A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147, 358–369
    1. Chambers I., Tomlinson S. R. (2009). The transcriptional foundation of pluripotency. Development 136, 2311–2322
    1. Chang C.-P., Bruneau B. (2012). Epigenetics and cardiovascular development. Annu. Rev. Physiol. 74, 41–68
    1. Chang S., McKinsey T. A., Zhang C. L., Richardson J. A., Hill J. A., Olson E. N. (2004). Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol. Cell. Biol. 24, 8467–8476
    1. Conrad D. F., Keebler J. E., DePristo M. A., Lindsay S. J., Zhang Y., Casals F., Idaghdour Y., Hartl C. L., Torroja C., Garimella K. V., et al. (2011). Variation in genome-wide mutation rates within and between human families. Nat. Genet. 43, 712–714
    1. Cooper G. M., Shendure J. (2011). Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data. Nat. Rev. Genet. 12, 628–640
    1. de Almeida S. F., Grosso A. R., Koch F., Fenouil R., Carvalho S., Andrade J., Levezinho H., Gut M., Eick D., Gut I., et al. (2011). Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methylation of histone H3 Lys36. Nat. Struct. Mol. Biol. 18, 977–983
    1. De Santa F., Barozzi I., Mietton F., Ghisletti S., Polletti S., Tusi B. K., Muller H., Ragoussis J., Wei C.-L., Natoli G. (2010). A large fraction of extragenic RNA Pol II transcription sites overlap enhancers. PLoS Biol. 8, e1000384.
    1. de Wit E., de Laat W. (2012). A decade of 3C technologies: insights into nuclear organization. Genes Dev. 26, 11–24
    1. Dermitzakis E. T., Reymond A., Lyle R., Scamuffa N., Ucla C., Deutsch S., Stevenson B. J., Flegel V., Bucher P., Jongeneel C. V., et al. (2002). Numerous potentially functional but non-genic conserved sequences on human chromosome 21. Nature 420, 578–582
    1. Ding J. H., Xu X., Yang D., Chu P. H., Dalton N. D., Ye Z., Yeakley J. M., Cheng H., Xiao R. P., Ross J., et al. (2004). Dilated cardiomyopathy caused by tissue-specific ablation of SC35 in the heart. EMBO J. 23, 885–896
    1. Dube J. B., Johansen C. T., Hegele R. A. (2011). Sortilin: an unusual suspect in cholesterol metabolism: from GWAS identification to in vivo biochemical analyses, sortilin has been identified as a novel mediator of human lipoprotein metabolism. BioEssays 33, 430–437
    1. Felkin L. E., Narita T., Germack R., Shintani Y., Takahashi K., Sarathchandra P., López-Olañeta M. M., Gómez-Salinero J. M., Suzuki K., Barton P. J. R., et al. (2011). Calcineurin splicing variant CnAβ1 improves cardiac function after myocardial infarction without inducing hypertrophy. Circulation 123, 2838–2847
    1. Feng H.-Z., Jin J. P. (2010). Coexistence of cardiac troponin T variants reduces heart efficiency. Am. J. Physiol. Heart Circ. Physiol. 299, H97–H105
    1. Franco-Zorrilla J. M., Valli A., Todesco M., Mateos I., Puga M. I., Rubio-Somoza I., Leyva A., Weigel D., Garcia J. A., Paz-Ares J. (2007). Target mimicry provides a new mechanism for regulation of microRNA activity. Nat. Genet. 39, 1033–1037
    1. Guo W., Schafer S., Greaser M. L., Radke M. H., Liss M., Govindarajan T., Maatz H., Schulz H., Li S., Parrish A. M., et al. (2012). RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nat. Med. [Epub ahead of print] Doi:10.1038/nm2693
    1. Haberland M., Montgomery R. L., Olson E. N. (2009). The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet. 10, 32–42
    1. Hang C. T., Yang J., Han P., Cheng H.-L., Shang C., Ashley E., Zhou B., Chang C.-P. (2010). Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 466, 62–67
    1. Harismendy O., Notani D., Song X., Rahim N. G., Tanasa B., Heintzman N., Ren B., Fu X. D., Topol E. J., Rosenfeld M. G., et al. (2011). 9p21 DNA variants associated with coronary artery disease impair interferon-gamma signalling response. Nature 470, 264–268
    1. He A., Kong S. W., Ma Q., Pu W. T. (2011). Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhancers active in heart. Proc. Natl. Acad. Sci. USA 108, 5632–5637
    1. Heinig M., Petretto E., Wallace C., Bottolo L., Rotival M., Lu H., Li Y., Sarwar R., Langley S. R., Bauerfeind A., et al. (2010). A trans-acting locus regulates an antiviral expression network and type 1 diabetes risk. Nature 467, 460–464
    1. Heintzman N. D., Stuart R. K., Hon G., Fu Y., Ching C. W., Hawkins R. D., Barrera L. O., Van Calcar S., Qu C., Ching K. A., et al. (2007). Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39, 311–318
    1. Helgadottir A., Thorleifsson G., Manolescu A., Gretarsdottir S., Blondal T., Jonasdottir A., Sigurdsson A., Baker A., Palsson A., Masson G., et al. (2007). A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316, 1491–1493
    1. Hirschhorn J. N., Daly M. J. (2005). Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet. 6, 95–108
    1. Hoffman J. I., Kaplan S. (2002). The incidence of congenital heart disease. J. Am. Coll. Cardiol. 39, 1890–1900
    1. Ioannidis J. P., Ntzani E. E., Trikalinos T. A., Contopoulos-Ioannidis D. G. (2001). Replication validity of genetic association studies. Nat. Genet. 29, 306–309
    1. Itzhaki I., Maizels L., Huber I., Zwi-Dantsis L., Caspi O., Winterstern A., Feldman O., Gepstein A., Arbel G., Hammerman H., et al. (2011). Modelling the long QT syndrome with induced pluripotent stem cells. Nature 471, 225–229
    1. Johansen C. T., Wang J., Lanktree M. B., Cao H., McIntyre A. D., Ban M. R., Martins R. A., Kennedy B. A., Hassell R. G., Visser M. E., et al. (2010). Excess of rare variants in genes identified by genome-wide association study of hypertriglyceridemia. Nat. Genet. 42, 684–687
    1. Kalsotra A., Wang K., Li P.-F., Cooper T. A. (2010). MicroRNAs coordinate an alternative splicing network during mouse postnatal heart development. Genes Dev. 24, 653–658
    1. Kim S., Kim H., Fong N., Erickson B., Bentley D. L. (2011). Pre-mRNA splicing is a determinant of histone H3K36 methylation. Proc. Natl. Acad. Sci. USA 108, 13564–13569
    1. Kim T.-K., Hemberg M., Gray J. M., Costa A. M., Bear D. M., Wu J., Harmin D. A., Laptewicz M., Barbara-Haley K., Kuersten S., et al. (2010). Widespread transcription at neuronal activity-regulated enhancers. Nature 465, 182–187
    1. Kong S. W., Hu Y. W., Ho J. W. K., Ikeda S., Polster S., John R., Hall J. L., Bisping E., Pieske B., dos Remedios C. G., et al. (2010). Heart failure-associated changes in RNA splicing of sarcomere genes. Circ. Cardiovasc. Genet. 3, 138–146
    1. Ladd A. N., Taffet G., Hartley C., Kearney D. L., Cooper T. A. (2005). Cardiac tissue-specific repression of CELF activity disrupts alternative splicing and causes cardiomyopathy. Mol. Cell. Biol. 25, 6267–6278
    1. Latronico M. V. G., Condorelli G. (2009). MicroRNAs and cardiac pathology. Nat. Rev. Cardiol. 6, 418–429
    1. Lee J.-H., Gao C., Peng G., Greer C., Ren S., Wang Y., Xiao X. (2011). Analysis of transcriptome complexity through RNA sequencing in normal and failing murine hearts / novelty and significance. Circ. Res. 109, 1332–1341
    1. Lee S., Lee J. W., Lee S.-K. (2012). UTX, a histone H3-lysine 27 demethylase, acts as a critical switch to activate the cardiac developmental program. Dev. Cell 22, 25–37
    1. Lee Y., Song A. J., Baker R., Micales B., Conway S. J., Lyons G. E. (2000). Jumonji, a nuclear protein that is necessary for normal heart development. Circ. Res. 86, 932–938
    1. Lickert H., Takeuchi J. K., von Both I., Walls J. R., McAuliffe F., Lee Adamson S., Mark Henkelman R., Wrana J. L., Rossant J., Bruneau B. G. (2004). Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature 432, 107–112
    1. Luco R. F., Pan Q., Tominaga K., Blencowe B. J., Pereira-Smith O. M., Misteli T. (2010). Regulation of alternative splicing by histone modifications. Science 327, 996–1000
    1. Lupski J. R., Belmont J. W., Boerwinkle E., Gibbs R. A. (2011). Clan genomics and the complex architecture of human disease. Cell 147, 32–43
    1. MacArthur D. G., Tyler-Smith C. (2010). Loss-of-function variants in the genomes of healthy humans. Hum. Mol. Genet. 19, R125–R130
    1. Makarenko I., Opitz C. A., Leake M. C., Neagoe C., Kulke M., Gwathmey J. K., del Monte F., Hajjar R. J., Linke W. A. (2004). Passive stiffness changes caused by upregulation of compliant titin isoforms in human dilated cardiomyopathy hearts. Circ. Res. 95, 708–716
    1. Manolio T. A., Collins F. S., Cox N. J., Goldstein D. B., Hindorff L. A., Hunter D. J., McCarthy M. I., Ramos E. M., Cardon L. R., Chakravarti A., et al. (2009). Finding the missing heritability of complex diseases. Nature 461, 747–753
    1. May D., Blow M. J., Kaplan T., McCulley D. J., Jensen B. C., Akiyama J. A., Holt A., Plajzer-Frick I., Shoukry M., Wright C., et al. (2011). Large-scale discovery of enhancers from human heart tissue. Nat. Genet. 44, 89–93
    1. McDermott-Roe C., Ye J., Ahmed R., Sun X.-M., Serafin A., Ware J., Bottolo L., Muckett P., Canas X., Zhang J., et al. (2011). Endonuclease G is a novel determinant of cardiac hypertrophy and mitochondrial function. Nature 478, 114–118
    1. McPherson R., Pertsemlidis A., Kavaslar N., Stewart A., Roberts R., Cox D. R., Hinds D. A., Pennacchio L. A., Tybjaerg-Hansen A., Folsom A. R., et al. (2007). A common allele on chromosome 9 associated with coronary heart disease. Science 316, 1488–1491
    1. Miyamoto S., Kawamura T., Morimoto T., Ono K., Wada H., Kawase Y., Matsumori A., Nishio R., Kita T., Hasegawa K. (2006). Histone acetyltransferase activity of p300 is required for the promotion of left ventricular remodeling after myocardial infarction in adult mice in vivo. Circulation 113, 679–690
    1. Morgan T. M., Krumholz H. M., Lifton R. P., Spertus J. A. (2007). Nonvalidation of reported genetic risk factors for acute coronary syndrome in a large-scale replication study. JAMA 297, 1551–1561
    1. Movassagh M., Choy M.-K., Knowles D. A., Cordeddu L., Haider S., Down T., Siggens L., Vujic A., Simeoni I., Penkett C., et al. (2011). Distinct epigenomic features in end-stage failing human hearts. Circulation 124, 2411–2422
    1. Mudd J. O., Kass D. A. (2008). Tackling heart failure in the twenty-first century. Nature 451, 919–928
    1. Musunuru K., Pirruccello J. P., Do R., Peloso G. M., Guiducci C., Sougnez C., Garimella K. V., Fisher S., Abreu J., Barry A. J., et al. (2010). Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N. Engl. J. Med. 363, 2220–2227
    1. Myers R. H., Kiely D. K., Cupples L. A., Kannel W. B. (1990). Parental history is an independent risk factor for coronary artery disease: the Framingham Study. Am. Heart J. 120, 963–969
    1. Myers R. M., Stamatoyannopoulos J., Snyder M., Dunham I., Hardison R. C., Bernstein B. E., Gingeras T. R., Kent W. J., Birney E., Wold B., et al. (2011). A user’s guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol. 9, e1001046.
    1. Narlikar L., Sakabe N. J., Blanski A. A., Arimura F. E., Westlund J. M., Nobrega M. A., Ovcharenko I. (2010). Genome-wide discovery of human heart enhancers. Genome Res. 20, 381–392
    1. Newton-Cheh C., Eijgelsheim M., Rice K. M., de Bakker P. I., Yin X., Estrada K., Bis J. C., Marciante K., Rivadeneira F., Noseworthy P. A., et al. (2009). Common variants at ten loci influence QT interval duration in the QTGEN Study. Nat. Genet. 41, 399–406
    1. Nguyen A. T., Xiao B., Neppl R. L., Kallin E. M., Li J., Chen T., Wang D.-Z., Xiao X., Zhang Y. (2011). DOT1L regulates dystrophin expression and is critical for cardiac function. Genes Dev. 25, 263–274
    1. North K. E., Howard B. V., Welty T. K., Best L. G., Lee E. T., Yeh J. L., Fabsitz R. R., Roman M. J., MacCluer J. W. (2003). Genetic and environmental contributions to cardiovascular disease risk in American Indians: the strong heart family study. Am. J. Epidemiol. 157, 303–314
    1. Norton N., Li D., Rieder M. J., Siegfried J. D., Rampersaud E., Zuchner S., Mangos S., Gonzalez-Quintana J., Wang L., McGee S., et al. (2011). Genome-wide studies of copy number variation and exome sequencing identify rare variants in BAG3 as a cause of dilated cardiomyopathy. Am. J. Hum. Genet. 88, 273–282
    1. O’Donnell C. J., Nabel E. G. (2011). Genomics of cardiovascular disease. N. Engl. J. Med. 365, 2098–2109
    1. Ohtani K., Dimmeler S. (2011). Epigenetic regulation of cardiovascular differentiation. Cardiovasc. Res. 90, 404–412
    1. Ong C.-T., Corces V. G. (2011). Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat. Rev. Genet. 12, 283–293
    1. Ordovas J. M., Smith C. E. (2010). Epigenetics and cardiovascular disease. Nat. Rev. Cardiol. 7, 510–519
    1. Ørom U. A., Derrien T., Beringer M., Gumireddy K., Gardini A., Bussotti G., Lai F., Zytnicki M., Notredame C., Huang Q., et al. (2010). Long noncoding RNAs with enhancer-like function in human cells. Cell 143, 46–58
    1. Pandey J. P. (2010). Genomewide association studies and assessment of risk of disease. N. Engl. J. Med. 363, 2076–2077
    1. Pasmant E., Sabbagh A., Vidaud M., Bieche I. (2011). ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS. FASEB J. 25, 444–448
    1. Petretto E., Mangion J., Dickens N. J., Cook S. A., Kumaran M. K., Lu H., Fischer J., Maatz H., Kren V., Pravenec M., et al. (2006). Heritability and tissue specificity of expression quantitative trait loci. PLoS Genet. 2, e172.
    1. Petretto E., Sarwar R., Grieve I., Lu H., Kumaran M. K., Muckett P. J., Mangion J., Schroen B., Benson M., Punjabi P. P., et al. (2008). Integrated genomic approaches implicate osteoglycin (Ogn) in the regulation of left ventricular mass. Nat. Genet. 40, 546–552
    1. Powell J. E., Henders A. K., McRae A. F., Wright M. J., Martin N. G., Dermitzakis E. T., Montgomery G. W., Visscher P. M. (2011). Genetic control of gene expression in whole blood and lymphoblastoid cell lines is largely independent. Genome Res. 22, 456–466
    1. Qiu H., Dai H., Jain K., Shah R., Hong C., Pain J., Tian B., Vatner D. E., Vatner S. F., Depre C. (2008). Characterization of a novel cardiac isoform of the cell cycle-related kinase that is regulated during heart failure. J. Biol. Chem. 283, 22157–22165
    1. Rada-Iglesias A., Bajpai R., Swigut T., Brugmann S. A., Flynn R. A., Wysocka J. (2011). A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470, 279–283
    1. Rana T. M. (2007). Illuminating the silence: understanding the structure and function of small RNAs. Nat. Rev. Mol. Cell. Biol. 8, 23–36
    1. Ruan Y., Liu N., Priori S. G. (2009). Sodium channel mutations and arrhythmias. Nat. Rev. Cardiol. 6, 337–348
    1. Samani N. J., Erdmann J., Hall A. S., Hengstenberg C., Mangino M., Mayer B., Dixon R. J., Meitinger T., Braund P., Wichmann H. E., et al. (2007). Genomewide association analysis of coronary artery disease. N. Engl. J. Med. 357, 443–453
    1. Schlesinger J., Schueler M., Grunert M., Fischer J. J., Zhang Q., Krueger T., Lange M., Tonjes M., Dunkel I., Sperling S. R. (2011). The cardiac transcription network modulated by Gata4, Mef2a, Nkx2.5, Srf, histone modifications, and microRNAs. PLoS Genet. 7, e1001313.
    1. Shang L. L., Pfahnl A. E., Sanyal S., Jiao Z., Allen J., Banach K., Fahrenbach J., Weiss D., Taylor W. R., Zafari A. M., et al. (2007). Human heart failure is associated with abnormal C-terminal splicing variants in the cardiac sodium channel. Circ. Res. 101, 1146–1154
    1. Shea S., Ottman R., Gabrieli C., Stein Z., Nichols A. (1984). Family history as an independent risk factor for coronary artery disease. J. Am. Coll. Cardiol. 4, 793–801
    1. Song L., Zhang Z., Grasfeder L. L., Boyle A. P., Giresi P. G., Lee B. K., Sheffield N. C., Graf S., Huss M., Keefe D., et al. (2011). Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. Genome Res. 21, 1757–1767
    1. Splawski I., Shen J., Timothy K. W., Lehmann M. H., Priori S., Robinson J. L., Moss A. J., Schwartz P. J., Towbin J. A., Vincent G. M., et al. (2000). Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation 102, 1178–1185
    1. Srivastava D. (2006). Making or breaking the heart: from lineage determination to morphogenesis. Cell 126, 1037–1048
    1. Stein A. B., Jones T. A., Herron T. J., Patel S. R., Day S. M., Noujaim S. F., Milstein M. L., Klos M., Furspan P. B., Jalife J., et al. (2011). Loss of H3K4 methylation destabilizes gene expression patterns and physiological functions in adult murine cardiomyocytes. J. Clin. Invest. 121, 2641–2650
    1. Szulwach K. E., Li X., Smrt R. D., Li Y., Luo Y., Lin L., Santistevan N. J., Li W., Zhao X., Jin P. (2010). Cross talk between microRNA and epigenetic regulation in adult neurogenesis. J. Cell Biol. 189, 127–141
    1. Tariq M., Belmont J. W., Lalani S., Smolarek T., Ware S. M. (2011). SHROOM3 is a novel candidate for heterotaxy identified by whole exome sequencing. Genome Biol. 12, R91.
    1. Tay Y., Kats L., Salmena L., Weiss D., Tan Shen M., Ala U., Karreth F., Poliseno L., Provero P., Di Cunto F., et al. (2011). Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 147, 344–357
    1. Tester D. J., Ackerman M. J. (2011). Genetic testing for potentially lethal, highly treatable inherited cardiomyopathies/channelopathies in clinical practice. Circulation 123, 1021–1037
    1. Thanassoulis G., Vasan R. S. (2010). Genetic cardiovascular risk prediction: will we get there? Circulation 122, 2323–2334
    1. Thanassoulis G., Peloso G. M., Pencina M. J., Hoffmann U., Fox C. S., Cupples L. A., Levy D., D’Agostino R. B., Sr, Hwang S. J., O’Donnell C. J. (2012). A genetic risk score is associated with incident cardiovascular disease and coronary artery calcium: the Framingham Heart Study. Circ. Cardiovasc. Genet. 5, 113–121
    1. Toyoda M., Shirato H., Nakajima K., Kojima M., Takahashi M., Kubota M., Suzuki-Migishima R., Motegi Y., Yokoyama M., Takeuchi T. (2003). Jumonji downregulates cardiac cell proliferation by repressing cyclin D1 expression. Dev. Cell 5, 85–97
    1. Trivedi C. M., Luo Y., Yin Z., Zhang M., Zhu W., Wang T., Floss T., Goettlicher M., Noppinger P. R., Wurst W., et al. (2007). Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3[beta] activity. Nat. Med. 13, 324–331
    1. Wang G. S., Kearney D. L., Biasi M. D., Taffet G., Cooper T. A. (2007). Elevation of RNA-binding protein CUGBP1 is an early event in an inducible heart-specific mouse model of myotonic dystrophy. J. Clin. Invest. 117, 2802–2811
    1. Wang Z., Burge C. B. (2008). Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA 14, 802–813
    1. Watkins H., Ashrafian H., Redwood C. (2011). Inherited cardiomyopathies. N. Engl. J. Med. 364, 1643–1656
    1. Wei J. Q., Shehadeh L. A., Mitrani J. M., Pessanha M., Slepak T. I., Webster K. A., Bishopric N. H. (2008). Quantitative control of adaptive cardiac hypertrophy by acetyltransferase p300. Circulation 118, 934–946
    1. Wilusz J. E., Sunwoo H., Spector D. L. (2009). Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 23, 1494–1504
    1. Xu X., Yang D., Ding J.-H., Wang W., Chu P.-H., Dalton N. D., Wang H.-Y., Bermingham J. R., Jr, Ye Z., Liu F., et al. (2005). ASF/SF2-regulated CaMKIIdelta alternative splicing temporally reprograms excitation-contraction coupling in cardiac muscle. Cell 120, 59–72
    1. Yao T.-P., Oh S. P., Fuchs M., Zhou N.-D., Ch’ng L.-E., Newsome D., Bronson R. T., Li E., Livingston D. M., Eckner R. (1998). Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93, 361–372
    1. Yazawa M., Hsueh B., Jia X., Pasca A. M., Bernstein J. A., Hallmayer J., Dolmetsch R. E. (2011). Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature 471, 230–234
    1. Zhang C. L., McKinsey T. A., Chang S., Antos C. L., Hill J. A., Olson E. N. (2002). Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110, 479–488
    1. Zhang Q.-J., Chen H.-Z., Wang L., Liu D.-P., Hill J. A., Liu Z.-P. (2011). The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in mice. J. Clin. Invest. 121, 2447–2456
    1. Zuk O., Hechter E., Sunyaev S. R., Lander E. S. (2012). The mystery of missing heritability: genetic interactions create phantom heritability. Proc. Natl. Acad. Sci. USA 109, 1193–1198

Source: PubMed

3
購読する