Prophylactic and therapeutic intranasal administration with an immunomodulator, Hiltonol® (Poly IC:LC), in a lethal SARS-CoV-infected BALB/c mouse model

Yohichi Kumaki, Andres M Salazar, Miles K Wandersee, Dale L Barnard, Yohichi Kumaki, Andres M Salazar, Miles K Wandersee, Dale L Barnard

Abstract

Hiltonol®, (Poly IC:LC), a potent immunomodulator, is a synthetic, double-stranded polyriboinosinic-polyribocytidylic acid (poly IC) stabilized with Poly-L-lysine and carboxymethyl cellulose (LC). Hiltonol® was tested for efficacy in a lethal SARS-CoV-infected BALB/c mouse model. Hiltonol® at 5, 1, 0.5 or 0.25 mg/kg/day by intranasal (i.n.) route resulted in significant survival benefit when administered at selected times 24 h prior to challenge with a lethal dose of mouse-adapted severe acute respiratory syndrome coronavirus (SARS-CoV). The infected BALB/c mice receiving the Hiltonol® treatments were also significantly effective in protecting mice against weight loss due to infection (p < 0.001). Groups of 20 mice were dosed with Hiltonol® at 2.5 or 0.75 mg/kg by intranasal instillation 7, 14, and 21 days before virus exposure and a second dose was given 24 h later, prophylactic Hiltonol® treatments (2.5 mg/kg/day) were completely protective in preventing death, and in causing significant reduction in lung hemorrhage scores, lung weights and lung virus titers. Hiltonol® was also effective as a therapeutic when give up to 8 h post virus exposure; 100% of the-infected mice were protected against death when Hiltonol® was administered at 5 mg/kg/day 8 h after infection. Our data suggest that Hiltonol® treatment of SARS-CoV infection in mice leads to substantial prophylactic and therapeutic effects and could be used for treatment of other virus disease such as those caused by MERS-CoV a related coronavirus. These properties might be therapeutically advantageous if Hiltonol® is considered for possible clinical use.

Keywords: BALB/c mouse; Hiltonol(®); MERS-CoV; SARS-CoV.

Published by Elsevier B.V.

Figures

Fig. 1
Fig. 1
A. Effects of Hiltonol® on survival of BALB/c mice with a lethal SARS-CoV infection. ***p < 0.001 versus PSS. The SARS-CoV-infected BALB/c mice were treated with PSS (●: −24 h, +24 h, +48 h); Hiltonol® at 5 mg/kg/day (■: −24 h, +24 h, +48 h), (▲: −24 h, +8 h, +48 h), (▼: −16 h, +8 h, +24 h), (◆: +12 h), (○: −24 h); Hiltonol® at 1.0 mg/kg/day (□: −24 h, +24 h, +48 h), (△: −24 h, +8 h, +24 h), (▽: −16 h, +8 h, +32 h), (◇: −24 h). B. Effects of various long-term dosing regimens of Hiltonol® on survival of BALB/c mice with a lethal SARS-CoV infection. ****p < 0.0001 versus PSS. The SARS-CoV-infected BALB/c mice were treated with PSS (●: day −21), (○: day −14), (◇: day −7); Hiltonol® (■: 2.5 mg/kg/day −21), (□: 2.5 mg/kg/day −14), (▼: 2.5 mg/kg/day −7); (▲: 0.75 mg/kg/day −21), (▽: 0.75 mg/kg/day −14), (△: 0.75 mg/kg/day −7). A second dose was given 24 h later. (♦) Ampligen® 10 mg/kg/day (bid x 2 beg, 4 h).
Fig. 2
Fig. 2
Effects of various long-term dosing regimens of Hiltonol® on neutralizing antibody titers of BALB/c mice at day 7 (A) and 14 (B) post virus challenge with a lethal dose of SARS-CoV. **p < 0.01 versus PSS (day −14), ***p < 0.001 versus Hiltonol® 2.5 mg/kg (day −14) or Hiltonol® 0.75 mg/kg (day −7). The SARS-CoV-infected BALB/c mice were treated with PSS (●: day −21), (○: day −14), (◇: day −7); Hiltonol® (■: 2.5 mg/kg/day −21), (□: 2.5 mg/kg/day −14), (▼: 2.5 mg/kg/day −7); (▲: 0.75 mg/kg/day −21), (▽: 0.75 mg/kg/day −14), (△: 0.75 mg/kg/day −7), (♦) Ampligen® 10 mg/kg/day (bid x 2 beg, 4 h).
Fig. 3
Fig. 3
Histological slides show representative lung pathology. (a). SARS-CoV-infected, Hiltonol®-treated lung with small numbers of neutrophils within groups of alveoli and moderate rims of lymphocytes surrounding scattered vessels. (b). SARS-CoV-infected, Hiltonol®-treated lung with moderate rims of lymphocytes surrounding scattered vessels. (c). SARS-CoV-infected, Hiltonol®-treated lung with clusters of alveolar macrophages and neutrophils filled small groups of alveoli. (d). Un-infected, Hiltonol®-treated lung with moderate rims of lymphocytes surround scattered vessels. (e). SARS-CoV-infected, Ampligen®-treated lung with approximately 80% airspaces contain erythrocytes. (f). SARS-CoV-infected, PSS-treated lung with small number of alveolar macrophages and fewer neutrophils within alveoli.

References

    1. Ahlquist P. RNA-dependent RNA polymerases, viruses, and RNA silencing. Science. 2002;296:1270–1273. (New York, N.Y.)
    1. Akira S., Uematsu S., Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801.
    1. Alexopoulou L., Holt A.C., Medzhitov R., Flavell R.A. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 2001;413:732–738.
    1. Anand K., Ziebuhr J., Wadhwani P., Mesters J.R., Hilgenfeld R. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science. 2003;300:1763–1767. (New York, N.Y.)
    1. Andrejeva J., Childs K.S., Young D.F., Carlos T.S., Stock N., Goodbourn S., Randall R.E. The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter. Proc. Natl. Acad. Sci. U. S. A. 2004;101:17264–17269.
    1. Baer G.M., Shaddock J.H., Moore S.A., Yager P.A., Baron S.S., Levy H.B. Successful prophylaxis against rabies in mice and Rhesus monkeys: the interferon system and vaccine. J. Infect. Dis. 1977;136:286–291.
    1. Barnard D.L., Day C.W., Bailey K., Heiner M., Montgomery R., Lauridsen L., Chan P.K., Sidwell R.W. Evaluation of immunomodulators, interferons and known in vitro SARS-coV inhibitors for inhibition of SARS-coV replication in BALB/c mice. Antivir. Chem. Chemother. 2006;17:275–284.
    1. Barnard D.L., Day C.W., Bailey K., Heiner M., Montgomery R., Lauridsen L., Winslow S., Hoopes J., Li J.K., Lee J., Carson D.A., Cottam H.B., Sidwell R.W. Enhancement of the infectivity of SARS-CoV in BALB/c mice by IMP dehydrogenase inhibitors, including ribavirin. Antivir. Res. 2006;71:53–63.
    1. Barnard D.L., Kumaki Y. Development in the search for the small-molecule inhibitors for treatment of severe acute respiratory syndrome coronavirus. In: LaFemina R.L., editor. Antiviral Research: Strategies in Antiviral Drug Discovery. 2009. pp. 209–222.
    1. Booth C.M., Matukas L.M., Tomlinson G.A., Rachlis A.R., Rose D.B., Dwosh H.A., Walmsley S.L., Mazzulli T., Avendano M., Derkach P., Ephtimios I.E., Kitai I., Mederski B.D., Shadowitz S.B., Gold W.L., Hawryluck L.A., Rea E., Chenkin J.S., Cescon D.W., Poutanen S.M., Detsky A.S. Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area. Jama. 2003;289:2801–2809.
    1. Bosch B.J., Martina B.E., Van Der Zee R., Lepault J., Haijema B.J., Versluis C., Heck A.J., De Groot R., Osterhaus A.D., Rottier P.J. Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides. Proc. Natl. Acad. Sci. U. S. A. 2004;101:8455–8460.
    1. Chang Z., Babiuk L.A., Hu J. Therapeutic and prophylactic potential of small interfering RNAs against severe acute respiratory syndrome: progress to date. BioDrugs. 2007;21:9–15.
    1. Chen J., Subbarao K. The immunobiology of SARS*. Annu. Rev. Immunol. 2007;25:443–472.
    1. Cinatl J., Morgenstern B., Bauer G., Chandra P., Rabenau H., Doerr H.W. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet. 2003;361:2045–2046.
    1. Colonna M., Krug A., Cella M. Interferon-producing cells: on the front line in immune responses against pathogens. Curr. Opin. Immunol. 2002;14:373–379.
    1. Day C.W., Baric R., Cai S.X., Frieman M., Kumaki Y., Morrey J.D., Smee D.F., Barnard D.L. A new mouse-adapted strain of SARS-CoV as a lethal model for evaluating antiviral agents in vitro and in vivo. Virology. 2009;395:210–222.
    1. Diebold S.S., Montoya M., Unger H., Alexopoulou L., Roy P., Haswell L.E., Al-Shamkhani A., Flavell R., Borrow P., Reis e Sousa C. Viral infection switches non-plasmacytoid dendritic cells into high interferon producers. Nature. 2003;424:324–328.
    1. Drosten C., Gunther S., Preiser W., van der Werf S., Brodt H.R., Becker S., Rabenau H., Panning M., Kolesnikova L., Fouchier R.A., Berger A., Burguiere A.M., Cinatl J., Eickmann M., Escriou N., Grywna K., Kramme S., Manuguerra J.C., Muller S., Rickerts V., Sturmer M., Vieth S., Klenk H.D., Osterhaus A.D., Schmitz H., Doerr H.W. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 2003;348:1967–1976.
    1. Fitzgerald K.A., McWhirter S.M., Faia K.L., Rowe D.C., Latz E., Golenbock D.T., Coyle A.J., Liao S.M., Maniatis T. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 2003;4:491–496.
    1. Gibson I. Antisense DNA and RNA strategies: new approaches to therapy. J. R. Coll. Phys. Lond. 1994;28:507–511.
    1. Gowen B.B., Hoopes J.D., Wong M.H., Jung K.H., Isakson K.C., Alexopoulou L., Flavell R.A., Sidwell R.W. TLR3 deletion limits mortality and disease severity due to Phlebovirus infection. J. Immunol. 2006;177:6301–6307.
    1. Groneberg D.A., Fischer A., Chung K.F., Daniel H. Molecular mechanisms of pulmonary peptidomimetic drug and peptide transport. Am. J. Respir. Cell Mol. Biol. 2004;30:251–260.
    1. Groneberg D.A., Witt C., Wagner U., Chung K.F., Fischer A. Fundamentals of pulmonary drug delivery. Respir. Med. 2003;97:382–387.
    1. Guerrero-Plata A., Baron S., Poast J.S., Adegboyega P.A., Casola A., Garofalo R.P. Activity and regulation of alpha interferon in respiratory syncytial virus and human metapneumovirus experimental infections. J. Virol. 2005;79:10190–10199.
    1. Harrington D.G., Hilmas D.E., Elwell M.R., Whitmire R.E., Stephen E.L. Intranasal infection of monkeys with Japanese encephalitis virus: clinical response and treatment with a nuclease-resistant derivative of poly (I).poly (C) Am. J. Trop. Med. Hyg. 1977;26:1191–1198.
    1. Hirano T. Interleukin 6 and its receptor: ten years later. Int. Rev. Immunol. 1998;16:249–284.
    1. Ho J.C., Ooi G.C., Mok T.Y., Chan J.W., Hung I., Lam B., Wong P.C., Li P.C., Ho P.L., Lam W.K., Ng C.K., Ip M.S., Lai K.N., Chan-Yeung M., Tsang K.W. High-dose pulse versus nonpulse corticosteroid regimens in severe acute respiratory syndrome. Am. J. Respir. Crit. Care Med. 2003;168:1449–1456.
    1. Ho T.Y., Wu S.L., Chen J.C., Wei Y.C., Cheng S.E., Chang Y.H., Liu H.J., Hsiang C.Y. Design and biological activities of novel inhibitory peptides for SARS-CoV spike protein and angiotensin-converting enzyme 2 interaction. Antivir. Res. 2006;69:70–76.
    1. Hoebe K., Du X., Georgel P., Janssen E., Tabeta K., Kim S.O., Goode J., Lin P., Mann N., Mudd S., Crozat K., Sovath S., Han J., Beutler B. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature. 2003;424:743–748.
    1. Hornung V., Ellegast J., Kim S., Brzozka K., Jung A., Kato H., Poeck H., Akira S., Conzelmann K.K., Schlee M., Endres S., Hartmann G. 5'-Triphosphate RNA is the ligand for RIG-I. Science. 2006;314:994–997. (New York, N.Y.)
    1. Ichinohe T., Watanabe I., Ito S., Fujii H., Moriyama M., Tamura S., Takahashi H., Sawa H., Chiba J., Kurata T., Sata T., Hasegawa H. Synthetic double-stranded RNA poly(I: C) combined with mucosal vaccine protects against influenza virus infection. J. Virol. 2005;79:2910–2919.
    1. Imai Y., Kuba K., Neely G.G., Yaghubian-Malhami R., Perkmann T., van Loo G., Ermolaeva M., Veldhuizen R., Leung Y.H., Wang H., Liu H., Sun Y., Pasparakis M., Kopf M., Mech C., Bavari S., Peiris J.S., Slutsky A.S., Akira S., Hultqvist M., Holmdahl R., Nicholls J., Jiang C., Binder C.J., Penninger J.M. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell. 2008;133:235–249.
    1. Isaacs A., Lindenmann J. Virus interference. I. The interferon. Proc. R. Soc. Lond. B Biol. Sci. 1957;147:258–267.
    1. Isaacs A., Lindenmann J., Valentine R.C. Virus interference. II. Some properties of interferon. Proc. R. Soc. Lond. B Biol. Sci. 1957;147:268–273.
    1. Jiang Y., Xu J., Zhou C., Wu Z., Zhong S., Liu J., Luo W., Chen T., Qin Q., Deng P. Characterization of cytokine/chemokine profiles of severe acute respiratory syndrome. Am. J. Respir. Crit. Care Med. 2005;171:850–857.
    1. Johnson-Saliba M., Jans D.A. Gene therapy: optimising DNA delivery to the nucleus. Curr. Drug Targets. 2001;2:371–399.
    1. Kato H., Takeuchi O., Sato S., Yoneyama M., Yamamoto M., Matsui K., Uematsu S., Jung A., Kawai T., Ishii K.J., Yamaguchi O., Otsu K., Tsujimura T., Koh C.S., Reis e Sousa C., Matsuura Y., Fujita T., Akira S. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature. 2006;441:101–105.
    1. Kende M., Lupton H.W., Rill W.L., Levy H.B., Canonico P.G. Enhanced therapeutic efficacy of poly(ICLC) and ribavirin combinations against Rift Valley fever virus infection in mice. Antimicrob. agents Chemother. 1987;31:986–990.
    1. Khanolkar A., Hartwig S.M., Haag B.A., Meyerholz D.K., Harty J.T., Varga S.M. Toll-like receptor 4 deficiency increases disease and mortality after mouse hepatitis virus type 1 infection of susceptible C3H mice. J. Virol. 2009;83:8946–8956.
    1. Kopecky-Bromberg S.A., Martinez-Sobrido L., Frieman M., Baric R.A., Palese P. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J. Virol. 2007;81:548–557.
    1. Ksiazek T.G., Erdman D., Goldsmith C.S., Zaki S.R., Peret T., Emery S., Tong S., Urbani C., Comer J.A., Lim W., Rollin P.E., Dowell S.F., Ling A.E., Humphrey C.D., Shieh W.J., Guarner J., Paddock C.D., Rota P., Fields B., DeRisi J., Yang J.Y., Cox N., Hughes J.M., LeDuc J.W., Bellini W.J., Anderson L.J. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 2003;348:1953–1966.
    1. Kumaki Y., Day C.W., Bailey K.W., Wandersee M.K., Wong M.H., Madsen J.R., Madsen J.S., Nelson N.M., Hoopes J.D., Woolcott J.D., McLean T.Z., Blatt L.M., Salazar A.M., Smee D.F., Barnard D.L. Induction of interferon-gamma-inducible protein 10 by SARS-CoV infection, interferon alfacon 1 and interferon inducer in human bronchial epithelial Calu-3 cells and BALB/c mice. Antivir. Chem. Chemother. 2010;20:169–177.
    1. Kumaki Y., Ennis J., Rahbar R., Turner J.D., Wandersee M.K., Smith A.J., Bailey K.W., Vest Z.G., Madsen J.R., Li J.K., Barnard D.L. Single-dose intranasal administration with mDEF201 (adenovirus vectored mouse interferon-alpha) confers protection from mortality in a lethal SARS-CoV BALB/c mouse model. Antivir. Res. 2011;89:75–82.
    1. Kumaki Y., Wandersee M.K., Smith A.J., Zhou Y., Simmons G., Nelson N.M., Bailey K.W., Vest Z.G., Li J.K., Chan P.K., Smee D.F., Barnard D.L. Inhibition of severe acute respiratory syndrome coronavirus replication in a lethal SARS-CoV BALB/c mouse model by stinging nettle lectin, Urtica dioica agglutinin. Antivir. Res. 2011;90:22–32.
    1. Leonard J.N., Schaffer D.V. Antiviral RNAi therapy: emerging approaches for hitting a moving target. Gene Ther. 2006;13:532–540.
    1. Levy H.B., Baer G., Baron S., Buckler C.E., Gibbs C.J., Iadarola M.J., London W.T., Rice J. A modified polyriboinosinic-polyribocytidylic acid complex that induces interferon in primates. J. Infect. Dis. 1975;132:434–439.
    1. Levy H.B., London W., Fuccillo D.A., Baron S., Rice J. Prophylactic control of simian hemorrhagic fever in monkeys by an interferon inducer, polyriboinosinic-polyribocytidylic acid-poly-L-lysine. J. Infect. Dis. 1976;133(Suppl):A256–A259.
    1. Lin R., Heylbroeck C., Pitha P.M., Hiscott J. Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation. Mol. Cell Biol. 1998;18:2986–2996.
    1. Marie I., Durbin J.E., Levy D.E. Differential viral induction of distinct interferon-alpha genes by positive feedback through interferon regulatory factor-7. Embo J. 1998;17:6660–6669.
    1. Murawski M.R., Bowen G.N., Cerny A.M., Anderson L.J., Haynes L.M., Tripp R.A., Kurt-Jones E.A., Finberg R.W. Respiratory syncytial virus activates innate immunity through Toll-like receptor 2. J. Virol. 2009;83:1492–1500.
    1. Netea M.G., van der Graaf C., Van der Meer J.W., Kullberg B.J. Toll-like receptors and the host defense against microbial pathogens: bringing specificity to the innate-immune system. J. Leukoc. Biol. 2004;75:749–755.
    1. Peiris J.S., Chu C.M., Cheng V.C., Chan K.S., Hung I.F., Poon L.L., Law K.I., Tang B.S., Hon T.Y., Chan C.S., Chan K.H., Ng J.S., Zheng B.J., Ng W.L., Lai R.W., Guan Y., Yuen K.Y. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet. 2003;361:1767–1772.
    1. Peiris J.S., Lai S.T., Poon L.L., Guan Y., Yam L.Y., Lim W., Nicholls J., Yee W.K., Yan W.W., Cheung M.T., Cheng V.C., Chan K.H., Tsang D.N., Yung R.W., Ng T.K., Yuen K.Y. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 2003;361:1319–1325.
    1. Pichlmair A., Schulz O., Tan C.P., Naslund T.I., Liljestrom P., Weber F., Reis e Sousa C. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science. 2006;314:997–1001. (New York, N.Y.)
    1. Ray A., Tatter S.B., Santhanam U., Helfgott D.C., May L.T., Sehgal P.B. Regulation of expression of interleukin-6. Molecular and clinical studies. Ann. N. Y. Acad. Sci. 1989;557:353–361. discussion 361–352.
    1. Reed L.J., Muench N. A simple method of estimating fifty per cent endpoints. Am. J. Hyg. 1938;27:493–497.
    1. Rock F.L., Hardiman G., Timans J.C., Kastelein R.A., Bazan J.F. A family of human receptors structurally related to Drosophila Toll. Proc. Natl. Acad. Sci. U. S. A. 1998;95:588–593.
    1. Rota P.A., Oberste M.S., Monroe S.S., Nix W.A., Campagnoli R., Icenogle J.P., Penaranda S., Bankamp B., Maher K., Chen M.H., Tong S., Tamin A., Lowe L., Frace M., DeRisi J.L., Chen Q., Wang D., Erdman D.D., Peret T.C., Burns C., Ksiazek T.G., Rollin P.E., Sanchez A., Liffick S., Holloway B., Limor J., McCaustland K., Olsen-Rasmussen M., Fouchier R., Gunther S., Osterhaus A.D., Drosten C., Pallansch M.A., Anderson L.J., Bellini W.J. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science. 2003;300:1394–1399. (New York, N.Y.)
    1. Salazar A.M., Levy H.B., Ondra S., Kende M., Scherokman B., Brown D., Mena H., Martin N., Schwab K., Donovan D., Dougherty D., Pulliam M., Ippolito M., Graves M., Brown H., Ommaya A. Long-term treatment of malignant gliomas with intramuscularly administered polyinosinic-polycytidylic acid stabilized with polylysine and carboxymethylcellulose: an open pilot study. Neurosurgery. 1996;38:1096–1103. discussion 1103–1094.
    1. Sato S., Sugiyama M., Yamamoto M., Watanabe Y., Kawai T., Takeda K., Akira S. Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J. Immunol. 2003;171:4304–4310.
    1. Sauty A., Dziejman M., Taha R.A., Iarossi A.S., Neote K., Garcia-Zepeda E.A., Hamid Q., Luster A.D. The T cell-specific CXC chemokines IP-10, Mig, and I-TAC are expressed by activated human bronchial epithelial cells. J. Immunol. 1999;162:3549–3558.
    1. Sehgal P.B., Helfgott D.C., Santhanam U., Tatter S.B., Clarick R.H., Ghrayeb J., May L.T. Regulation of the acute phase and immune responses in viral disease. Enhanced expression of the beta 2-interferon/hepatocyte-stimulating factor/interleukin 6 gene in virus-infected human fibroblasts. J. Exp. Med. 1988;167:1951–1956.
    1. Sehgal P.B., Wang L., Rayanade R., Pan H., Margulies L. Interleukin-6-type cytokines. Ann. N. Y. Acad. Sci. 1995;762:1–14.
    1. Sharma S., tenOever B.R., Grandvaux N., Zhou G.P., Lin R., Hiscott J. Triggering the interferon antiviral response through an IKK-related pathway. Science. 2003;300:1148–1151. (New York, N.Y.)
    1. Sidwell R.W., Bailey K.W., Wong M.H., Huffman J.H. In vitro and in vivo sensitivity of a non-mouse-adapted influenza A (Beijing) virus infection to amantadine and ribavirin. Chemotherapy. 1995;41:455–461.
    1. Silverman R.H. Fascination with 2-5A-dependent RNase: a unique enzyme that functions in interferon action. J. Interferon Res. 1994;14:101–104.
    1. Spiegel M., Pichlmair A., Martinez-Sobrido L., Cros J., Garcia-Sastre A., Haller O., Weber F. Inhibition of Beta interferon induction by severe acute respiratory syndrome coronavirus suggests a two-step model for activation of interferon regulatory factor 3. J. Virol. 2005;79:2079–2086.
    1. Spiegel M., Weber F. Inhibition of cytokine gene expression and induction of chemokine genes in non-lymphatic cells infected with SARS coronavirus. Virol. J. 2006;3:17.
    1. Stephen E.L., Sammons M.L., Pannier W.L., Baron S., Spertzel R.O., Levy H.B. Effect of a nuclease-resistant derivative of polyriboinosinic-polyribocytidylic acid complex on yellow fever in rhesus monkeys (Macaca mulatta) J. Infect. Dis. 1977;136:122–126.
    1. Sui J., Li W., Murakami A., Tamin A., Matthews L.J., Wong S.K., Moore M.J., Tallarico A.S., Olurinde M., Choe H., Anderson L.J., Bellini W.J., Farzan M., Marasco W.A. Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc. Natl. Acad. Sci. U. S. A. 2004;101:2536–2541.
    1. Tsang K., Seto W.H. Severe acute respiratory syndrome: scientific and anecdotal evidence for drug treatment. Curr. Opin. Investig. Drugs. 2004;5:179–185.
    1. Tsang K.W., Ho P.L., Ooi G.C., Yee W.K., Wang T., Chan-Yeung M., Lam W.K., Seto W.H., Yam L.Y., Cheung T.M., Wong P.C., Lam B., Ip M.S., Chan J., Yuen K.Y., Lai K.N. A cluster of cases of severe acute respiratory syndrome in Hong Kong. N. Engl. J. Med. 2003;348:1977–1985.
    1. Tsui P.T., Kwok M.L., Yuen H., Lai S.T. Severe acute respiratory syndrome: clinical outcome and prognostic correlates. Emerg. Infect. Dis. 2003;9:1064–1069.
    1. Uematsu S., Akira S. Toll-like receptors and Type I interferons. J. Biol. Chem. 2007;282:15319–15323.
    1. Weber F., Wagner V., Rasmussen S.B., Hartmann R., Paludan S.R. Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J. Virol. 2006;80:5059–5064.
    1. Williams B.R. PKR; a sentinel kinase for cellular stress. Oncogene. 1999;18:6112–6120.
    1. Wong C.K., Lam C.W., Wu A.K., Ip W.K., Lee N.L., Chan I.H., Lit L.C., Hui D.S., Chan M.H., Chung S.S., Sung J.J. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin. Exp. Immunol. 2004;136:95–103.
    1. Wong J.P., Christopher M.E., Salazar A.M., Dale R.M., Sun L.Q., Wang M. Nucleic acid-based antiviral drugs against seasonal and avian influenza viruses. Vaccine. 2007;25:3175–3178.
    1. Wong J.P., Saravolac E.G., Sabuda D., Levy H.B., Kende M. Prophylactic and therapeutic efficacies of poly() against respiratory influenza A virus infection in mice. Antimicrob. Agents Chemother. 1995;39:2574–2576.
    1. Wong J.P., Yang H., Nagata L., Kende M., Levy H., Schnell G., Blasetti K. Liposome-mediated immunotherapy against respiratory influenza virus infection using double-stranded RNA poly ICLC. Vaccine. 1999;17:1788–1795.
    1. Xiao H., Xu L.H., Yamada Y., Liu D.X. Coronavirus spike protein inhibits host cell translation by interaction with eIF3f. PLoS One. 2008;3:e1494.
    1. Yamamoto M., Sato S., Hemmi H., Hoshino K., Kaisho T., Sanjo H., Takeuchi O., Sugiyama M., Okabe M., Takeda K., Akira S. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science. 2003;301:640–643. (New York, N.Y.)
    1. Yang H., Yang M., Ding Y., Liu Y., Lou Z., Zhou Z., Sun L., Mo L., Ye S., Pang H., Gao G.F., Anand K., Bartlam M., Hilgenfeld R., Rao Z. The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proc. Natl. Acad. Sci. U. S. A. 2003;100:13190–13195.
    1. Yen Y.T., Liao F., Hsiao C.H., Kao C.L., Chen Y.C., Wu-Hsieh B.A. Modeling the early events of severe acute respiratory syndrome coronavirus infection in vitro. J. Virol. 2006;80:2684–2693.
    1. Yoneyama M., Kikuchi M., Natsukawa T., Shinobu N., Imaizumi T., Miyagishi M., Taira K., Akira S., Fujita T. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 2004;5:730–737.
    1. Yoshikawa T., Hill T., Li K., Peters C.J., Tseng C.T. Severe acute respiratory syndrome (SARS) coronavirus-induced lung epithelial cytokines exacerbate SARS pathogenesis by modulating intrinsic functions of monocyte-derived macrophages and dendritic cells. J. Virol. 2009;83:3039–3048.

Source: PubMed

3
購読する