Impact of iodine supplementation during preconception, pregnancy and lactation on maternal thyroid homeostasis and offspring psychomotor development: protocol of the IodineMinho prospective study

Maria Lopes-Pereira, Susana Roque, Patrício Costa, Anna Quialheiro, Nadine Correia Santos, Ana Goios, Laura Vilarinho, Margarida Correia-Neves, Joana Almeida Palha, Maria Lopes-Pereira, Susana Roque, Patrício Costa, Anna Quialheiro, Nadine Correia Santos, Ana Goios, Laura Vilarinho, Margarida Correia-Neves, Joana Almeida Palha

Abstract

Background: Iodine deficiency is the most common cause of preventable brain harm and cognitive impairment in children. Portuguese women of childbearing age, pregnant women and their progeny were shown to have inadequate iodine intake. Consequently, the Portuguese Health Authorities have recommended a daily supplementation with 150-200 µg iodine in preconception, pregnancy, and lactation. The IodineMinho study intends to evaluate whether (i) this recommendation impacted on the prevalence of iodine deficiency in pregnant women from the Minho region of Portugal, (ii) the time of initiation of iodine supplementation (if any) influences the serum levels of thyroid hormones at several intervals during pregnancy and (iii) there are serum thyroid-hormone parameters in the 1st trimester of pregnancy that predict psychomotor development of the child at 18 months of age.

Methods: Most Portuguese women are followed throughout pregnancy in community Family Health Units, where family physicians may choose to follow the National recommendation or other, concerning iodine sufficiency. This study will recruit women (N = 304) who intend to become pregnant or are already pregnant from 10 representative Units. Physician's approach and prescriptions, sociodemographic, nutrition and clinical information will be obtained at baseline and throughout pregnancy. To evaluate endocrine function, blood and urine samples will be collected at recruitment, once in each trimester of pregnancy, at delivery and 3 months after delivery. Breastmilk samples will be collected for iodine and energy content analysis. Children will be evaluated for psychomotor development at 18 months. Maternal thyroid volume will be evaluated by ultrasound scan at baseline, in the 3rd trimester and at 3 months after delivery.

Discussion: Iodine deficiency early during development precludes children from achieving full intellectual capabilities. This protocol describes a study that is innovative and unique in its detailed and comprehensive evaluation of maternal and child endocrine and psychomotor parameters. By evaluating the effectiveness of the iodine supplementation recommendation, it will contribute to the public health systems' efforts to provide excellence in maternal and infant care.

Trial registration: ClinicalTrials.gov, NCT04288531 . Registered 28 February 2020-Retrospectively registered.

Keywords: Child health; Iodine; Iodine deficiency; Iodine supplementation; Maternal health; Nutrition; Pregnancy; Psychomotor development; Public health intervention.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Study overview and aims (This is an original image by the authors)

References

    1. Salazar P, Cisternas P, Martinez M, Inestrosa NC. Hypothyroidism and Cognitive Disorders during Development and Adulthood: Implications in the Central Nervous System. Mol Neurobiol. 2019;56:2952–63.
    1. Jiang H, Powers HJ, Rossetto GS. A systematic review of iodine deficiency among women in the UK. Public Health Nutr. 2019;22:1138–47.
    1. Zimmermann MB, Gizak M, Abbott K, Andersson M, Lazarus JH. Iodine deficiency in pregnant women in Europe. The Lancet Diabetes Endocrinology. 2015;3:672–4.
    1. Costeira MJ, Oliveira P, Ares S, De Escobar GM, Palha JA. Iodine status of pregnant women and their progeny in the minho region of Portugal. Thyroid. 2009;19:157–63.
    1. Costeira MJ, Oliveira P, Ares S, Roque S, De Escobar GM, Palha JA. Parameters of thyroid function throughout and after pregnancy in an iodine-deficient population. Thyroid. 2010;20:995–1001.
    1. Costeira MJ, Oliveira P, Santos NC, Ares S, Saenz-Rico B, De Escobar GM, et al. Psychomotor development of children from an iodine-deficient region. J Pediatr. 2011;159:447–53.
    1. Limbert E, Prazeres S, São Pedro M, Madureira D, Miranda A, Ribeiro M, et al. Iodine intake in Portuguese pregnant women: results of a countrywide study. Eur J Endocrinol. 2010;163:631–5.
    1. DGS DG da S. Orientação. Aporte de iodo em mulheres na preconceção, gravidez e amamentação. 2013.
    1. Levie D, Korevaar TIM, Bath SC, Murcia M, Dineva M, Llop S, et al. Association of Maternal Iodine Status With Child IQ: A Meta-Analysis of Individual Participant Data. J Clin Endocrinol Metab. 2019;104:5957–67.
    1. Korevaar TIM, Derakhshan A, Taylor PN, Meima M, Chen L, Bliddal S, et al. Association of Thyroid Function Test Abnormalities and Thyroid Autoimmunity with Preterm Birth: A Systematic Review and Meta-analysis. JAMA - Journal of the American Medical Association. 2019;322:632–41.
    1. Dineva M, Fishpool H, Rayman MP, Mendis J, Bath SC. Systematic review and meta-analysis of the effects of iodine supplementation on thyroid function and child neurodevelopment in mildly-to-moderately iodine-deficient pregnant women. Am J Clin Nutr. 2020;112:389–412.
    1. Harding KB, Peña-Rosas JP, Webster AC, Yap CMY, Payne BA, Ota E, et al. Iodine supplementation for women during the preconception, pregnancy and postpartum period. Cochrane Database Syst Rev. 2017;3:CD011761.
    1. Amaro F. Escala de Graffar Adaptada. In: In: Costa, Ana Maria Bérnard e tal. 1996. Currículos Funcionauis. Lisboa: IIE, Vol.II.; 1990.
    1. Graffar M. Une méthode de classification sociale d’échantillon de la population. 1956.
    1. Thompson FE, Byers T. Dietary Assessment Resource Manual. J Nutr. 1994;124(11 suppl):2245s–2317s.
    1. Lopes C, Aro A, Azevedo A, Ramos E, Barros H. Intake and Adipose Tissue Composition of Fatty Acids and Risk of Myocardial Infarction in a Male Portuguese Community Sample. J Am Diet Assoc. 2007;107:276–86.
    1. Pinto E, Severo M, Correia S, dos Santos Silva I, Lopes C, Barros H. Validity and reproducibility of a semi-quantitative food frequency questionnaire for use among Portuguese pregnant women. Matern Child Nutr. 2010;6:105–19.
    1. Machado A, Lima L, Mesquita RBR, Bordalo AA. Improvement of the Sandell-Kolthoff reaction method (ammonium persulfate digestion) for the determination of iodine in urine samples. Clin Chem Lab Med. 2017;55:e206–8.
    1. Bayley N, Aylward GP. Bayley Scales of Infant & Toddler Dev 3 Screening Test. Pearson’s Clinical Assessment group. 2020. . Accessed 26 May 2020.
    1. Williams FLR, Lindgren A, Watson J, Boelen A, Cheetham T. Thyroid function in preterm infants and neurodevelopment at 2 years. Arch Dis Child Fetal Neonatal Ed. 2020:2–7.
    1. Eerdekens A, Naulaers G, Ortibus E, Verhaeghe J, Langouche L, Vanhole C. Evolution of circulating thyroid hormone levels in preterm infants during the first week of life: Perinatal influences and impact on neurodevelopment. J Pediatr Endocrinol Metab. 2019;32:597–606.
    1. Aylward GP. Is It Correct to Correct for Prematurity? Theoretic Analysis of the Bayley-4 Normative Data. J Dev Behav Pediatr. 2020;41:128–33.
    1. Martins MV, Costa P, Peterson BD, Costa ME, Schmidt L. Marital stability and repartnering: Infertility-related stress trajectories of unsuccessful fertility treatment. Fertil Steril. 2014;102:1716–22.
    1. Costa PS, Santos NC, Cunha P, Palha JA, Sousa N. The Use of Bayesian Latent Class Cluster Models to Classify Patterns of Cognitive Performance in Healthy Ageing. PLoS One. 2013;8:e71940.
    1. Moreira PS, Sotiropoulos I, Silva J, Takashima A, Sousa N, Leite-Almeida H, et al. The advantages of structural equation modeling to address the complexity of spatial reference learning. Front Behav Neurosci. 2016;10:8.

Source: PubMed

3
購読する