DMD genotype correlations from the Duchenne Registry: Endogenous exon skipping is a factor in prolonged ambulation for individuals with a defined mutation subtype

Richard T Wang, Florian Barthelemy, Ann S Martin, Emilie D Douine, Ascia Eskin, Ann Lucas, Jenifer Lavigne, Holly Peay, Negar Khanlou, Lee Sweeney, Rita M Cantor, M Carrie Miceli, Stanley F Nelson, Richard T Wang, Florian Barthelemy, Ann S Martin, Emilie D Douine, Ascia Eskin, Ann Lucas, Jenifer Lavigne, Holly Peay, Negar Khanlou, Lee Sweeney, Rita M Cantor, M Carrie Miceli, Stanley F Nelson

Abstract

Antisense oligonucleotide (AON)-mediated exon skipping is an emerging therapeutic for individuals with Duchenne muscular dystrophy (DMD). Skipping of exons adjacent to common exon deletions in DMD using AONs can produce in-frame transcripts and functional protein. Targeted skipping of DMD exons 8, 44, 45, 50, 51, 52, 53, and 55 is predicted to benefit 47% of affected individuals. We observed a correlation between mutation subgroups and age at loss of ambulation in the Duchenne Registry, a large database of phenotypic and genetic data for DMD (N = 765). Males amenable to exon 44 (N = 74) and exon 8 skipping (N = 18) showed prolonged ambulation compared to other exon skip groups and nonsense mutations (P = 0.035 and P < 0.01, respectively). In particular, exon 45 deletions were associated with prolonged age at loss of ambulation relative to the rest of the exon 44 skip amenable cohort and other DMD mutations. Exon 3-7 deletions also showed prolonged ambulation relative to all other exon 8 skippable mutations. Cultured myotubes from DMD patients with deletions of exons 3-7 or exon 45 showed higher endogenous skipping than other mutations, providing a potential biological rationale for our observations. These results highlight the utility of aggregating phenotypic and genotypic data for rare pediatric diseases to reveal progression differences, identify potentially confounding factors, and probe molecular mechanisms that may affect disease severity.

Keywords: Duchenne Registry; Duchenne muscular dystrophy; rare disease registry.

© 2018 The Authors. Human Mutation published by Wiley Periodicals, Inc.

Figures

Figure 1
Figure 1
Filtering steps of Duchenne Registry data for analysis in this study. Participants can respond to one or more survey modules on steroid use, genetic testing results, or muscle function. Data for individuals who responded to all three submodules were merged. We removed entries that did not include valid diagnosis, mutation type, country of residence, steroid usage, ambulatory status, and age at LOA status. Individuals amenable to exon skipping were then sorted into the predicted exon skip required to generate in‐frame DMD transcript
Figure 2
Figure 2
Kaplan–Meier age at LOA analysis for patients eligible for skipping therapy of exons. Delayed age at LOA was observed among individuals amenable to exon 8 skipping (P < 0.001) and exon 44 skipping (P = 0.04). Exon 51 skippable individuals had earlier age at LOA (P = 0.04). All other groups (45, 50, 52, 53, duplication and nonsense) were not significantly different and were merged. All subjects were currently using corticosteroids
Figure 3
Figure 3
Kaplan–Meier plots for subgroups of exon 8, 44, and exon 51 skippable mutations. (A) Exon 8 skippable patients with exon 3–7 deletions ambulated substantially longer than any other group (P = 0.0003). (B) Individuals with single exon 45 deletions ambulate longer than other exon 44 skippable subgroups or other targeted exons (P = 0.029). (C) Among exon 51 skippable subgroups, only exon 49–50 deletions show significant change in age at LOA (P = 0.008)
Figure 4
Figure 4
Basal levels of exon skipping are enriched in cultured myotubes derived from reprogrammed fibroblast (iDRM) from patients with del 45 mutations (exon 44 skippable) or myoblasts derived from del 3–7 (exon 8 skippable) relative to those derived from del 45–50 or del 49–50 iDRM (exon51 skippable). Experimental samples were run in triplicate and data shown reflect cumulative results of multiple experiments, with each point representing a singlet.  DMD mRNA was reverse transcribed and PCR used to detect exon 44, 51, or 8 skipped and unskipped products. Products were quantitated using a Bioanalyzer. Percentage skipped is calculated as (skipped/unskipped + skipped) × 100
Figure 5
Figure 5
Patient CDMD8011 (del 3–7) expresses low levels of dystrophin protein in muscle biopsy and primary myoblasts expanded and fused to myotubes in culture. (A) Dystrophin is visible at the sarcolemma in transverse sections of muscle in CDMD8011 and CDMD8006 (wild‐type) when stained with DysI (central rod domain) or Dys2 (C‐terminal). Magnification, 10×, 20× for Dys2 CDMD8011. (B) Representative images of fused myotubes showed low amounts of dystrophin in CDMD8011 and higher levels in CDMD8006. Mandys8 stains the central rod domain of DMD. Nuclei are colored blue (Dapi). Scale bar 50 μm

References

    1. Aartsma‐Rus, A. , Van Deutekom, J. C. , Fokkema, I. F. , Van Ommen, G. J. , & Den Dunnen, J. T. (2006). Entries in the Leiden Duchenne muscular dystrophy mutation database: An overview of mutation types and paradoxical cases that confirm the reading‐frame rule. Muscle & Nerve, 34(2), 135–144.
    1. Angelini, C. , Pegoraro, E. , Turella, E. , Intino, M. T. , Pini, A. , & Costa, C. (1994). Deflazacort in Duchenne dystrophy: Study of long‐term effect. Muscle & Nerve, 17(4), 386–391.
    1. Bello, L. , Morgenroth, L. P. , Gordish‐Dressman, H. , Hoffman, E. P. , McDonald, C. M. , Cirak, S. , & investigators C. (2016). DMD genotypes and loss of ambulation in the CINRG Duchenne Natural History Study. Neurology, 87(4), 401–409.
    1. Bladen, C. L. , Salgado, D. , Monges, S. , Foncuberta, M. E. , Kekou, K. , Kosma, K. , … Lochmüller, H. (2015). The TREAT‐NMD DMD global database: Analysis of more than 7000 Duchenne muscular dystrophy mutations. Human Mutation, 36(4), 395–402.
    1. Center for Disease Control and Prevention (CDC) . (2009). Prevalence of Duchenne/Becker muscular dystrophy among males aged 5–24 years: Four states, 2007. MMWR: Morbidity and Mortality Weekly Report, 58, 1119–1122.
    1. Cirak, S. , Arechavala‐Gomeza, V. , Guglieri, M. , Feng, L. , Torelli, S. , Anthony, K. , … Muntoni, F. (2011). Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: An open‐label, phase 2, dose‐escalation study. Lancet, 378(9791), 595–605.
    1. Deburgrave, N. , Daoud, F. , Llense, S. , Barbot, J. C. , Recan, D. , Peccate, C. , … Leturcq, F. (2007). Protein‐ and mRNA‐based phenotype‐genotype correlations in DMD/BMD with point mutations and molecular basis for BMD with nonsense and frameshift mutations in the DMD gene. Human Mutation, 28(2), 183–195.
    1. Dwianingsih, E. K. , Malueka, R. G. , Nishida, A. , Itoh, K. , Lee, T. , Yagi, M. , … Matsuo, M. (2014). A novel splicing silencer generated by DMD exon 45 deletion junction could explain upstream exon 44 skipping that modifies dystrophinopathy. Journal of Human Genetics, 59(8), 423–429.
    1. Fletcher, S. , Adkin, C. F. , Meloni, P. , Wong, B. , Muntoni, F. , Kole, R. , … Wilton, S. D. (2012). Targeted exon skipping to address “leaky” mutations in the dystrophin gene. Molecular Therapy—Nucleic Acids, 1, e48.
    1. Goemans, N. M. , Tulinius, M. , van den Akker, J. T. , Burm, B. E. , Ekhart, P. F. , Heuvelmans, N. , … van Deutekom, J. C. (2011). Systemic administration of PRO051 in Duchenne's muscular dystrophy. New England Journal of Medicine, 364(16), 1513–1522.
    1. Griggs, R. C. , Miller, J. P. , Greenberg, C. R. , Fehlings, D. L. , Pestronk, A. , Mendell, J. R. , … Meyer, J. M. (2016). Efficacy and safety of deflazacort vs prednisone and placebo for Duchenne muscular dystrophy. Neurology, 87(20), 2123–2131.
    1. Griggs, R. C. , Moxley, III R. T. , Mendell, J. R. , Fenichel, G. M. , Brooke, M. H. , Pestronk, A. , & Miller, J. P. (1991). Prednisone in Duchenne dystrophy: A randomized, controlled trial defining the time course and dose response. Archives of Neurology, 48(4), 383.
    1. Griggs, R. C. , Moxley, R. T. , Mendell, J. R. , Fenichel, G. M. , Brooke, M. H. , Pestronk, A. et al. (1993). Duchenne dystrophy: Randomized, controlled trial of prednisone (18 months) and azathioprine (12 months). Neurology, 43(3 Part 1), 520.
    1. Henricson, E. K. , Abresch, R. T. , Cnaan, A. , Hu, F. , Duong, T. , Arrieta, A. , & the CINRG Investigators . (2013). The cooperative international neuromuscular research group Duchenne natural history study: Glucocorticoid treatment preserves clinically meaningful functional milestones and reduces rate of disease progression as measured by manual muscle testing and other commonly used clinical trial outcome measures. Muscle & Nerve, 48(1), 55–67.
    1. Karumbayaram, S. , Lee, P. , Azghadi, S. F. , Cooper, A. R. , Patterson, M. , Kohn, D. B. , … Lowry, W. E. (2012). From skin biopsy to neurons through a pluripotent intermediate under good manufacturing practice protocols. Stem Cells Translational Medicine, 1(1), 36–43.
    1. Kendall, G. C. , Mokhonova, E. I. , Moran, M. , Sejbuk, N. E. , Wang, D. W. , Silva, O. , … Miceli, M. C. (2012). Dantrolene enhances antisense‐mediated exon skipping in human and mouse models of Duchenne muscular dystrophy. Science Translational Medicine, 4(164), 164ra160.
    1. Kesari, A. , Pirra, L. N. , Bremadesam, L. , McIntyre, O. , Gordon, E. , Dubrovsky, A. L. , … Hoffman, E. P. (2008). Integrated DNA, cDNA, and protein studies in Becker muscular dystrophy show high exception to the reading frame rule. Human Mutation, 29(5), 728–737.
    1. Koeks, Z. , Bladen, C. L. , Salgado, D. , van Zwet, E. , Pogoryelova, O. , McMacken, G. , … Lochmüller, H. (2017). Clinical outcomes in Duchenne muscular dystrophy: A study of 5345 patients from the TREAT‐NMD DMD global database. Journal of Neuromuscular Diseases, 4(4), 293–306.
    1. Koenig, M. , Beggs, A. H. , Moyer, M. , Scherpf, S. , Heindrich, K. , Bettecken, T. , … Kunkel, L. M. (1989). The molecular basis for Duchenne versus Becker muscular dystrophy: Correlation of severity with type of deletion. American Journal of Human Genetics, 45(4), 498–506.
    1. Lourbakos, A. , Sipkens, J. , Beekman, C. , Kreuger, D. , Brasz, L. , Janson, A. , … de Kipme, S. (2011). The incidence of revertant and trace dystrophin expression in muscle biopsies of Duchenne muscular dystrophy patients with different exon deletions. Neuromuscular Disorders, 21(9‐10), 1.
    1. Mann, C. J. , Honeyman, K. , Cheng, A. J. , Ly, T. , Lloyd, F. , Fletcher, S. , … Wilton, S. D. (2001). Antisense‐induced exon skipping and synthesis of dystrophin in the mdx mouse. Proceedings of the National Academy of Sciences of the United States of America, 98(1), 42–47.
    1. Mathews, K. D. , Cunniff, C. , Kantamneni, J. R. , Ciafaloni, E. , Miller, T. , Matthews, D. , … Romitti, P. A. (2010). Muscular dystrophy surveillance tracking and research network (MD STARnet): Case definition in surveillance for childhood‐onset Duchenne/Becker muscular dystrophy. Journal of Child Neurology, 25(9), 1098–1102.
    1. Mendell, J. , Moxley, R. , Griggs, R. , Brooke, M. , Fenichel, G. , Miller, J. , … Florence, J. (1989). Randomized, double‐blind six‐month trial of prednisone in Duchenne's muscular dystrophy. The New England Journal of Medicine, 320(24), 1592.
    1. Monaco, A. P. , Bertelson, C. J. , Liechti‐Gallati, S. , Moser, H. , & Kunkel, L. M. (1988). An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics, 2(1), 90–95.
    1. Muntoni, F. , Gobbi, P. , Sewry, C. , Sherratt, T. , Taylor, J. , Sandhu, S. K. , … Bobrow, M. (1994). Deletions in the 5' region of dystrophin and resulting phenotypes. Journal of Medical Genetics, 31(11), 843–847.
    1. Pane, M. , Mazzone, E. S. , Sormani, M. P. , Messina, S. , Vita, G. L. , Fanelli, L. , … Mercuri, E. (2014). 6 Minute walk test in Duchenne MD patients with different mutations: 12 month changes. Plos One, 9(1), e83400.
    1. Prior, T. W. , Bartolo, C. , Papp, A. C. , Snyder, P. J. , Sedra, M. S. , Burghes, A. H. , … Mendell, J. R. (1997). Dystrophin expression in a Duchenne muscular dystrophy patient with a frame shift deletion. Neurology, 48(2), 486–488.
    1. Rangel, V. , Martin, A. S. , & Peay, H. L. (2012). DuchenneConnect registry report. PLoS Currents, 4, RRN1309.
    1. Servais, L. , Montus, M. , Guiner, C. L. , Ben Yaou, R. , Annoussamy, M. , Moraux, A. , … Voita, T. (2015). Non‐ambulant Duchenne patients theoretically treatable by exon 53 skipping have severe phenotype. Journal of Neuromuscular Diseases, 2(3), 269–279.
    1. Tuffery‐Giraud, S. , Beroud, C. , Leturcq, F. , Yaou, R. B. , Hamroun, D. , Michel‐Calemard, L. , … Claustres, M. (2009). Genotype‐phenotype analysis in 2,405 patients with a dystrophinopathy using the UMD‐DMD database: A model of nationwide knowledgebase. Human Mutation, 30(6), 934–945.
    1. van den Bergen, J. C. , Ginjaar, H. B. , Niks, E. H. , Aartsma‐Rus, A. , & Verschuuren, J. J. G.M. (2014). Prolonged ambulation in Duchenne patients with a mutation amenable to exon 44 skipping. Journal of Neuromuscular Diseases, 1(1), 91–94.
    1. van Deutekom, J. C. , Bremmer‐Bout, M. , Janson, A. A. , Ginjaar, I. B. , Baas, F. , den Dunnen, J. T. , & van Ommen, G. J. (2001). Antisense‐induced exon skipping restores dystrophin expression in DMD patient derived muscle cells. Human Molecular Genetics, 10(15), 1547–1554.
    1. van Deutekom, J. C. , Janson, A. A. , Ginjaar, I. B. , Frankhuizen, W. S. , Aartsma‐Rus, A. , Bremmer‐Bout, M. , … van Ommen, G. J. (2007). Local dystrophin restoration with antisense oligonucleotide PRO051. New England Journal of Medicine, 357(26), 2677–2686.
    1. Wang, R. T. , Silverstein Fadlon, C. A. , Ulm, J. W. , Jankovic, I. , Eskin, A. , Lu, A. , … Nelson, S. F. (2014). Online self‐report data for Duchenne muscular dystrophy confirms natural history and can be used to assess for therapeutic benefits. PLoS Currents, 6, ecurrents.md.e1e8f2be7c949f9ffe81ec6fca1cce6a.
    1. Yokota, T. , Lu, Q. L. , Partridge, T. , Kobayashi, M. , Nakamura, A. , Takeda, S. , & Hoffman, E. (2009). Efficacy of systemic morpholino exon‐skipping in Duchenne dystrophy dogs. Annals of Neurology, 65(6), 667–676.

Source: PubMed

3
購読する