Alzheimer's disease progression by geographical region in a clinical trial setting

David B Henley, Sherie A Dowsett, Yun-Fei Chen, Hong Liu-Seifert, Joshua D Grill, Rachelle S Doody, Paul Aisen, Rema Raman, David S Miller, Ann M Hake, Jeffrey Cummings, David B Henley, Sherie A Dowsett, Yun-Fei Chen, Hong Liu-Seifert, Joshua D Grill, Rachelle S Doody, Paul Aisen, Rema Raman, David S Miller, Ann M Hake, Jeffrey Cummings

Abstract

Introduction: To facilitate enrollment and meet local registration requirements, sponsors have increasingly implemented multi-national Alzheimer's disease (AD) studies. Geographic regions vary on many dimensions that may affect disease progression or its measurement. To aid researchers designing and implementing Phase 3 AD trials, we assessed disease progression across geographic regions using placebo data from four large, multi-national clinical trials of investigational compounds developed to target AD pathophysiology.

Methods: Four similarly-designed 76 to 80 week, randomized, double-blind placebo-controlled trials with nearly identical entry criteria enrolled patients aged ≥55 years with mild or moderate NINCDS/ADRDA probable AD. Descriptive analyses were performed for observed mean score and observed mean change in score from baseline at each scheduled visit. Data included in the analyses were pooled from the intent-to-treat placebo-assigned overall (mild and moderate) AD dementia populations from all four studies. Disease progression was assessed as change from baseline for each of 5 scales - the AD Assessment Scale-cognitive subscale (ADAS-cog11), the AD Cooperative Study- Activities of Daily Living Scale (ADCS-ADL), Mini-Mental State Examination (MMSE), the Clinical Dementia Rating scored by the sum of boxes method (CDR-SB), and the Neuropsychiatric Inventory (NPI).

Results: Regions were heterogeneous at baseline. At baseline, disease severity as measured by ADAS-cog11, ADCS-ADL, and CDR-SB was numerically worse for Eastern Europe/Russia compared with other regions. Of all regional populations, Eastern Europe/Russia showed the greatest cognitive and functional decline from baseline; Japan, Asia and/or S. America/Mexico showed the least cognitive and functional decline.

Conclusions: These data suggest that in multi-national clinical trials, AD progression or its measurement may differ across geographic regions; this may be in part due to heterogeneity across populations at baseline. The observed differences in AD progression between outcome measures across geographic regions may generalize to 'real-world' clinic populations, where heterogeneity is the norm.

Trial registrations: ClinicalTrials.gov NCT00594568 - IDENTITY. Registered 11 January 2008. ClinicalTrials.gov NCT00762411 - IDENTITY2. Registered 26 September 2008 ClinicalTrials.gov NCT00905372 - EXPEDITION. Registered 18 May 2009 ClinicalTrials.gov NCT00904683 - EXPEDITION2. Registered 18 May 2009.

Figures

Figure 1
Figure 1
Observed mean score at each time point by region for outcome measure scores. ADAS-cog11, 11-item Alzheimer’s disease Assessment Scale – cognitive subscale; ADCS-ADL, Alzheimer’s disease Cooperative Study – Activities of Daily Living; CDR-SB, Clinical Dementia Rating Scale sum of boxes; MMSE, Mini-Mental State Examination; NPI, Neuropsychiatric Inventory.
Figure 2
Figure 2
Correlation between scales by region. (a) Baseline measures. (b) Mean change from baseline to 18 months for study completers. ADAS-cog11, 11-item Alzheimer’s disease Assessment Scale – cognitive subscale; ADCS-ADL, Alzheimer’s disease Cooperative Study – Activities of Daily Living; AS, Asia; AU, Australia/South Africa; CDR-SB, Clinical Dementia Rating Scale sum of boxes; EE, Eastern Europe/Russia; JP, Japan. MMSE, Mini-Mental State Examination; NA, North America; NPI, Neuropsychiatric Inventory; SA, South America/Mexico; WE, Western Europe/Israel.

References

    1. Schneider L, Sano M. Current Alzheimer’s disease clinical trials: methods and placebo outcomes. Alzheimers Dement. 2009;5:388–397. doi: 10.1016/j.jalz.2009.07.038.
    1. Cummings J, Reynders R, Zhong K. Globalization of Alzheimer’s disease clinical trials. Alzheimers Res Ther. 2011;3:24. doi: 10.1186/alzrt86.
    1. Doody RS, Cole PE, Miller DS, Siemers E, Black R, Feldman H, et al. Global issues in drug development for Alzheimer’s disease. Alzheimers Dement. 2011;7:197–207. doi: 10.1016/j.jalz.2011.01.001.
    1. Witte M, Trzepacz P, Case M, Yu P, Hochstetler H, Quinlivan M, et al. Association between clinical measures and Florbetapir F18 PET neuroimaging in mild or moderate Alzheimer’s disease dementia. J Neuropsychiatry Clin Neurosci. 2014;26:214–220. doi: 10.1176/appi.neuropsych.12120402.
    1. Degenhardt EK, Witte MM, Case MG, Yu P, Henley DB, Hochstetler HM, et al. Florbetapir F18 PET amyloid neuroimaging and baseline characteristics in patients with Alzheimer’s dementia [abstract]. Neurology. 2014;82:P3.209.
    1. Ito K, Corrigan B, Zhao Q, French J, Miller R, Soares H, et al. Disease progression model for cognitive deterioration from Alzheimer’s Disease Neuroimaging Initiative database. Alzheimers Dement. 2011;7:151–160. doi: 10.1016/j.jalz.2010.03.018.
    1. Kukull WA, Higdon R, Bowen JD, McCormick WC, Teri L, Schellenberg GD, et al. Dementia and Alzheimer disease incidence: a prospective cohort study. Arch Neurol. 2002;59:1737–1746. doi: 10.1001/archneur.59.11.1737.
    1. Evans DA, Bennett DA, Wilson RS, Bienias JL, Morris MC, Scherr PA, et al. Incidence of Alzheimer disease in a biracial urban community: relation to apolipoprotein E allele status. Arch Neurol. 2003;60:185–189. doi: 10.1001/archneur.60.2.185.
    1. Launer LJ, Andersen K, Dewey ME, Letenneur L, Ott A, Amaducci LA, et al. Rates and risk factors for dementia and Alzheimer's disease: results from EURODEM pooled analyses. EURODEM Incidence Research Group and Work Groups. European Studies of Dementia. Neurology. 1999;52:78–84. doi: 10.1212/WNL.52.1.78.
    1. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet. 2013;45:1452–1458. doi: 10.1038/ng.2802.
    1. Alzheimer’s Disease International. 2013 Global impact of Dementia. . Accessed May 26, 2015.
    1. Doody RS, Raman R, Farlow M, Iwatsubo T, Vellas B, Joffe S, et al. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N Engl J Med. 2013;369:341–350. doi: 10.1056/NEJMoa1210951.
    1. Doody RS, Thomas RG, Farlow M, Iwatsubo T, Vellas B, Joffe S, et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014;370:311–321. doi: 10.1056/NEJMoa1312889.
    1. Grill JD, Raman R, Ernstrom K, Aisen P, Dowsett SA, Chen YF, et al. Comparing recruitment, retention, and safety reporting among geographic regions in multinational Alzheimer’s disease clinical trials. Alz Res Ther. 2015; DOI:10.1186/s13195-015-0122-5.
    1. Siemers E, Henley D, Sundell K, Gopalan S, Dean R, Wrobleski K, et al. Evaluating semagacestat, a gamma secretase inhibitor, in a phase III trial. Alzheimers Dement. 2011;7:S484–S485. doi: 10.1016/j.jalz.2011.05.2355.
    1. Henley DB, Sundell KL, Sethuraman G, Dowsett SA, May PC. Safety profile of semagacestat, a gamma-secretase inhibitor: IDENTITY trial findings. Curr Med Res Opin. 2014;30:2021–2032. doi: 10.1185/03007995.2014.939167.
    1. Mohs RC, Knopman D, Petersen RC, Ferris SH, Ernesto C, Grundman M, et al. Development of cognitive instruments for use in clinical trials of antidementia drugs: additions to the Alzheimer’s disease assessment scale that broaden its scope. The Alzheimer's disease cooperative study. Alzheimer Dis Assoc Disord. 1997;11:S13–S21. doi: 10.1097/00002093-199700112-00003.
    1. Galasko D, Bennett D, Sano M, Ernesto C, Thomas R, Grundman M, et al. An inventory to assess activities of daily living for clinical trials in Alzheimer's disease. The Alzheimer's disease cooperative study. Alzheimer Dis Assoc Disord. 1997;11:S33–S39. doi: 10.1097/00002093-199700112-00005.
    1. Berg L. Clinical Dementia Rating (CDR) Psychopharmacol Bull. 1988;24:637–639.
    1. O'Bryant SE, Waring SC, Cullum CM, Hall J, Lacritz L, Massman PJ, et al. Staging dementia using Clinical Dementia Rating Scale Sum of boxes scores: a Texas Alzheimer's Research Consortium study. Arch Neurol. 2008;65:1091–1095. doi: 10.1001/archneur.65.8.1091.
    1. Folstein MF, Folstein SE, McHugh PR. ‘Mini-mental state’. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–198. doi: 10.1016/0022-3956(75)90026-6.
    1. Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J. The Neuropsychiatric Inventory: comprehensive assessment of psychopathology in dementia. Neurology. 1994;44:2308–2314. doi: 10.1212/WNL.44.12.2308.
    1. Cummings JL. The Neuropsychiatric Inventory: assessing psychopathology in dementia patients. Neurology. 1997;48:S10–S16. doi: 10.1212/WNL.48.5_Suppl_6.10S.
    1. Glickman SW, McHutchison JG, Peterson ED, Cairns CB, Harrington RA, Califf RM, et al. Ethical and scientific implications of the globalization of clinical research. N Engl J Med. 2009;360:816–823. doi: 10.1056/NEJMsb0803929.
    1. Doody R, Massman P, Dunn J. A method for estimating progression rates in Alzheimer disease. Arch Neurol. 2001;58:449–454.
    1. Doody RS, Pavlik V, Massman P, Rountree S, Darby E, Chan W. Predicting progression of Alzheimer’s disease. Alzheimers Res Ther 2010, 2:2. Correction in Alzheimers Res Ther. 2010;2:14.
    1. Miller DS, Xu Y, Samuelson P, Henley DB, Sethuraman G, Sundell K. Can screen to baseline MMSE variability in AD clinical trials affect primary outcome measurement? [abstract] J Nutr Health Aging. 2012;16:831–832. doi: 10.1007/s12603-011-0152-z.
    1. Chow TW, Liu CK, Fuh JL, Leung VP, Tai CT, Chen LW, et al. Neuropsychiatric symptoms of Alzheimer's disease differ in Chinese and American patients. Int J Geriatr Psychiatry. 2002;17:22–28. doi: 10.1002/gps.509.

Source: PubMed

3
購読する