No effect of repetitive tDCS on daily smoking behaviour in light smokers: A placebo controlled EMA study

Ilse Verveer, Danielle Remmerswaal, Joran Jongerling, Frederik M van der Veen, Ingmar H A Franken, Ilse Verveer, Danielle Remmerswaal, Joran Jongerling, Frederik M van der Veen, Ingmar H A Franken

Abstract

Introduction: The effectiveness of repetitive transcranial Direct Current Stimulation (tDCS) on reducing smoking behaviour has been studied with mixed results. Smoking behaviour is influenced by affect and context, therefore we choose to use mobile ecological momentary assessments (EMA) to measure changes in smoking behaviour after tDCS.

Methods: In a randomized, placebo-controlled, between subject study, we applied tDCS bilaterally with the anodal electrode targeting the right DLPFC (https://ichgcp.net/clinical-trials-registry/NCT03027687). Smokers were allocated to six sessions of either active tDCS (n = 35) or sham tDCS (n = 36) and received two sessions on three different days in one week. They were asked to keep track of their daily cigarette consumption, craving and affect in an application on their mobile phones for three months starting one week before the first tDCS session.

Results: Number of smoked cigarettes a day progressively decreased up to one week after the last tDCS session in both conditions. Active treatment had no additional effect on cigarette consumption, craving and affect.

Conclusions: In this exploratory study, repetitive bilateral tDCS over the DLPFC had no effect on daily smoking behaviour. Future research needs to investigate how motivation to quit smoking and the number of tDCS sessions affect the efficacy of repetitive tDCS.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Flow diagram.
Fig 1. Flow diagram.
Fig 2. Experimental procedure.
Fig 2. Experimental procedure.
Fig 3. Number of smoked cigarettes on…
Fig 3. Number of smoked cigarettes on each day starting from one week before the 1st tDCS session.
Fig 4. Mean craving on each day…
Fig 4. Mean craving on each day starting from one week before the 1st tDCS session.

References

    1. World Health Organization. (2019, July 26). WHO report on the global tobacco epidemic. 2019: offer help to quit tobacco use: executive summary. Retrieved from
    1. Yücel M., Oldenhof E., Ahmed S. H., et al. A transdiagnostic dimensional approach towards a neuropsychological assessment for addiction: an international Delphi consensus study. Addiction. 2019; 114(6): 1095–1109. 10.1111/add.14424
    1. Volkow N. D., Wang G. J., Fowler J. S., Tomasi D., Telang F., & Baler R. Addiction: decreased reward sensitivity and increased expectation sensitivity conspire to overwhelm the brain's control circuit. BioEssays. 2010; 32(9): 748–755. 10.1002/bies.201000042
    1. Goldstein R. Z., & Volkow N. D. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci. 2011; 12(11): 652 10.1038/nrn3119
    1. Lapenta O. M., Marques L. M., Rego G. G., Comfort W. E., & Boggio P. S. (2018). tDCS in addiction and impulse control disorders. The journal of ECT, 34(3), 182–192. 10.1097/YCT.0000000000000541
    1. Bikson M., Grossman P., Thomas C., Zannou A. L., Jiang J., Adnan T., et al. Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul. 2016; 9(5): 641–661. 10.1016/j.brs.2016.06.004
    1. Nitsche M. A., & Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000; 527(3): 633–639. 10.1111/j.1469-7793.2000.t01-1-00633.x
    1. Woods A. J., Antal A., Bikson M., et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol. 2016; 127(2): 1031–1048. 10.1016/j.clinph.2015.11.012
    1. Vance D. E., Fazeli P. L., Cody S. L., Bell T. R., & Pope C. N. A description and critical analysis of the therapeutic uses of transcranial direct current stimulation: Implications for clinical practice and research. Nurs (Auckland, NZ). 2016; 6: 23 10.2147/NRR.S115627
    1. Brevet-Aeby C., Brunelin J., Iceta S., Padovan C., & Poulet E. Prefrontal cortex and impulsivity: Interest of noninvasive brain stimulation. Neurosci Biobehav Rev. 2016; 71: 112–134. 10.1016/j.neubiorev.2016.08.028
    1. Fregni F., Liguori P., Fecteau S., Nitsche M. A., Pascual-Leone A., & Boggio P. S. Cortical stimulation of the prefrontal cortex with transcranial direct current stimulation reduces cue-provoked smoking craving: a randomized, sham-controlled study. J Clin Psychiatry. 2008; 69(1): 32–40. 10.4088/jcp.v69n0105
    1. Boggio P. S., Liguori P., Sultani N., Rezende L., Fecteau S., & Fregni F. Cumulative priming effects of cortical stimulation on smoking cue-induced craving. Neurosci Lett. 2009; 463(1): 82–86. 10.1016/j.neulet.2009.07.041
    1. Boggio P. S., Zaghi S., Villani A. B., Fecteau S., Pascual-Leone A., & Fregni F. Modulation of risk-taking in marijuana users by transcranial direct current stimulation (tDCS) of the dorsolateral prefrontal cortex (DLPFC). Drug Alcohol Depend. 2010; 112(3): 220–225. 10.1016/j.drugalcdep.2010.06.019
    1. Batista E. K., Klauss J., Fregni F., Nitsche M. A., & Nakamura-Palacios E. M. A randomized placebo-controlled trial of targeted prefrontal cortex modulation with bilateral tDCS in patients with crack-cocaine dependence. Int J Neuropsychopharmacol. 2015; 18(12): pyv066. 10.1093/ijnp/pyv066
    1. Wang Y., Shen Y., Cao X., Shan C., Pan J., He H., et al. Transcranial direct current stimulation of the frontal- parietal-temporal area attenuates cue- induced craving for heroin. J Psychiatr Res. 2016; 79: 1–3. 10.1016/j.jpsychires.2016.04.001
    1. Boggio P. S., Sultani N., Fecteau S., Merabet L., Mecca T., Pascual-Leone A., et al. Prefrontal cortex modulation using transcranial DC stimulation reduces alcohol craving: a double-blind, sham-controlled study. Drug Alcohol Depend. 2008; 92(1–3): 55–60. 10.1016/j.drugalcdep.2007.06.011
    1. Fecteau S., Agosta S., Hone-Blanchet A., Fregni F., Boggio P., Ciraulo D., et al. Modulation of smoking and decision-making behaviors with transcranial direct current stimulation in tobacco smokers: a preliminary study. Drug Alcohol Depend. 2014; 140: 78–84. 10.1016/j.drugalcdep.2014.03.036
    1. Falcone M., Bernardo L., Ashare R. L., Hamilton R., Faseyitan O., McKee S. A., et al. Transcranial direct current brain stimulation increases ability to resist smoking. Brain Stimul. 2016; 9(2): 191–196. 10.1016/j.brs.2015.10.004
    1. De Souza Brangioni V., Maria C., Pereira D. A., Thibaut A., Fregni F., Brasil-Neto J. P., et al. Effects of prefrontal transcranial direct current stimulation and motivation to quit in tobacco smokers: a randomized, sham controlled, double-blind trial. Front pharmacol. 2018; 9: 14 10.3389/fphar.2018.00014
    1. Behnam S. G., Mousavi S. A., & Emamian M. H. (2019). The effects of transcranial direct current stimulation compared to standard bupropion for the treatment of tobacco dependence: A randomized sham-controlled trial. European Psychiatry, 60, 41–48. 10.1016/j.eurpsy.2019.04.010
    1. Kang N., Kim R. K., & Kim H. J. (2019). Effects of transcranial direct current stimulation on symptoms of nicotine dependence: A systematic review and meta-analysis. Addictive behaviors. 10.1016/j.addbeh.2019.05.006
    1. Dvorak R. D., Waters A. J., MacIntyre J. M., & Gwaltney C. J. Affect, craving, and cognition: An EMA study of ad libitum adolescent smoking. Psychol Addict Behav. 2018; 32(6): 583 10.1037/adb0000392
    1. Monk R. L., Qureshi A. W., McNeill A., Erskine-Shaw M., & Heim D. Perfect for a Gin and Tonic: How Context Drives Consumption Within a Modified Bogus Taste Test. Alcohol Alcohol. 2017; 53(3): 228–234. 10.1093/alcalc/agx084
    1. Wall A. M., McKee S. A., & Hinson R. E. Assessing variation in alcohol outcome expectancies across environmental context: An examination of the situational-specificity hypothesis. Psychol Addict Behav. 2000; 14(4): 367–375.
    1. Boniface S., Kneale J., & Shelton N. Drinking pattern is more strongly associated with under-reporting of alcohol consumption than socio-demographic factors: evidence from a mixed-methods study. BMC Public Health. 2014; 14(1): 1297 10.1186/1471-2458-14-1297
    1. Stockwell T., Zhao J., & Macdonald S. Who under‐reports their alcohol consumption in telephone surveys and by how much? An application of the ‘yesterday method’in a national C anadian substance use survey. Addiction. 2014; 109(10): 1657–1666. 10.1111/add.12609
    1. Jansen J. M., Daams J. G., Koeter M. W., Veltman D. J., van den Brink W., & Goudriaan A. E. Effects of non-invasive neurostimulation on craving: a meta-analysis. Neurosci Biobehav Rev. 2013; 37(10): 2472–2480. 10.1016/j.neubiorev.2013.07.009
    1. Heatherton T. F., Kozlowski L. T., Frecker R. C., & Fagerström K. O. The Fagerström test for nicotine dependence: a revision of the Fagerstrom Tolerance Questionnaire. Br J Addict. 1991; 86(9): 1119–1127. 10.1111/j.1360-0443.1991.tb01879.x
    1. Gandiga P. C., Hummel F. C., & Cohen L. G. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 2006; 117(4): 845–850. 10.1016/j.clinph.2005.12.003
    1. Hox J. J. (2010). Multilevel analysis: Techniques and applications. New York, NY: Routledge.
    1. Dunbar M. S., Shiffman S., & Chandra S. (2018). Exposure to workplace smoking bans and continuity of daily smoking patterns on workdays and weekends. Addictive Behaviors, 80, 53–58. 10.1016/j.addbeh.2018.01.006
    1. Jones A., Remmerswaal D., Verveer I., Robinson E., Franken I. H., Wen C. K. F.,et al. Compliance with ecological momentary assessment protocols in substance users: a meta‐analysis. Addiction. 2019; 114(4): 609–619 10.1111/add.14503
    1. Russo R., Wallace D., Fitzgerald P. B., & Cooper N. R. Perception of comfort during active and sham transcranial direct current stimulation: a double blind study. Brain Stimul. 2013; 6(6): 946–951. 10.1016/j.brs.2013.05.009

Source: PubMed

3
購読する