Beneficial Effects of a Specially Designed Home Meal Replacement on Cardiometabolic Parameters in Individuals with Obesity: Preliminary Results of a Randomized Controlled Clinical Trial

Jae-Woo Lee, Yonghwan Kim, Taisun Hyun, Seunghye Song, Woojung Yang, Ye-Seul Kim, Hyo-Sun You, Young-Chang Chang, Seung-Ho Shin, Hee-Taik Kang, Jae-Woo Lee, Yonghwan Kim, Taisun Hyun, Seunghye Song, Woojung Yang, Ye-Seul Kim, Hyo-Sun You, Young-Chang Chang, Seung-Ho Shin, Hee-Taik Kang

Abstract

We aimed to investigate if a home meal replacement (HMR), designed with a low ω-6/ω-3 fatty acid ratio, improves cardiometabolic parameters, including metabolic syndrome (MetS) in obese individuals. We conducted a monocentric, controlled, randomized crossover trial. The HMR contains higher protein and fat content, lower carbohydrate content, and a lower ω6FA/ω3FA ratio than the regular diet. Sixty-four participants were randomized into two groups and switched to the other group following a 4-week intervention. While subjects in the HMR group were provided three HMRs daily, those in the control group were requested to maintain their regular dietary pattern. We conducted paired t-tests, repeated measures analysis of variance, and McNemar tests before and after the intervention. Body mass index (BMI) and weight were lower in the HMR group after adjusting for age, sex, and total energy intake and significantly changed in the between-group differences. The waist circumference, systolic blood pressure, triglycerides, triglyceride-glucose index, and triglyceride to high-density lipoprotein cholesterol ratio were reduced in the HMR group (all p < 0.05). The percentage of subjects with MetS significantly decreased from 39.1% at baseline to 28.1% post-intervention (p = 0.035). Using the HMR for 4 weeks reduced the BMI, weight, and MetS prevalence in individuals with obesity. This trial was registered at clinicaltrials.gov (NCT04552574).

Keywords: cardiometabolic parameters; cardiovascular disease; metabolic syndrome; obese individuals; omega-3 fatty acids; omega-6 and omega-3 fatty acid ratio.

Conflict of interest statement

Y.-C.C and S.-H.S, who contributed to providing the home meal replacement, have declared conflicts of interest based on the results of the study. Other authors have no conflicts of interest to declare.

Figures

Figure 1
Figure 1
Flowchart of participant exclusion. Abbreviations: AST, aspartate aminotransferase; ALT, alanine aminotransferase; TC, total cholesterol; TG, triglycerides; LDL-C, low-density lipoprotein cholesterol; WBC, white blood cell count; hsCRP, high-sensitivity C-reactive protein.
Figure 2
Figure 2
Proportion of subjects meeting metabolic syndrome criteria before and after the intervention according to diet group. p-values were calculated using the McNemar test. Abbreviations: HMR, home meal replacement.
Figure 3
Figure 3
Proportion meeting criteria for each component of metabolic syndrome in intervention group. p-values were calculated using the McNemar test; criteria for each component: Central obesity (WC ≥ 90 cm in men and ≥ 85 cm in women), hyperglycemia (IFG ≥ 100 mg/dL), hypo-HDL-cholesterolemia (HDL-C < 40 mg/dL in men and < 50 mg/dL in women), hypertriglyceridemia (TG ≥ 150 mg/dL), and high BP (SBP ≥ 130 mmHG or DBP ≥ 85 mmHg); Abbreviations: HMR, home meal replacement; WC, waist circumference; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol; BP, blood pressure.

References

    1. NCD Risk Factor Collaboration (NCD-RisC) Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128 9 million children, adolescents, and adults. Lancet. 2017;390:2627–2642. doi: 10.1016/S0140-6736(17)32129-3.
    1. World Health Organization Obesity and Overweight. [(accessed on 30 April 2021)]; Available online:
    1. Blüher M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019;15:288–298. doi: 10.1038/s41574-019-0176-8.
    1. Popkin B.M. The Nutrition Transition and Obesity in the Developing World. J. Nutr. 2001;131:871S–873S. doi: 10.1093/jn/131.3.871S.
    1. World Health Organization Regional Office for the Eastern, Mediterranean . Healthy Diet. World Health Organization Regional Office for the Eastern Mediterranean; Cario, Egypt: 2019.
    1. Goodhart R.S., Shils M.E. Modern Nutrition in Health and Disease. Lea and Febiger; Philadelphia, PA, USA: 1980.
    1. Kris-Etherton P.M., Harris W.S., Appel L.J. Fish Consumption, Fish Oil, Omega-3 Fatty Acids, and Cardiovascular Disease. Circulation. 2002;106:2747–2757. doi: 10.1161/01.CIR.0000038493.65177.94.
    1. Kris-Etherton P.M., Taylor D.S., Yu-Poth S., Huth P., Moriarty K., Fishell V., Hargrove R.L., Zhao G., Etherton T.D. Polyunsaturated fatty acids in the food chain in the United States. Am. J. Clin. Nutr. 2000;71:179S–188S. doi: 10.1093/ajcn/71.1.179S.
    1. Simopoulos A.P. Omega-6/Omega-3 Essential Fatty Acid Ratio and Chronic Diseases. Food Rev. Int. 2004;20:77–90. doi: 10.1081/FRI-120028831.
    1. Simopoulos A.P. The Importance of the Omega-6/Omega-3 Fatty Acid Ratio in Cardiovascular Disease and Other Chronic Diseases. Exp. Biol. Med. 2008;233:674–688. doi: 10.3181/0711-MR-311.
    1. Jang H., Park K. Omega-3 and omega-6 polyunsaturated fatty acids and metabolic syndrome: A systematic review and meta-analysis. Clin. Nutr. 2020;39:765–773. doi: 10.1016/j.clnu.2019.03.032.
    1. Simopoulos A.P. Evolutionary Aspects of Diet: The Omega-6/Omega-3 Ratio and the Brain. Mol. Neurobiol. 2011;44:203–215. doi: 10.1007/s12035-010-8162-0.
    1. de Lorgeril M., Renaud S., Salen P., Monjaud I., Mamelle N., Martin J., Guidollet J., Touboul P., Delaye J. Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet. 1994;343:1454–1459. doi: 10.1016/S0140-6736(94)92580-1.
    1. The Western-Pacific Regional Office of World Health Organization . The Asia-Pacific Perspective: Redefining Obesity and Its Treatment. World Health Organization Regional Office for the Western Pacific; Sydney, Australia: 2000.
    1. The Korean Nutrition Society Computer-Aided Nutritional Analysis Program (CAN-Pro) Version 5.0. [(accessed on 20 June 2021)]; Available online: .
    1. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002;106:3143–3421. doi: 10.1161/circ.106.25.3143.
    1. Kang H.-T., Kim S.-Y., Kim J., Kim J., Kim J., Park H.A., Shin J., Cho S.H., Choi Y., Shim J.Y. Clinical practice guideline of prevention and treatment for metabolic syndrome. Korean J. Fam. Pr. 2015;5:375–420.
    1. Matthews D.R., Hosker J.P., Rudenski A.S., Naylor B.A., Treacher D.F., Turner R.C. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–419. doi: 10.1007/BF00280883.
    1. Simental-Mendía L.E., Rodríguez-Morán M., Guerrero-Romero F. The Product of Fasting Glucose and Triglycerides as Surrogate for Identifying Insulin Resistance in Apparently Healthy Subjects. Metab. Syndr. Relat. Disord. 2008;6:299–304. doi: 10.1089/met.2008.0034.
    1. Hadaegh F., Khalili D., Ghasemi A., Tohidi M., Sheikholeslami F., Azizi F. Triglyceride/HDL-cholesterol ratio is an independent predictor for coronary heart disease in a population of Iranian men. Nutr. Metab. Cardiovasc. Dis. 2009;19:401–408. doi: 10.1016/j.numecd.2008.09.003.
    1. Wenzel S.E. Arachidonic acid metabolites: Mediators of inflammation in asthma. Pharmacother. J. Hum. Pharmacol. Drug Ther. 1997;17:3–12.
    1. Faber J., Berkhout M., Fiedler U., Avlar M., Witteman B., Vos A., Henke M., Garssen J., Van Helvoort A., Otten M. Rapid EPA and DHA incorporation and reduced PGE2 levels after one week intervention with a medical food in cancer pa-tients receiving radiotherapy, a randomized trial. Clin. Nutr. 2013;32:338–345. doi: 10.1016/j.clnu.2012.09.009.
    1. Guo X.-F., Li X., Shi M., Li D. n-3 Polyunsaturated Fatty Acids and Metabolic Syndrome Risk: A Meta-Analysis. Nutrition. 2017;9:703. doi: 10.3390/nu9070703.
    1. Friday K.E., Childs M.T., Tsunehara C.H., Fujimoto W.Y., Bierman E.L., Ensinck J.W. Elevated Plasma Glucose and Lowered Triglyceride Levels from Omega-3 Fatty Acid Supplementation in Type II Diabetes. Diabetes Care. 1989;12:276–281. doi: 10.2337/diacare.12.4.276.
    1. Ogawa A., Suzuki Y., Aoyama T., Takeuchi H. Dietary Alpha-Linolenic Acid Inhibits Angiotensin-Converting Enzyme Activity and mRNA Expression Levels in the Aorta of Spontaneously Hypertensive Rats. J. Oleo Sci. 2009;58:355–360. doi: 10.5650/jos.58.355.
    1. Belchior T., Paschoal V.A., Magdalon J., Chimin P., Farias T.M., Filho A.D.B.C., Gorjão R., St.-Pierre P., Miyamoto S., Kang J.X., et al. Omega-3 fatty acids protect from diet-induced obesity, glucose intolerance, and adipose tissue inflammation through PPARγ-dependent and PPARγ-independent actions. Mol. Nutr. Food Res. 2015;59:957–967. doi: 10.1002/mnfr.201400914.
    1. James M.J., Gibson R., Cleland L.G. Dietary polyunsaturated fatty acids and inflammatory mediator production. Am. J. Clin. Nutr. 2000;71:343s–348s. doi: 10.1093/ajcn/71.1.343s.
    1. Warensjö E., Sundström J., Lind L., Vessby B. Factor analysis of fatty acids in serum lipids as a measure of dietary fat quality in relation to the metabolic syndrome in men. Am. J. Clin. Nutr. 2006;84:442–448. doi: 10.1093/ajcn/84.2.442.
    1. Freire R.D., Cardoso M.A., Gimeno S.G., Ferreira S.R., for the Japanese-Brazilian Diabetes Study Group Dietary Fat Is Associated with Metabolic Syndrome in Japanese Brazilians. Diabetes Care. 2005;28:1779–1785. doi: 10.2337/diacare.28.7.1779.
    1. Petersson H., Basu S., Cederholm T., Riserus U. Serum fatty acid composition and indices of stearoyl-CoA desaturase activity are associated with systemic inflammation: Longitudinal analyses in middle-aged men. Br. J. Nutr. 2008;99:1186–1189. doi: 10.1017/S0007114507871674.
    1. Petersson H., Lind L., Hulthe J., Elmgren A., Cederholm T., Risérus U. Relationships between serum fatty acid composition and multiple markers of inflammation and endothelial function in an elderly population. Atherosclerosis. 2009;203:298–303. doi: 10.1016/j.atherosclerosis.2008.06.020.
    1. Sacks F.M., Campos H. Polyunsaturated Fatty Acids, Inflammation, and Cardiovascular Disease: Time to Widen Our View of the Mechanisms. J. Clin. Endocrinol. Metab. 2006;91:398–400. doi: 10.1210/jc.2005-2459.
    1. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: Results of the GIS-SI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico. Lancet. 1999;354:447–455.
    1. Tavazzi L., Maggioni A.P., Marchioli R., Barlera S., Franzosi M.G., Latini R., Lucci D., Nicolosi G.L., Porcu M., Tognoni G. Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): A randomised, double-blind, placebo-controlled trial. Lancet. 2008;372:1223–1230. doi: 10.1016/s0140-6736(08)61239-8.
    1. Salas-Salvadó J., Fernández-Ballart J., Rosa L.-R., Martínez-González M.-A., Fitó M., Estruch R., Corella D., Fiol M., Gómez-Gracia E., Arós F., et al. Effect of a Mediterranean Diet Supplemented with Nuts on Metabolic Syndrome Status: One-year results of the PREDIMED randomized trial. Arch. Intern. Med. 2008;168:2449–2458. doi: 10.1001/archinte.168.22.2449.
    1. Rauch B., Schiele R., Schneider S., Diller F., Victor N., Gohlke H., Gottwik M., Steinbeck G., Del Castillo U., Sack R., et al. OMEGA, a Randomized, Placebo-Controlled Trial to Test the Effect of Highly Purified Omega-3 Fatty Acids on Top of Modern Guideline-Adjusted Therapy After Myocardial Infarction. Circulation. 2010;122:2152–2159. doi: 10.1161/CIRCULATIONAHA.110.948562.
    1. Writing Group for the AREDS2 Research Group Effect of long-chain omega-3 fatty acids and lutein + zeaxanthin supplements on cardiovascular outcomes: Results of the Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial. JAMA Intern. Med. 2014;174:763–771. doi: 10.1001/jamainternmed.2014.328.
    1. Ascend Study Collaborative Group Effects of n-3 fatty acid supplements in diabetes mellitus. N. Engl. J. Med. 2018;379:1540–1550. doi: 10.1056/NEJMoa1804989.
    1. Lee P.S.S., Dart A.M., Walker K.Z., O’Dea K., Chin-Dusting J.P.F., Skilton M.R. Effect of altering dietary n-6:n-3 PUFA ratio on cardiovascular risk measures in patients treated with statins: A pilot study. Br. J. Nutr. 2011;108:1280–1285. doi: 10.1017/S0007114511006519.
    1. Poreba M., Mostowik M., Siniarski A., Golebiowska-Wiatrak R., Malinowski K.P., Haberka M., Konduracka E., Nessler J., Undas A., Gajos G. Treatment with high-dose n-3 PUFAs has no effect on platelet function, coagulation, metabolic status or inflammation in patients with atherosclerosis and type 2 diabetes. Cardiovasc. Diabetol. 2017;16:1–11. doi: 10.1186/s12933-017-0523-9.
    1. Siniarski A., Haberka M., Mostowik M., Gołębiowska-Wiatrak R., Poręba M., Malinowski K., Gąsior Z., Konduracka E., Nessler J., Gajos G. Treatment with omega-3 polyunsaturated fatty acids does not improve endothelial function in patients with type 2 diabetes and very high cardiovascular risk: A randomized, double-blind, placebo-controlled study (Omega-FMD) Atherosclerosis. 2018;271:148–155. doi: 10.1016/j.atherosclerosis.2018.02.030.
    1. Monnard C.R., Dulloo A.G. Polyunsaturated fatty acids as modulators of fat mass and lean mass in human body composition regulation and cardiometabolic health. Obes. Rev. 2021;22(Suppl. 2):e13197. doi: 10.1111/obr.13197.
    1. Siniarski A., Rostoff P., Rychlak R., Krawczyk K., Gołębiowska-Wiatrak R., Mostowik M., Malinowski K.P., Konduracka E., Nessler J., Gajos G. Unsaturated fatty acid composition in serum phospholipids in patients in the acute phase of myocardial infarction. Kardiol. Pol. 2019;77:935–943. doi: 10.33963/KP.14923.

Source: PubMed

3
購読する