The Incidence of Radial Artery Occlusion in Critically Ill Patients after Cannulation with a Long Catheter

Magdalena Wujtewicz, Bartosz Regent, Rozalia Marszałek-Ratnicka, Aneta Smugała, Edyta Szurowska, Radosław Owczuk, Magdalena Wujtewicz, Bartosz Regent, Rozalia Marszałek-Ratnicka, Aneta Smugała, Edyta Szurowska, Radosław Owczuk

Abstract

Cardiac output monitoring is a common practice in critically ill patients. The PiCCO (pulse index continuous cardiac output) method requires artery cannulation. According to the manufacturer, the cannula in the radial artery should be removed after three days. However, longer monitoring is sometimes necessary. The aim of this study was to assess the incidence of radial artery occlusion (RAO) after three days of cannulation and to check whether five-day cannulation is related to a higher occlusion rate. An additional assessment was made to verify the presence of occlusion three, fourteen and thirty days after decannulation. The PiCCO cannula was inserted into the radial artery after the Barbeau test and Doppler assessment of blood flow. It was left for three or five days. Doppler was performed immediately after its removal and at three, fourteen and thirty days following decannulation. Thirty-seven patients were randomly assigned for three or five days of cannulation, and twenty-three of them were eligible for further analysis. RAO was found in thirteen (56.5%) patients. No statistical difference was found between the RAO rate for three and five day cannulations (p = 0.402). The incidence of RAO was lower when the right radial artery was cannulated (p = 0.022; OR 0.129). Radial artery cannulation with a PiCCO catheter poses a risk of RAO. However, the incidence of prolonged cannulation appeared to not increase the risk of artery occlusion. ClinicalTrials.gov ID NCT02695407.

Keywords: ICU; PiCCO; artery occlusion; cannulation; monitoring.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Patients’ flowchart.

References

    1. Pang Q., Hendrickx J., Liu H.-L., Poelaert J. Contemporary perioperative haemodynamic monitoring. Anaesthesiol. Intensive Ther. 2019;51:147–158. doi: 10.5114/ait.2019.86279.
    1. Prado L., Lobo F., de Oliveira N., Espada D., Neves B., Teboul J.-L., Lobo S. Intraoperative haemodynamic optimisation therapy with venoarterial carbon dioxide difference and pulse pressure variation—Does it work? Anaesthesiol. Intensive Ther. 2020;52:297–303. doi: 10.5114/ait.2020.100636.
    1. Fleisher L.A., Fleischmann K.E., Auerbach A., Barnason S.A., Beckman J., Bozkurt B., Davila-Roman V.G., Gerhard-Herman M.D., Holly T.A., Kane G.C., et al. 2014 ACC/AHA Guideline on Perioperative Cardiovascular Evaluation and Management of Patients Undergoing Noncardiac Surgery. J. Am. Coll. Cardiol. 2014;64:e77–e137. doi: 10.1016/j.jacc.2014.07.944.
    1. Teboul J.-L., Saugel B.B., Cecconi M., De Backer D., Hofer C.K., Monnet X., Perel A., Pinsky M.R., Reuter D., Rhodes A., et al. Less invasive hemodynamic monitoring in critically ill patients. Intensiv. Care Med. 2016;42:1350–1359. doi: 10.1007/s00134-016-4375-7.
    1. Scheer B.V., Perel A., Pfeiffer U.J. Clinical review: Complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine. Crit. Care. 2002;6:199–204. doi: 10.1186/cc1489.
    1. Belda F., Aguilar G., Teboul J.-L., Pestaña D., Redondo F., Malbrain M., Luis J., Ramasco F., Umgelter A., Wendon J., et al. Complications related to less-invasive haemodynamic monitoring. Br. J. Anaesth. 2011;106:482–486. doi: 10.1093/bja/aeq377.
    1. Chugh S.K., Chugh S., Chugh Y., Rao S.V. Feasibility and utility of pre-procedure ultrasound imaging of the arm to facilitate transradial coronary diagnostic and interventional procedures (PRIMAFACIE-TRI) Catheter. Cardiovasc. Interv. 2013;82:64–73. doi: 10.1002/ccd.24585.
    1. Santos M.A., De Borba R.P., De Moraes C.V., Voltolini I., Azevedo E.M., Cardoso C.R., De Souza E.N., Moraes M.A., Cardoso C.D.O. Evaluation of Radial Artery Patency after Transradial Catheterization. Rev. Bras. Cardiol. Invasiva. 2012;20:403–407. doi: 10.1016/S2214-1235(15)30086-7.
    1. Sinha S.K., Jha M.J., Mishra V., Thakur R., Goel A., Kumar S.S., Singh A.K., Sachan M., Varma C.M., Krishna V. Radial Artery Occlusion—Incidence, Predictors and Long-term outcome after TRAnsradial Catheterization: Clinico-Doppler ultrasound-based study (RAIL-TRAC study) Acta Cardiol. 2017;72:318–327. doi: 10.1080/00015385.2017.1305158.
    1. Zankl A.R., Andrassy M., Volz C., Ivandic B., Krumsdorf U., Katus H.A., Blessing E. Radial artery thrombosis following transradial coronary angiography: Incidence and rationale for treatment of symptomatic patients with low-molecular-weight heparins. Clin. Res. Cardiol. 2010;99:841–847. doi: 10.1007/s00392-010-0197-8.
    1. Cleymaet R., Scheinok T., Maes H., Stas A., Malbrain L., De Laet I., Schoonheydt K., Dits H., van Regenmortel N., Mekeirele M., et al. Prognostic value of bioelectrical impedance analysis for assessment of fluid overload in ICU patients: A pilot study. Anaesthesiol. Intensive Ther. 2021;53:10–17. doi: 10.5114/ait.2021.103526.
    1. Szczepańska A., Pluta M., Krzych Ł. Clinical practice in intraoperative haemodynamic monitoring in Poland: A point prevalence study in 31 Polish hospitals. Anaesthesiol. Intensive Ther. 2020;52:97–104. doi: 10.5114/ait.2020.95168.
    1. Lamia B., Kim H.K., Severyn D.A., Pinsky M.R. Cross-comparisons of trending accuracies of continuous cardiac-output measurements: Pulse contour analysis, bioreactance, and pulmonary-artery catheter. J. Clin. Monit. 2018;32:33–43. doi: 10.1007/s10877-017-9983-4.
    1. Kim K.S., Park H.S., Jang W.-I., Park J.-H. Thrombotic Occlusion of the Radial Artery as a Complication of the Transradial Coronary Intervention. J. Cardiovasc. Ultrasound. 2010;18:31. doi: 10.4250/jcu.2010.18.1.31.
    1. Yonetsu T., Kakuta T., Lee T., Takayama K., Kakita K., Iwamoto T., Kawaguchi N., Takahashi K., Yamamoto G., Iesaka Y., et al. Assessment of acute injuries and chronic intimal thickening of the radial artery after transradial coronary intervention by optical coherence tomography. Eur. Heart J. 2010;31:1608–1615. doi: 10.1093/eurheartj/ehq102.
    1. Garg N., Madan B.K., Khanna R., Sinha A., Kapoor A., Tewari S., Kumar S., Goel P.K. Incidence and predictors of radial artery occlusion after transradial coronary angioplasty: Doppler-guided follow-up study. J. Invasive Cardiol. 2015;27:106–112.
    1. Cazares-Diazleal A., Dorantes-Garcia J., Kiamco-Castillo R., Payro-Ramirez G., Betuel-Ivey J., Lozano-Sabido E., Arce-Gonzalez J. Comparison between left and right radial access for coronary angiography. J. Cardiovasc. Med. Cardiol. 2020;7:213–219. doi: 10.17352/2455-2976.000140.
    1. Lewandowski P., Zuk A., Slomski T., Maciejewski P., Ramotowski B., Budaj A. Impact of the Use of a Larger Forearm Artery on the Efficacy and Safety of Transradial and Transulnar Access: A Randomized Trial with Preprocedural Ultrasonography. J. Clin. Med. 2020;9:3607. doi: 10.3390/jcm9113607.
    1. Hahalis G., Deftereos S., Bertrand F.P.M.O.F. Ulnar artery: The Ulysses ultimate resort for coronary procedures. Hell. J. Cardiol. 2016;57:238–246. doi: 10.1016/j.hjc.2016.07.006.
    1. Stella P.R., Kiemeneij F., Laarman G.J., Odekerken D., Slagboom T., van der Wieken R. Incidence and outcome of radial artery occlusion following transradial artery coronary angioplasty. Cathet. Cardiovasc. Diagn. 1997;40:156–158. doi: 10.1002/(SICI)1097-0304(199702)40:2<156::AID-CCD7>;2-A.
    1. BBarbeau G.R., Arsenault F., Dugas L., Simard S., Larivière M.M. Evaluation of the ulnopalmar arterial arches with pulse oximetry and plethysmography: Comparison with the Allen’s test in 1010 patients. Am. Heart J. 2004;147:489–493. doi: 10.1016/j.ahj.2003.10.038.
    1. Jasiński T., Stefaniak J. COVID-19 and haemodynamic failure: A point of view on mechanisms and treatment. Anaesthesiol. Intensive Ther. 2020;52:409–417. doi: 10.5114/ait.2020.101813.

Source: PubMed

3
購読する