Transit time flow measurement of coronary bypass grafts before and after protamine administration

Dror B Leviner, Miriam von Mücke Similon, Carlo Maria Rosati, Andrea Amabile, Daniel J F M Thuijs, Gabriele Di Giammarco, Daniel Wendt, Gregory D Trachiotis, Teresa M Kieser, A Pieter Kappetein, Stuart J Head, David P Taggart, John D Puskas, Dror B Leviner, Miriam von Mücke Similon, Carlo Maria Rosati, Andrea Amabile, Daniel J F M Thuijs, Gabriele Di Giammarco, Daniel Wendt, Gregory D Trachiotis, Teresa M Kieser, A Pieter Kappetein, Stuart J Head, David P Taggart, John D Puskas

Abstract

Background: Intraoperative graft assessment with tools like Transit Time Flow Measurement (TTFM) is imperative for quality control in coronary surgery. We investigated the variation of TTFM parameters before and after protamine administration to identify new benchmark parameters for graft quality assessment.

Methods: The database of the REQUEST ("REgistry for QUality AssESsmenT with Ultrasound Imaging and TTFM in Cardiac Bypass Surgery") study was retrospectively reviewed. A per graft analysis was performed. Only single grafts (i.e., no sequential nor composite grafts) where both pre- and post-protamine TTFM values were recorded with an acoustical coupling index > 30% were included. Grafts with incomplete data and mixed grafts (arterio-venous) were excluded. A second analysis was performed including single grafts only in the same MAP range pre- and post- protamine administration.

Results: After adjusting for MAP, we found a small increase in MGF (29 mL/min to 30 mL/min, p = 0.009) and decrease in PI (2.3 to 2.2, p < 0.001) were observed after the administration of protamine. These changes were especially notable for venous conduits and for CABG procedures performed on-pump.

Conclusion: The small changes in TTFM parameters observed before and after protamine administration seem to be clinically irrelevant, despite being statistically significant in aggregate. Our data do not support a need to perform TTFM measurements both before and after protamine administration. A single TTFM measurement taken either before or after protamine may suffice to achieve reliable data on each graft's performance. Depending on the specific clinical situation and intraoperative changes, more measurements may be informative.

Trial registration: Clinical Trials Number: NCT02385344 , registered February 17th, 2015.

Keywords: Coronary artery bypass grafting; Intraoperative graft flow measurement; Quality control.

Conflict of interest statement

DBL – None, MvMS – None, CR – None, AA – None, DJT - Medistim. Travelling support/speaking fees, GDG - Medistim. Travelling support/speaking fees, DW - Medistim. Travelling support/speaking fees, GDT – None, TMK - Medistim. Travelling support/speaking fees, APK - Medistim. Travelling support/speaking fees. Medtronic Employment, SJH - Medistim. Travelling support/speaking fees. Medtronic Employment, DPT - Medistim. Research funding, speaking and travelling honoraria, consultant, JDP - Medistim. Travelling support/speaking fees.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Patient and graft inclusion and exclusion flow chart. ACI = acoustic coupling index; MAP = mean arterial pressure; REQUEST = Registry for Quality Assessment with Ultrasound Imaging and TTFM in Cardiac Bypass Surgery; TTFM = transit-time flowmetry
Fig. 2
Fig. 2
Mean graft flows (A) and pulsatility indices (B) pre- and post-protamine: single grafts with pre- and post-protamine TTFM with ACI > 30 (both pre- and post-protamine) and same MAP range (for each graft). Data reported as medians. Boxes represent the 1st to 3rd (IQR) quartile while the whiskers are from the min to the max values and are truncated to no longer than 1.5 times the IQR. ACI = acoustic coupling index; MAP = mean arterial pressure; MGF = mean graft flow; PI = pulsatility index; TTFM = transit-time flowmetry

References

    1. Hess CN, Lopes RD, Gibson CM, Hager R, Wojdyla DM, Englum BR, Mack MJ, Califf RM, Kouchoukos NT, Peterson ED, Alexander JH. Saphenous vein graft failure after coronary artery bypass surgery: insights from PREVENT IV. Circulation. 2014;130(17):1445–1451. doi: 10.1161/CIRCULATIONAHA.113.008193.
    1. Yun KL, Wu Y, Aharonian V, Mansukhani P, Pfeffer TA, Sintek CF, Kochamba GS, Grunkemeier G, Khonsari S. Randomized trial of endoscopic versus open vein harvest for coronary artery bypass grafting: six-month patency rates. J Thorac Cardiovasc Surg. 2005;129(3):496–503. doi: 10.1016/j.jtcvs.2004.08.054.
    1. Leacche M, Balaguer JM, Byrne JG. Intraoperative grafts assessment. Semin Thorac Cardiovasc Surg. 2009;21(3):207–212. doi: 10.1053/j.semtcvs.2009.08.007.
    1. Singh SK, Desai ND, Chikazawa G, et al. The Graft Imaging to Improve Patency (GRIIP) clinical trial results. J Thorac Cardiovasc Surg. 2010;139:294–301. doi: 10.1016/j.jtcvs.2009.09.048.
    1. Rasmussen C, Thiis JJ, Clemmensen P, Efsen F, Arendrup HC, Saunamäki K, et al. Significance and management of early graft failure after coronary artery bypass grafting: feasibility and results of acute angiography and re-re-vascularization. Eur J Cardiothorac Surg. 1997;12(6):847–852. doi: 10.1016/S1010-7940(97)00268-6.
    1. Kieser TM, Rose S, Kowalewski R, Belenkie I. Transit-time flow predicts outcomes in coronary artery bypass graft patients: a series of 1000 consecutive arterial grafts. Eur J Cardiothorac Surg. 2010;38:155–162. doi: 10.1016/j.ejcts.2010.01.026.
    1. Sousa-Uva M, Neumann FJ, Ahlsson A, Alfonso F, Banning AP, Benedetto U, Byrne RA, Collet JP, Falk V, Head SJ, Jüni P, Kastrati A, Koller A, Kristensen SD, Niebauer J, Richter DJ, Seferović PM, Sibbing D, Stefanini GG, Windecker S, Yadav R, Zembala MO, ESC Scientific Document Group. Wijns W, Glineur D, Aboyans V, Achenbach S, Agewall S, Andreotti F, Barbato E, Baumbach A, Brophy J, Bueno H, Calvert PA, Capodanno D, Davierwala PM, Delgado V, Dudek D, Freemantle N, Funck-Brentano C, Gaemperli O, Gielen S, Gilard M, Gorenek B, Haasenritter J, Haude M, Ibanez B, Iung B, Jeppsson A, Katritsis D, Knuuti J, Kolh P, Leite-Moreira A, Lund LH, Maisano F, Mehilli J, Metzler B, Montalescot G, Pagano D, Petronio AS, Piepoli MF, Popescu BA, Sádaba R, Shlyakhto E, Silber S, Simpson IA, Sparv D, Tavilla G, Thiele H, Tousek P, van Belle E, Vranckx P, Witkowski A, Zamorano JL, Roffi M, Windecker S, Aboyans V, Agewall S, Barbato E, Bueno H, Coca A, Collet JP, Coman IM, Dean V, Delgado V, Fitzsimons D, Gaemperli O, Hindricks G, Iung B, Jüni P, Katus HA, Knuuti J, Lancellotti P, Leclercq C, McDonagh TA, Piepoli MF, Ponikowski P, Richter DJ, Roffi M, Shlyakhto E, Sousa-Uva M, Simpson IA, Zamorano JL, Pagano D, Freemantle N, Sousa-Uva M, Chettibi M, Sisakian H, Metzler B, İbrahimov F, Stelmashok VI, Postadzhiyan A, Skoric B, Eftychiou C, Kala P, Terkelsen CJ, Magdy A, Eha J, Niemelä M, Kedev S, Motreff P, Aladashvili A, Mehilli J, Kanakakis IG, Becker D, Gudnason T, Peace A, Romeo F, Bajraktari G, Kerimkulova A, Rudzītis A, Ghazzal Z, Kibarskis A, Pereira B, Xuereb RG, Hofma SH, Steigen TK, Witkowski A, de Oliveira EI, Mot S, Duplyakov D, Zavatta M, Beleslin B, Kovar F, Bunc M, Ojeda S, Witt N, Jeger R, Addad F, Akdemir R, Parkhomenko A, Henderson R. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur J Cardiothorac Surg. 2019;55(1):4–90. doi: 10.1093/ejcts/ezy289.
    1. Taggart DP, Thuijs DJFM, Di Giammarco G, et al. Intraoperative transit-time flow measurement and high-frequency ultrasound assessment in coronary artery bypass grafting. JTCV. 2019;S0022–5223(19):31581–31588.
    1. Amin S, Pinho-Gomes AC, Taggart DP. Relationship of intraoperative transit time Flowmetry findings to angiographic graft patency at follow-up. Ann Thorac Surg. 2016;101(5):1996–2006. doi: 10.1016/j.athoracsur.2015.10.101.
    1. Di Giammarco G, Marinelli D, Foschi M, Di Mauro M. Intraoperative graft verification in coronary surgery. J Cardiovasc Med (Hagerstown) 2017;18(5):295–304. doi: 10.2459/JCM.0000000000000401.
    1. Di Giammarco G, Pano M, Cirmeni S, et al. Predictive value of intraoperative transit-time flow measurement for short-term graft patency in coronary surgery. J Thorac Cardiovasc Surg. 2006;132(3):468–474. doi: 10.1016/j.jtcvs.2006.02.014.
    1. Mao B, Feng Y, Wang W, Li B, Zhao Z, Zhang X, Jin C, Wu D, Liu Y. The influence of hemodynamics on graft patency prediction model based on support vector machine. J Biomech. 2020;98:109426. doi: 10.1016/j.jbiomech.2019.109426.
    1. Di Giammarco G, Canosa C, Foschi M, et al. Intraoperative graft verification in coronary surgery: increased diagnostic accuracy adding high-resolution epicardial ultrasonography to transit-time flow measurement. Eur J Cardiothorac Surg. 2014;45(3):e41–e45. doi: 10.1093/ejcts/ezt580.
    1. Onorati F, Santarpino G, Lerose MA, Impiombato B, Mastroroberto P, Renzulli A. Intraoperative behavior of arterial grafts in the elderly and the young: a flowmetric systematic analysis. Heart Vessel. 2008;23(5):316–324. doi: 10.1007/s00380-008-1055-8.
    1. Balacumaraswami L, Abu-Omar Y, Selvanayagam J, Pigott D, Taggart DP. The effects of on-pump and off-pump coronary artery bypass grafting on intraoperative graft flow in arterial and venous conduits defined by a flow/pressure ratio. J Thorac Cardiovasc Surg. 2008;135(3):533–539. doi: 10.1016/j.jtcvs.2007.10.027.
    1. Amin S, Madsen PL, Werner RS, Krasopoulos G, Taggart DP. Intraoperative flow profiles of arterial and venous bypass grafts to the left coronary territory. Eur J Cardiothorac Surg. 2019;56(1):64–71. doi: 10.1093/ejcts/ezy473.
    1. Santarpino G, Onorati F, Cristodoro L, Scalas C, Mastroroberto P, Renzulli A. Radial artery graft flowmetry is better than saphenous vein on postero-lateral wall. Int J Cardiol. 2010;143(2):158–164. doi: 10.1016/j.ijcard.2009.02.008.
    1. Shapira N, Schaff HV, Piehler JM, White RD, Still JC, Pluth JR. Cardiovascular effects of protamine sulfate in man. J Thorac Cardiovasc Surg. 1982;84(4):505–514. doi: 10.1016/S0022-5223(19)38978-0.
    1. Belboul A, al-Khaja N. The effect of protamine on the epicardial microflow and the graft flow in open-heart surgery. Perfusion. 1997;12(2):99–106. doi: 10.1177/026765919701200204.
    1. Parker JC, Hernandez LA, Shibamoto T, Coker PJ, Buchanan B. Leukocyte mediation of protamine microvascular damage in dog lungs. Physiologist. 1988;31:A58.
    1. Shanberge JN, Murato M, Quattrociocchi-Longe T, van Neste L. Heparin-protamine complexes in the production of heparin rebound and other complications of extracorporeal bypass procedures. Am J Clin Pathol. 1987;87(2):210–217. doi: 10.1093/ajcp/87.2.210.
    1. Lee SW, Jo JY, Kim WJ, Choi DK, Choi IC. Patient and hemodynamic factors affecting intraoperative graft flow during coronary artery bypass grafting: an observational pilot study. Sci Rep. 2020;10(1):12968. doi: 10.1038/s41598-020-69924-w.

Source: PubMed

3
購読する