The efficacy of oral vitamin D supplements on fusion outcome in patients receiving elective lumbar spinal fusion-a randomized control trial

Ming-Hsien Hu, Yu-Kai Tseng, Yu-Hsuan Chung, Nai-Yuan Wu, Chi-Huan Li, Pei-Yuan Lee, Ming-Hsien Hu, Yu-Kai Tseng, Yu-Hsuan Chung, Nai-Yuan Wu, Chi-Huan Li, Pei-Yuan Lee

Abstract

Background: Previous studies have reported that vitamin D supplement could improve fracture healing, but evidence regarding the role of vitamin D supplements in spinal fusion was limited. Thus, this study aimed to evaluate the effectiveness of oral vitamin D supplements on fusion outcomes in patients undergoing lumbar spinal fusion.

Methods: This randomized, double-blind, parallel-designed, active-control trial included the patients who planned for elective lumbar spinal fusion. Eligible patients were randomly assigned to receive either daily vitamin D3 (cholecalciferol) 800 IU and daily calcium citrate 600 mg (experimental group) or only daily calcium citrate 600 mg (control group). All supplements were given from postoperative day 1 and lasted for 3 months. Primary outcome was postoperative 1-year fusion rate, and secondary outcomes included time to fusion, Oswestry Disability Index (ODI), and visual analogue scale (VAS) for pain.

Results: Among the included 34 patients (21 in the experimental group and 13 in the control group), baseline 25-hydroxyvitamin D (25[OHVitD) level was 26.7 (10.4) ng/ml. Preoperative prevalence of vitamin D deficiency and insufficiency were 23.5% and 47.1%, respectively. Postoperative 1-year fusion rate was not significantly different between the two groups (95.2% vs. 84.6%, P = 0.544). The experimental group had significantly shorter time to fusion (Kaplan-Meier estimated: 169 days vs. 185 days [interquartile range: 88-182 days vs. 176-324 days], log-rank test: P = 0.028), lower postoperative 6-month ODI (P < 0.001), and lower postoperative 6-month VAS (P < 0.001) than the control group. Time to fusion was significantly and negatively correlated with preoperative, postoperative 3-month, and 6-month 25(OH)VitD levels (all P < 0.01).

Conclusion: The patient with vitamin D supplements had shorter time to fusion, better spinal function and less pain after elective spinal fusion. Further research is warranted to identify the patients who can benefit the most from vitamin D supplements and the appropriate dose of vitamin D supplements.

Trial registration: ClinicalTrials.gov, NCT05023122. Registered 20 August 2021. Retrospectively registered, https://ichgcp.net/clinical-trials-registry/NCT03793530 .

Keywords: Cholecalciferols; Fusion; Pseudoarthrosis; Spinal fusion; Vitamin D.

Conflict of interest statement

All authors declare no conflict of interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
A 75-year-old female received lumbar spinal fusion surgery (L4/5). Lateral flexion (A) and extension (B) views of lumber spine radiography at postoperative 6-month showed bridging callus formation (labeled by *) and range of motion in L4/5 of less than five degrees (from 10.5 degrees to 11.6 degrees). Computed tomography (C) at postoperative 6-month showed callus formation (*) between the fused vertebrae
Fig. 2
Fig. 2
Kaplan–Meier analysis showed a significantly shorter time to fusion in the experimental group than in the control group (169 days vs. 185 days [interquartile range: 88–182 days vs. 176–324 days], P = 0.028)

References

    1. Försth P, Ólafsson G, Carlsson T, Frost A, Borgström F, Fritzell P, Öhagen P, Michaëlsson K, Sandén B. A randomized, controlled trial of fusion surgery for lumbar spinal stenosis. N Engl J Med. 2016;374(15):1413–1423. doi: 10.1056/NEJMoa1513721.
    1. Ghogawala Z, Dziura J, Butler WE, Dai F, Terrin N, Magge SN, Coumans JV, Harrington JF, Amin-Hanjani S, Schwartz JS, et al. Laminectomy plus fusion versus laminectomy alone for lumbar spondylolisthesis. N Engl J Med. 2016;374(15):1424–1434. doi: 10.1056/NEJMoa1508788.
    1. Martin BI, Mirza SK, Spina N, Spiker WR, Lawrence B, Brodke DS. Trends in lumbar fusion procedure rates and associated hospital costs for degenerative spinal diseases in the United States, 2004 to 2015. Spine (Phila Pa 1976) 2019;44(5):369–376. doi: 10.1097/BRS.0000000000002822.
    1. Bernstein DN, Brodell D, Li Y, Rubery PT, Mesfin A. Impact of the economic downturn on elective lumbar spine surgery in the United States: a national trend analysis, 2003 to 2013. Global Spine J. 2017;7(3):213–219. doi: 10.1177/2192568217694151.
    1. Grotle M, Smastuen MC, Fjeld O, Grovle L, Helgeland J, Storheim K, Solberg TK, Zwart JA. Lumbar spine surgery across 15 years: trends, complications and reoperations in a longitudinal observational study from Norway. BMJ Open. 2019;9(8):e028743. doi: 10.1136/bmjopen-2018-028743.
    1. Park SB, Chung CK. Strategies of spinal fusion on osteoporotic spine. J Korean Neurosurg Soc. 2011;49(6):317–322. doi: 10.3340/jkns.2011.49.6.317.
    1. Chun DS, Baker KC, Hsu WK. Lumbar pseudarthrosis: a review of current diagnosis and treatment. Neurosurg Focus. 2015;39(4):E10. doi: 10.3171/2015.7.FOCUS15292.
    1. Hofler RC, Swong K, Martin B, Wemhoff M, Jones GA. Risk of pseudoarthrosis after spinal fusion: analysis from the healthcare cost and utilization project. World Neurosurg. 2018;120:e194–e202. doi: 10.1016/j.wneu.2018.08.026.
    1. Kalb S, Mahan MA, Elhadi AM, Dru A, Eales J, Lemos M, Theodore N. Pharmacophysiology of bone and spinal fusion. Spine J. 2013;13(10):1359–1369. doi: 10.1016/j.spinee.2013.06.005.
    1. Bydon M, De la Garza-Ramos R, Abt NB, Gokaslan ZL, Wolinsky JP, Sciubba DM, Bydon A, Witham TF. Impact of smoking on complication and pseudarthrosis rates after single- and 2-level posterolateral fusion of the lumbar spine. Spine (Phila Pa 1976) 2014;39(21):1765–1770. doi: 10.1097/BRS.0000000000000527.
    1. Liu Y, Dash A, Krez A, Kim HJ, Cunningham M, Schwab F, Hughes A, Carlson B, Samuel A, Marty E, et al. Low volumetric bone density is a risk factor for early complications after spine fusion surgery. Osteoporos Int. 2020;31(4):647–654. doi: 10.1007/s00198-019-05245-7.
    1. Stoker GE, Buchowski JM, Bridwell KH, Lenke LG, Riew KD, Zebala LP. Preoperative vitamin D status of adults undergoing surgical spinal fusion. Spine (Phila Pa 1976) 2013;38(6):507–515. doi: 10.1097/BRS.0b013e3182739ad1.
    1. Ravindra VM, Godzik J, Guan J, Dailey AT, Schmidt MH, Bisson EF, Hood RS, Ray WZ. Prevalence of vitamin D deficiency in patients undergoing elective spine surgery: a cross-sectional analysis. World Neurosurg. 2015;83(6):1114–1119. doi: 10.1016/j.wneu.2014.12.031.
    1. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266–281. doi: 10.1056/NEJMra070553.
    1. Ravindra VM, Godzik J, Dailey AT, Schmidt MH, Bisson EF, Hood RS, Cutler A, Ray WZ. Vitamin D levels and 1-year fusion outcomes in elective spine surgery: a prospective observational study. Spine (Phila Pa 1976) 2015;40(19):1536–1541. doi: 10.1097/BRS.0000000000001041.
    1. Kim TH, Yoon JY, Lee BH, Jung HS, Park MS, Park JO, Moon ES, Kim HS, Lee HM, Moon SH. Changes in vitamin D status after surgery in female patients with lumbar spinal stenosis and its clinical significance. Spine (Phila Pa 1976) 2012;37(21):E1326–1330. doi: 10.1097/BRS.0b013e318268ff05.
    1. Kerezoudis P, Rinaldo L, Drazin D, Kallmes D, Krauss W, Hassoon A, Bydon M. Association between vitamin D deficiency and outcomes following spinal fusion surgery: a systematic review. World Neurosurg. 2016;95:71–76. doi: 10.1016/j.wneu.2016.07.074.
    1. Doetsch AM, Faber J, Lynnerup N, Wätjen I, Bliddal H, Danneskiold-Samsøe B. The effect of calcium and vitamin D3 supplementation on the healing of the proximal humerus fracture: a randomized placebo-controlled study. Calcif Tissue Int. 2004;75(3):183–188. doi: 10.1007/s00223-004-0167-0.
    1. Gorter EA, Krijnen P, Schipper IB. Vitamin D status and adult fracture healing. J Clin Orthop Trauma. 2017;8(1):34–37. doi: 10.1016/j.jcot.2016.09.003.
    1. Boonen S, Bischoff-Ferrari HA, Cooper C, Lips P, Ljunggren O, Meunier PJ, Reginster JY. Addressing the musculoskeletal components of fracture risk with calcium and vitamin D: a review of the evidence. Calcif Tissue Int. 2006;78(5):257–270. doi: 10.1007/s00223-005-0009-8.
    1. Mayo BC, Massel DH, Yacob A, Narain AS, Hijji FY, Jenkins NW, Parrish JM, Modi KD, Long WW, Hrynewycz NM, et al. A review of vitamin D in spinal surgery: deficiency screening, treatment, and outcomes. Int J Spine Surg. 2020;14(3):447–454. doi: 10.14444/7059.
    1. Williams AL, Gornet MF, Burkus JK. CT evaluation of lumbar interbody fusion: current concepts. AJNR Am J Neuroradiol. 2005;26(8):2057–2066.
    1. Choudhri TF, Mummaneni PV, Dhall SS, Eck JC, Groff MW, Ghogawala Z, Watters WC, 3rd, Dailey AT, Resnick DK, Sharan A, et al. Guideline update for the performance of fusion procedures for degenerative disease of the lumbar spine. Part 4: radiographic assessment of fusion status. J Neurosurg Spine. 2014;21(1):23–30. doi: 10.3171/2014.4.SPINE14267.
    1. McAfee PC, Boden SD, Brantigan JW, Fraser RD, Kuslich SD, Oxland TR, Panjabi MM, Ray CD, Zdeblick TA. Symposium: a critical discrepancy-a criteria of successful arthrodesis following interbody spinal fusions. Spine (Phila Pa 1976) 2001;26(3):320–334. doi: 10.1097/00007632-200102010-00020.
    1. Gruskay JA, Webb ML, Grauer JN. Methods of evaluating lumbar and cervical fusion. Spine J. 2014;14(3):531–539. doi: 10.1016/j.spinee.2013.07.459.
    1. Fairbank JC, Pynsent PB. The oswestry disability index. Spine (Phila Pa 1976) 2000;25(22):2940–2952. doi: 10.1097/00007632-200011150-00017.
    1. Pilz S, März W, Cashman KD, Kiely ME, Whiting SJ, Holick MF. Rationale and Plan for Vitamin D Food Fortification: A Review and Guidance Paper. Front Endocrinol (Lausanne). 2018;9:373. doi: 10.3389/fendo.2018.00373.
    1. Metzger MF, Kanim LE, Zhao L, Robinson ST, Delamarter RB. The relationship between serum vitamin D levels and spinal fusion success: a quantitative analysis. Spine (Phila Pa 1976) 2015;40(8):E458–468. doi: 10.1097/BRS.0000000000000801.
    1. Waikakul S. Serum 25-hydroxy-calciferol level and failed back surgery syndrome. J Orthop Surg (Hong Kong) 2012;20(1):18–22. doi: 10.1177/230949901202000104.
    1. Xu HW, Shen B, Hu T, Zhao WD, Wu DS, Wang SJ. Preoperative vitamin D status and its effects on short-term clinical outcomes in lumbar spine surgery. J Orthop Sci. 2020;25(5):787–792. doi: 10.1016/j.jos.2019.10.011.
    1. Donnally CJ, 3rd, Sheu JI, Bondar KJ, Mouhanna JN, Li DJ, Butler AJ, Rush AJ, 3rd, Gjolaj JP. Is there a correlation between preoperative or postoperative vitamin D levels with pseudarthrosis, hardware failure, and revisions after lumbar spine fusion? World Neurosurg. 2019;130:e431–e437. doi: 10.1016/j.wneu.2019.06.109.
    1. Mazahery H, von Hurst PR. Factors affecting 25-Hydroxyvitamin D concentration in response to vitamin D supplementation. Nutrients. 2015;7(7):5111–5142. doi: 10.3390/nu7075111.
    1. Žmitek K, Hribar M, Hristov H, Pravst I. Efficiency of Vitamin D Supplementation in Healthy Adults is Associated with Body Mass Index and Baseline Serum 25-Hydroxyvitamin D Level. Nutrients. 2020;12(5):1268. doi: 10.3390/nu12051268.
    1. Bischoff HA, Stahelin HB, Dick W, Akos R, Knecht M, Salis C, Nebiker M, Theiler R, Pfeifer M, Begerow B, et al. Effects of vitamin D and calcium supplementation on falls: a randomized controlled trial. J Bone Miner Res. 2003;18(2):343–351. doi: 10.1359/jbmr.2003.18.2.343.
    1. Institute of Medicine . Dietary reference intakes for calcium and vitamin D. Washington: The National Academies Press; 2011.

Source: PubMed

3
購読する