A protocol for recruiting and analyzing the disease-oriented Russian disc degeneration study (RuDDS) biobank for functional omics studies of lumbar disc degeneration

Olga N Leonova, Elizaveta E Elgaeva, Tatiana S Golubeva, Alexey V Peleganchuk, Aleksandr V Krutko, Yurii S Aulchenko, Yakov A Tsepilov, Olga N Leonova, Elizaveta E Elgaeva, Tatiana S Golubeva, Alexey V Peleganchuk, Aleksandr V Krutko, Yurii S Aulchenko, Yakov A Tsepilov

Abstract

Lumbar intervertebral disc degeneration (DD) disease is one of the main risk factors for low back pain and a leading cause of population absenteeism and disability worldwide. Despite a variety of biological studies, lumbar DD is not yet fully understood, partially because there are only few studies that use systematic and integrative approaches. This urges the need for studies that integrate different omics (including genomics and transcriptomics) measured on samples within a single cohort. This protocol describes a disease-oriented Russian disc degeneration study (RuDDS) biobank recruitment and analyses aimed to facilitate further omics studies of lumbar DD integrating genomic, transcriptomic and glycomic data. A total of 1,100 participants aged over 18 with available lumbar MRI scans, medical histories and biological material (whole blood, plasma and intervertebral disc tissue samples from surgically treated patients) will be enrolled during the three-year period from two Russian clinical centers. Whole blood, plasma and disc tissue specimens will be used for genotyping with genome-wide SNP-arrays, glycome profiling and RNA sequencing, respectively. Omics data will be further used for a genome-wide association study of lumbar DD with in silico functional annotation, analysis of plasma glycome and lumbar DD disease interactions and transcriptomic data analysis including an investigation of differential expression patterns associated with lumbar DD disease. Statistical tests applied in each of the analyses will meet the standard criteria specific to the attributed study field. In a long term, the results of the study will expand fundamental knowledge about lumbar DD development and contribute to the elaboration of novel personalized approaches for disease prediction and therapy. Additionally to the lumbar disc degeneration study, a RuDDS cohort could be used for other genetic studies, as it will have unique omics data. Trial registration number NCT04600544.

Conflict of interest statement

YSA is a founder and co-owner of PolyOmica and PolyKnomics, private organisations that provide services, research, and development in the field of quantitative and statistical genetics and computational genomics. This does not alter our adherence to PLOS ONE policies on sharing data and materials. Other authors declare no conflicts of interest.

Figures

Fig 1. Patient selection.
Fig 1. Patient selection.
Sample size at various time-points of the project. Expected total sample size is 1,100. *Novosibirsk Research Institute of Traumatology and Orthopedics (NRITO) / Priorov National Medical Research Center of Traumatology and Orthopedics (Priorov CITO). **Conservative treatment.

References

    1. Berg AJ, Ahmadje U, Jayanna HH, Trégouët P, Sanville P, Kapoor V. The prevalence of lumbar disc degeneration in symptomatic younger patients: A study of MRI scans. J Clin Orthop Trauma. 2020;11(5):932–6. doi: 10.1016/j.jcot.2020.07.021
    1. Brinjikji W, Luetmer PH, Comstock B, Bresnahan BW, Chen LE, Deyo RA, et al.. Systematic Literature Review of Imaging Features of Spinal Degeneration in Asymptomatic Populations. AJNR Am J Neuroradiol. 2015;36(4):811–6. doi: 10.3174/ajnr.A4173
    1. Kos N, Gradisnik L, Velnar T. A Brief Review of the Degenerative Intervertebral Disc Disease. Med Arch (Sarajevo, Bosnia Herzegovina). 2019;73(6):421–4. doi: 10.5455/medarh.2019.73.421-424
    1. Cheung KMC, Karppinen J, Chan D, Ho DWH, Song YQ, Sham P, et al.. Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine (Phila Pa 1976). 2009;34(9):934–40.
    1. Matsumoto M, Okada E, Toyama Y, Fujiwara H, Momoshima S, Takahata T. Tandem age-related lumbar and cervical intervertebral disc changes in asymptomatic subjects. Eur Spine J. 2013;22(4):708–13. doi: 10.1007/s00586-012-2500-z
    1. Teraguchi M, Yoshimura N, Hashizume H, Muraki S, Yamada H, Oka H, et al.. The association of combination of disc degeneration, end plate signal change, and Schmorl node with low back pain in a large population study: The Wakayama Spine Study. Spine J. 2015;15(4):622–8. doi: 10.1016/j.spinee.2014.11.012
    1. Jensen RK, Jensen TS, Koes B, Hartvigsen J. Prevalence of lumbar spinal stenosis in general and clinical populations: a systematic review and meta-analysis. Eur Spine J. 2020;(0123456789). doi: 10.1007/s00586-020-06339-1
    1. Brinjikji W, Diehn FE, Jarvik JG, Carr CM, Kallmes DF, Murad MH, et al.. MRI findings of disc degeneration are more prevalent in adults with low back pain than in asymptomatic controls: A systematic review and meta-analysis. Am J Neuroradiol. 2015;36(12):2394–9. doi: 10.3174/ajnr.A4498
    1. Oichi T, Taniguchi Y, Oshima Y, Tanaka S, Saito T. Pathomechanism of intervertebral disc degeneration. JOR SPINE. 2020;3(1):1–9. doi: 10.1002/jsp2.1076
    1. Maher C, Underwood M, Buchbinder R. Non-specific low back pain. Lancet. 2017;389(10070):736–47. doi: 10.1016/S0140-6736(16)30970-9
    1. Middendorp M, Vogl TJ, Kollias K, Kafchitsas K, Khan MF, Maataoui A. Association between intervertebral disc degeneration and the Oswestry Disability Index. J Back Musculoskelet Rehabil. 2017;30(4):819–23. doi: 10.3233/BMR-150516
    1. Teraguchi M, Yoshimura N, Hashizume H, Muraki S, Yamada H, Minamide A, et al.. Prevalence and distribution of intervertebral disc degeneration over the entire spine in a population-based cohort: The Wakayama Spine Study. Osteoarthr Cartil. 2014;22(1):104–10. doi: 10.1016/j.joca.2013.10.019
    1. Oh CH, Yoon SH. Whole Spine Disc Degeneration Survey according to the Ages and Sex Using Pfirrmann Disc Degeneration Grades. Korean J Spine. 2018;14(4):148–54.
    1. Sääksjärvi S, Kerttula L, Luoma K, Paajanen H, Waris E. Disc Degeneration of Young Low Back Pain Patients: A Prospective 30-year Follow-up MRI Study. Spine (Phila Pa 1976). 2020;45(19):1341–7. doi: 10.1097/BRS.0000000000003548
    1. Teraguchi M, Yoshimura N, Hashizume H, Yamada H, Oka H, Minamide A, et al.. Progression, incidence, and risk factors for intervertebral disc degeneration in a longitudinal population-based cohort: the Wakayama Spine Study [Internet]. Vol. 25, Osteoarthritis and Cartilage. Elsevier Ltd; 2017. 1122–1131 p. doi: 10.1016/j.joca.2017.01.001
    1. Kadow T, Sowa G, Vo N, Kang JD. Molecular Basis of Intervertebral Disc Degeneration and Herniations: What Are the Important Translational Questions? Clin Orthop Relat Res. 2015;473(6):1903–12. doi: 10.1007/s11999-014-3774-8
    1. Williams FMK, Sambrook PN. Neck and back pain and intervertebral disc degeneration: Role of occupational factors. Best Pract Res Clin Rheumatol. 2011;25(1):69–79. doi: 10.1016/j.berh.2011.01.007
    1. Xiao L, Ni C, Shi J, Wang Z, Wang S, Zhang J, et al.. Analysis of correlation between vertebral endplate change and lumbar disc degeneration. Med Sci Monit. 2017;23:4932–8. doi: 10.12659/msm.904315
    1. Jarman JP, Arpinar VE, Baruah D, Klein AP, Maiman DJ, Tugan Muftuler L. Intervertebral disc height loss demonstrates the threshold of major pathological changes during degeneration. Eur Spine J. 2015;24(9):1944–50. doi: 10.1007/s00586-014-3564-8
    1. Desmoulin GT, Pradhan V, Milner TE. Mechanical Aspects of Intervertebral Disc Injury and Implications on Biomechanics. Spine (Phila Pa 1976). 2020;45(8):E457–64. doi: 10.1097/BRS.0000000000003291
    1. Otluoğlu GD, Konya D, Toktas ZO. The influence of mechanic factors idisc degeneration disease as a determinant for surgical indication. Neurospine. 2020;17(1):215–20. doi: 10.14245/ns.2040044.022
    1. Dragsbæk L, Kjaer P, Hancock M, Jensen TS. An exploratory study of different definitions and thresholds for lumbar disc degeneration assessed by MRI and their associations with low back pain using data from a cohort study of a general population. BMC Musculoskelet Disord. 2020;21(1):1–11. doi: 10.1186/s12891-020-03268-4
    1. Navone S, Marfia G, Giannoni A, Beretta M, Guarnaccia L, Gualtierotti R, et al.. Inflammatory mediators and signalling pathways controlling intervertebral disc degeneration. Histol Histopathol. 2017;32(6):523–42. doi: 10.14670/HH-11-846
    1. Feng C, Liu H, Yang M, Zhang Y, Huang B, Zhou Y. Disc cell senescence in intervertebral disc degeneration: Causes and molecular pathways. Cell Cycle. 2016;15(13):1674–84. doi: 10.1080/15384101.2016.1152433
    1. Chen WK, Yu XH, Yang W, Wang C, He WS, Yan YG, et al.. lncRNAs: novel players in intervertebral disc degeneration and osteoarthritis. Cell Prolif. 2017;50(1):1–12. doi: 10.1111/cpr.12313
    1. Munir S, Rade M, Määttä JH, Freidin MB, Williams FMK. Intervertebral Disc Biology: Genetic Basis of Disc Degeneration. Curr Mol Biol Reports. 2018;4(4):143–50. doi: 10.1007/s40610-018-0101-2
    1. Kawaguchi Y. Genetic background of degenerative disc disease in the lumbar spine. Spine Surg Relat Res. 2018;2(2):98–112. doi: 10.22603/ssrr.2017-0007
    1. Riester SM, Lin Y, Wang W, Cong L, Ali AM, Krauss W, et al.. RNA sequencing identifies gene regulatory networks controlling extracellular matrix synthesis in intervertebral disk tissues. J Orthop Res. 2019;36(5):1356–69.
    1. Kazezian Z, Gawri R, Haglund L, Ouellet J, Mwale F, Tarrant F, et al.. Gene Expression Profiling Identifies Interferon Signalling Molecules and IGFBP3 in Human Degenerative Annulus Fibrosus. Sci Rep. 2015;5(September):1–13. doi: 10.1038/srep15662
    1. Sherafatian M, Abdollahpour HR, Ghaffarpasand F, Yaghmaei S, Azadegan M, Heidari M. MicroRNA Expression Profiles, Target Genes, and Pathways in Intervertebral Disk Degeneration: A Meta-Analysis of 3 Microarray Studies. World Neurosurg. 2019;126:389–97. doi: 10.1016/j.wneu.2019.03.120
    1. Sarath Babu N, Krishnan S, Brahmendra Swamy C V., Venkata Subbaiah GP, Gurava Reddy A V., Idris MM. Quantitative proteomic analysis of normal and degenerated human intervertebral disc. Spine J. 2016;16(8):989–1000. doi: 10.1016/j.spinee.2016.03.051
    1. Ye D, Liang W, Dai L, Zhou L, Yao Y, Zhong X, et al.. Comparative and quantitative proteomic analysis of normal and degenerated human annulus fibrosus cells. Clin Exp Pharmacol Physiol. 2015;42(5):530–6. doi: 10.1111/1440-1681.12386
    1. Yee A, Lam MPY, Tam V, Chan WCW, Chu IK, Cheah KSE, et al.. Fibrotic-like changes in degenerate human intervertebral discs revealed by quantitative proteomic analysis. Osteoarthr Cartil. 2016;24(3):503–13. doi: 10.1016/j.joca.2015.09.020
    1. Eskola PJ, Lemmelä S, Kjaer P, Solovieva S, Männikkö M, Tommerup N, et al.. Genetic Association Studies in Lumbar Disc Degeneration: A Systematic Review. PLoS One. 2012;7(11). doi: 10.1371/journal.pone.0049995
    1. Williams FMK, Bansal AT, Van Meurs JB, Bell JT, Meulenbelt I, Suri P, et al.. Novel genetic variants associated with lumbar disc degeneration in northern Europeans: A meta-analysis of 4600 subjects. Ann Rheum Dis. 2013;72(7):1141–8. doi: 10.1136/annrheumdis-2012-201551
    1. Song YQ, Karasugi T, Cheung KMC, Chiba K, Ho DWH, Miyake A, et al.. Lumbar disc degeneration is linked to a carbohydrate sulfotransferase 3 variant. J Clin Invest. 2013;123(11):4909–17. doi: 10.1172/JCI69277
    1. Zhang YG, Guo X, Sun Z, Jia G, Xu P, Wang S. Gene expression profiles of disc tissues and peripheral blood mononuclear cells from patients with degenerative discs. J Bone Miner Metab. 2010;28(2):209–19. doi: 10.1007/s00774-009-0120-4
    1. Wang Y, Dai G, Wang L, Shang F, Jiang L, Li S, et al.. Identification of Key Genes Potentially Related to Intervertebral Disk Degeneration by Microarray Analysis. Genet Test Mol Biomarkers. 2019;23(9):610–7. doi: 10.1089/gtmb.2019.0043
    1. Pacholczyk-Sienicka B, Radek M, Radek A, Jankowski S. Characterization of metabolites determined by means of 1H HR MAS NMR in intervertebral disc degeneration. Magn Reson Mater Physics, Biol Med. 2015;28(2):173–83. doi: 10.1007/s10334-014-0457-0
    1. Xu C, Luo S, Wei L, Wu H, Gu W, Zhou W, et al.. Integrated transcriptome and proteome analyses identify novel regulatory network of nucleus pulposus cells in intervertebral disc degeneration. BMC Med Genomics. 2021;14(1):1–12. doi: 10.1186/s12920-020-00855-1
    1. Battie MC, Levalahti E, Videman T, Burton K, Kaprio J. Heritability of lumbar flexibility and the role of disc degeneration and body weight. J Appl Physiol (1985). 2008;104(2):379–85. doi: 10.1152/japplphysiol.01009.2007
    1. Pfirrmann CWA, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic Resonance Classification of Lumbar Intervertebral Disc Degeneration. Spine (Phila Pa 1976). 2001;26(17):1873–8. doi: 10.1097/00007632-200109010-00011
    1. Chen Y, Bao J, Yan Q, Wu C, Yang H, Zou J. Distribution of Modic changes in patients with low back pain and its related factors. Eur J Med Res. 2019;24(1):1–9. doi: 10.1186/s40001-018-0359-0
    1. Rajasekaran S, Venkatadass K, Naresh Babu J, Ganesh K, Shetty AP. Pharmacological enhancement of disc diffusion and differentiation of healthy, ageing and degenerated discs: Results from in-vivo serial post-contrast MRI studies in 365 human lumbar discs. Eur Spine J. 2008;17(5):626–43. doi: 10.1007/s00586-008-0645-6
    1. Sambrook PN, MacGregor AJ, Spector TD. Genetic influences on cervical and lumbar disc degeneration: A magnetic resonance imaging study in twins. Arthritis Rheum. 1999;42(2):366–72. doi: 10.1002/1529-0131(199902)42:2<366::AID-ANR20>;2-6
    1. Collins S, Moore R, McQuay H. The visual analogue pain intensity scale: what is moderate pain in millimetres? Pain. 1997;72(1–2):95–7. doi: 10.1016/s0304-3959(97)00005-5
    1. Fairbank J.C. Pynsent PB. The Oswestry Disability Index. Spine (Phila Pa 1976). 2000;Nov 15;25(22):2940–52. doi: 10.1097/00007632-200011150-00017
    1. Cherepanov EA. Russian version of the oswestry disability index: cross-cultural adaptation and validity. Hir pozvonočnika (Spine Surgery). 2009;0(3):093–8.
    1. Yan L, Ma C, Wang D, Hu Q, Qin M, Conroy JM, et al.. OSAT: A tool for sample-to-batch allocations in genomics experiments. BMC Genomics. 2012;13(1):1. doi: 10.1186/1471-2164-13-689
    1. Trbojević Akmačić I, Ugrina I, Štambuk J, Gudelj I, Vučković F, Lauc G, et al.. High-throughput glycomics: Optimization of sample preparation. Biochem. 2015;80(7):934–42. doi: 10.1134/S0006297915070123
    1. Jiang L, Zheng Z, Qi T, Kemper KE, Wray NR, Visscher PM, et al.. A resource-efficient tool for mixed model association analysis of large-scale data. Nat Genet. 2019. Dec 25;51(12):1749–55. doi: 10.1038/s41588-019-0530-8
    1. Willer CJ, Li Y, Abecasis GR, Overall P. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26(17):2190–1. doi: 10.1093/bioinformatics/btq340
    1. Yang J, Ferreira T, Morris A, Medland S, McCarthy M, Hirschhorn J, et al.. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat Genet. 2012;44(4):369–75. doi: 10.1038/ng.2213
    1. Sham PC, Purcell SM. Statistical power and significance testing in large-scale genetic studies. Nat Rev Genet. 2014. May;15(5):335–46. doi: 10.1038/nrg3706 .
    1. Pers TH, Karjalainen JM, Chan Y, Westra HJ, Wood AR, Yang J, et al.. Biological interpretation of genome-wide association studies using predicted gene functions. Nat Commun. 2015. doi: 10.1038/ncomms6890
    1. Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nat Commun. 2017. Dec;8(1):1826. doi: 10.1038/s41467-017-01261-5
    1. Momozawa Y, Dmitrieva J, Théâtre E, Deffontaine V, Rahmouni S, Charloteaux B, et al.. IBD risk loci are enriched in multigenic regulatory modules encompassing putative causative genes. Nat Commun. 2018;9(1):1–18. doi: 10.1038/s41467-017-02088-w
    1. Zheng J, Haberland V, Baird D, Walker V, Haycock PC, Hurle MR, et al.. Phenome-wide Mendelian randomization mapping the influence of the plasma proteome on complex diseases. Nat Genet. 2020;52(10):1122–31. doi: 10.1038/s41588-020-0682-6
    1. Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al.. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet. 2016;48(5):481–7. doi: 10.1038/ng.3538
    1. Ikuno A, Akeda K, Takebayashi SI, Shimaoka M, Okumura K, Sudo A. Genome-wide analysis of DNA methylation profile identifies differentially methylated loci associated with human intervertebral disc degeneration. PLoS One. 2019;14(9):1–20. doi: 10.1371/journal.pone.0222188
    1. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al.. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. doi: 10.1093/bioinformatics/bts635
    1. Robinson MD, McCarthy DJ, Smyth GK. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2009;26(1):139–40. doi: 10.1093/bioinformatics/btp616
    1. Benjamini, Yoav; Hochberg Y. Controlling the False Discovery Rate—a Practical and Powerful Approach to Multiple Testing. J R Stat Soc Ser B. 1995;57(1):289–300. doi: 10.2307/2346101
    1. Parisien M, Khoury S, Chabot-Doré AJ, Sotocinal SG, Slade GD, Smith SB, et al.. Effect of Human Genetic Variability on Gene Expression in Dorsal Root Ganglia and Association with Pain Phenotypes. Cell Rep. 2017. doi: 10.1016/j.celrep.2017.05.018
    1. Krutko A V., Sanginov AJ, Baykov ES. Predictors of Treatment Success Following Limited Discectomy With Annular Closure for Lumbar Disc Herniation. Int J Spine Surg. 2020;14(1):38–45. doi: 10.14444/7005
    1. Leonova O, Baykov E, Sanginov A, Krutko A. Cervical Disc Degeneration and Vertebral Endplate Defects After the Fused Operation. Spine (Phila Pa 1976). 2021. Sep 15;46(18):1234–40. doi: 10.1097/BRS.0000000000004007
    1. Freidin MB, Tsepilov YA, Palmer M, Karssen LC, Suri P, Aulchenko YS, et al.. Insight into the genetic architecture of back pain and its risk factors from a study of 509,000 individuals. Loos RJF, editor. Pain. 2019. Jun 6;160(6):1361–73. doi: 10.1097/j.pain.0000000000001514
    1. Elgaeva EE, Tsepilov Y, Freidin MB, Williams FMK, Aulchenko Y, Suri P. ISSLS Prize in Clinical Science 2020. Examining causal effects of body mass index on back pain: a Mendelian randomization study. Eur Spine J. 2020. Apr 3;29(4):686–91. doi: 10.1007/s00586-019-06224-6
    1. Freidin MB, Tsepilov YA, Stanaway IB, Meng W, Hayward C, Smith BH, et al.. Sex- and age-specific genetic analysis of chronic back pain. Pain. 2021. Sep 30;162(4):1176–87. doi: 10.1097/j.pain.0000000000002100
    1. Tsepilov YA, Sharapov SZ, Zaytseva OO, Krumsek J, Prehn C, Adamski J, et al.. A network-based conditional genetic association analysis of the human metabolome. Gigascience. 2018;7(12):1–11. doi: 10.1093/gigascience/giy137
    1. Sharapov SZ, Tsepilov YA, Klaric L, Mangino M, Thareja G, Shadrina AS, et al.. Defining the genetic control of human blood plasma N-glycome using genome-wide association study. Hum Mol Genet. 2019;28(12):2062–77. doi: 10.1093/hmg/ddz054
    1. Riyazi N, Meulenbelt I, Kroon HM, Ronday KH, Hellio Le Graverand MP, Rosendaal FR, et al.. Evidence for familial aggregation of hand, hip, and spine but not knee osteoarthritis in siblings with multiple joint involvement: The GARP study. Ann Rheum Dis. 2005;64(3):438–43. doi: 10.1136/ard.2004.024661
    1. Yau MS, Demissie S, Zhou Y, Anderson DE, Amanda L. Heritability of Thoracic Spine Curvature and Genetic Correlations With Other Spine Traits: The Framingham Study. J Bone Min Res. 2016;31(12):2077–84. doi: 10.1002/jbmr.2925
    1. Allegri M, De Gregori M, Minella CE, Klersy C, Wang W, Sim M, et al.. Omics’ biomarkers associated with chronic low back pain: Protocol of a retrospective longitudinal study. BMJ Open. 2016;6(10):1–8. doi: 10.1136/bmjopen-2016-012070
    1. Urrutia J, Besa P, Campos M, Cikutovic P, Cabezon M, Molina M, et al.. The Pfirrmann classification of lumbar intervertebral disc degeneration: an independent inter- and intra-observer agreement assessment. Eur Spine J. 2016;25(9):2728–33. doi: 10.1007/s00586-016-4438-z

Source: PubMed

3
購読する