Stereotactic Body Radiotherapy (SBRT) for liver metastasis - clinical outcomes from the international multi-institutional RSSearch® Patient Registry

Anand Mahadevan, Oliver Blanck, Rachelle Lanciano, Anuj Peddada, Srinath Sundararaman, David D'Ambrosio, Sanjeev Sharma, David Perry, James Kolker, Joanne Davis, Anand Mahadevan, Oliver Blanck, Rachelle Lanciano, Anuj Peddada, Srinath Sundararaman, David D'Ambrosio, Sanjeev Sharma, David Perry, James Kolker, Joanne Davis

Abstract

Background: Stereotactic body radiotherapy (SBRT) is an emerging treatment option for liver metastases in patients unsuitable for surgery. We investigated factors associated with clinical outcomes for liver metastases treated with SBRT from a multi-center, international patient registry.

Methods: Patients with liver metastases treated with SBRT were identified in the RSSearch® Patient Registry. Patient, tumor and treatment characteristics associated with treatment outcomes were assessed. Dose fractionations were normalized to BED10. Overall survival (OS) and local control (LC) were evaluated using Kaplan Meier analysis and log-rank test.

Results: The study included 427 patients with 568 liver metastases from 25 academic and community-based centers. Median age was 67 years (31-91 years). Colorectal adenocarcinoma (CRC) was the most common primary cancer. 73% of patients received prior chemotherapy. Median tumor volume was 40 cm3 (1.6-877 cm3), median SBRT dose was 45 Gy (12-60 Gy) delivered in a median of 3 fractions [1-5]. At a median follow-up of 14 months (1-91 months) the median overall survival (OS) was 22 months. Median OS was greater for patients with CRC (27 mo), breast (21 mo) and gynecological (25 mo) metastases compared to lung (10 mo), other gastro-intestinal (GI) (18 mo) and pancreatic (6 mo) primaries (p < 0.0001). Smaller tumor volumes (< 40 cm3) correlated with improved OS (25 months vs 15 months p = 0.0014). BED10 ≥ 100 Gy was also associated with improved OS (27 months vs 15 months p < 0.0001). Local control (LC) was evaluable in 430 liver metastases from 324 patients. Two-year LC rates was better for BED10 ≥ 100 Gy (77.2% vs 59.6%) and the median LC was better for tumors < 40 cm3 (52 vs 39 months). There was no difference in LC based on histology of the primary tumor.

Conclusions: In a large, multi-institutional series of patients with liver metastasis treated with SBRT, reasonable LC and OS was observed. OS and LC depended on dose and tumor volume, while OS varied by primary tumor. Future prospective trials on the role of SBRT for liver metastasis from different primaries in the setting of multidisciplinary management including systemic therapy, is warranted.

Trial registration: Clinicaltrials.gov: NCT01885299 .

Keywords: Liver metastasis; RSSearch registry; SBRT.

Conflict of interest statement

Ethics approval and consent to participate

All participating institutions were required to have Institutional Review Board/Ethics Committee approval prior to entering patients into the registry.

All subjects were required to sign an informed consent specific for entry into the registry.

Consent for publication

Patient informed consent included consent for publication. All investigators provided consent for publication.

Competing interests

The authors do not have competing interest in the publication of this cumulative data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Overall survival (top panel) and local control (bottom panel) of patients with liver metastases treated with SBRT
Fig. 2
Fig. 2
Overall Survival (top panel) and local control (bottom panel) of liver metastases treated with SBRT shown by histology
Fig. 3
Fig. 3
Overall survival (top panel) and local control (bottom panel) of liver metastases treated with SBRT by target volume
Fig. 4
Fig. 4
Overall survival (top panel) and local control (bottom panel) of liver metastases by dose
Fig. 5
Fig. 5
Overall survival and local control of patients with liver metastases volumes 3 (a), (b) and ≥ 40 cm3 (c) and (d) by dose (≥ 100 BED vs. < 100 BED). Overall survival and local control are significantly better for tumors ≥ 40 cm3 treated with BED ≥ 100 compared to BED < 100 (panels C, (d)

References

    1. Costi R, Leonardi F, Zanoni D, Violi V, Roncoroni L. Palliative care and end-stage colorectal cancer management: the surgeon meets the oncologist. World J Gastroenterol. 2014;20(24):7602–7621. doi: 10.3748/wjg.v20.i24.7602.
    1. Null K, Null R. Liver Metastases. Curr Treat Options Gastroenterol. 1999;2(1):49–57. doi: 10.1007/s11938-999-0018-1.
    1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30. doi: 10.3322/caac.21387.
    1. Weiss L, Grundmann E, Torhorst J, Hartveit F, Moberg I, Eder M, et al. Haematogenous metastatic patterns in colonic carcinoma: an analysis of 1541 necropsies. J Pathol. 1986;150(3):195–203. doi: 10.1002/path.1711500308.
    1. Hellman S, Weichselbaum RR. Oligometastases. J Clin Oncol Off J Am Soc Clin Oncol. 1995;13(1):8–10. doi: 10.1200/JCO.1995.13.1.8.
    1. Nordlinger B, Sorbye H, Glimelius B, Poston GJ, Schlag PM, Rougier P, et al. Perioperative FOLFOX4 chemotherapy and surgery versus surgery alone for resectable liver metastases from colorectal cancer (EORTC 40983): long-term results of a randomised, controlled, phase 3 trial. Lancet Oncol. 2013;14(12):1208–1215. doi: 10.1016/S1470-2045(13)70447-9.
    1. Smith JJ, ‘Angelica D MI. Surgical management of hepatic metastases of colorectal cancer. Hematol Oncol Clin North Am 201529(1):61–84.
    1. Tomlinson JS, Jarnagin WR, DeMatteo RP, Fong Y, Kornprat P, Gonen M, et al. Actual 10-year survival after resection of colorectal liver metastases defines cure. J Clin Oncol Off J Am Soc Clin Oncol. 2007;25(29):4575–4580. doi: 10.1200/JCO.2007.11.0833.
    1. Bekaii-Saab T, Wu C. Seeing the forest through the trees: a systematic review of the safety and efficacy of combination chemotherapies used in the treatment of metastatic colorectal cancer. Crit Rev Oncol Hematol. 2014;91(1):9–34. doi: 10.1016/j.critrevonc.2014.01.001.
    1. Adam R, Delvart V, Pascal G, Valeanu A, Castaing D, Azoulay D, et al. Rescue surgery for unresectable colorectal liver metastases downstaged by chemotherapy: a model to predict long-term survival. Ann Surg. 2004;240(4):644–658.
    1. Hellman S, Weichselbaum RR. Importance of local control in an era of systemic therapy. Nat Clin Pract Oncol. 2005;2(2):60–61. doi: 10.1038/ncponc0075.
    1. Borgelt BB, Gelber R, Brady LW, Griffin T, Hendrickson FR. The palliation of hepatic metastases: results of the radiation therapy oncology group pilot study. Int J Radiat Oncol Biol Phys. 1981;7(5):587–591. doi: 10.1016/0360-3016(81)90370-9.
    1. Soliman H, Ringash J, Jiang H, Singh K, Kim J, Dinniwell R, et al. Phase II trial of palliative radiotherapy for hepatocellular carcinoma and liver metastases. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(31):3980–3986. doi: 10.1200/JCO.2013.49.9202.
    1. Pan CC, Kavanagh BD, Dawson LA, Li XA, Das SK, Miften M, et al. Radiation-associated liver injury. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S94–100. doi: 10.1016/j.ijrobp.2009.06.092.
    1. Lawrence TS, Robertson JM, Anscher MS, Jirtle RL, Ensminger WD, Fajardo LF. Hepatic toxicity resulting from cancer treatment. Int J Radiat Oncol Biol Phys. 1995;31(5):1237–1248. doi: 10.1016/0360-3016(94)00418-K.
    1. Dawson LA, Normolle D, Balter JM, McGinn CJ, Lawrence TS, Ten Haken RK. Analysis of radiation-induced liver disease using the Lyman NTCP model. Int J Radiat Oncol Biol Phys. 2002;53(4):810–821. doi: 10.1016/S0360-3016(02)02846-8.
    1. Kini VR, Vedam SS, Keall PJ, Patil S, Chen C, Mohan R. Patient training in respiratory-gated radiotherapy. Med Dosim off J am Assoc. Med Dosim. 2003;28(1):7–11. doi: 10.1016/S0958-3947(02)00136-X.
    1. Brock KK, McShan DL, Ten Haken RK, Hollister SJ, Dawson LA, Balter JM. Inclusion of organ deformation in dose calculations. Med Phys. 2003;30(3):290–295. doi: 10.1118/1.1539039.
    1. Dawson LA, Balter JM. Interventions to reduce organ motion effects in radiation delivery. Semin Radiat Oncol. 2004;14(1):76–80. doi: 10.1053/j.semradonc.2003.10.010.
    1. Dawson LA, Brock KK, Kazanjian S, Fitch D, McGinn CJ, Lawrence TS, et al. The reproducibility of organ position using active breathing control (ABC) during liver radiotherapy. Int J Radiat Oncol Biol Phys. 2001;51(5):1410–1421. doi: 10.1016/S0360-3016(01)02653-0.
    1. Hara W, Soltys SG, Gibbs IC. CyberKnife robotic radiosurgery system for tumor treatment. Expert Rev Anticancer Ther. 2007;7(11):1507–1515. doi: 10.1586/14737140.7.11.1507.
    1. Rosu M, Dawson LA, Balter JM, McShan DL, Lawrence TS, Ten Haken RK. Alterations in normal liver doses due to organ motion. Int J Radiat Oncol Biol Phys. 2003;57(5):1472–1479. doi: 10.1016/j.ijrobp.2003.08.025.
    1. Goodman KA, Wiegner EA, Maturen KE, Zhang Z, Mo Q, Yang G, et al. Dose-escalation study of single-fraction stereotactic body radiotherapy for liver malignancies. Int J Radiat Oncol Biol Phys. 2010;78(2):486–493. doi: 10.1016/j.ijrobp.2009.08.020.
    1. Blomgren H, Lax I, Näslund I, Svanström R. Stereotactic high dose fraction radiation therapy of extracranial tumors using an accelerator. Clinical experience of the first thirty-one patients. Acta Oncol Stockh Swed. 1995;34(6):861–870. doi: 10.3109/02841869509127197.
    1. Herfarth KK, Debus J, Lohr F, Bahner ML, Rhein B, Fritz P, et al. Stereotactic single-dose radiation therapy of liver tumors: results of a phase I/II trial. J Clin Oncol Off J Am Soc Clin Oncol. 2001;19(1):164–170. doi: 10.1200/JCO.2001.19.1.164.
    1. Hoyer M, Roed H, Traberg Hansen A, Ohlhuis L, Petersen J, Nellemann H, et al. Phase II study on stereotactic body radiotherapy of colorectal metastases. Acta Oncol Stockh Swed. 2006;45(7):823–830. doi: 10.1080/02841860600904854.
    1. Méndez Romero A, Wunderink W, Hussain SM, De Pooter JA, Heijmen BJM, Nowak PCJM, et al. Stereotactic body radiation therapy for primary and metastatic liver tumors: a single institution phase i-ii study. Acta Oncol Stockh Swed. 2006;45(7):831–837. doi: 10.1080/02841860600897934.
    1. Schefter TE, Kavanagh BD, Timmerman RD, Cardenes HR, Baron A, Gaspar LE. A phase I trial of stereotactic body radiation therapy (SBRT) for liver metastases. Int J Radiat Oncol Biol Phys. 2005;62(5):1371–1378. doi: 10.1016/j.ijrobp.2005.01.002.
    1. Rusthoven KE, Kavanagh BD, Cardenes H, Stieber VW, Burri SH, Feigenberg SJ, et al. Multi-institutional phase I/II trial of stereotactic body radiation therapy for liver metastases. J Clin Oncol. 2009;27(10):1572–1578. doi: 10.1200/JCO.2008.19.6329.
    1. Lee MT, Kim JJ, Dinniwell R, Brierley J, Lockwood G, Wong R, et al. Phase I study of individualized stereotactic body radiotherapy of liver metastases. J Clin Oncol. 2009;27(10):1585–1591. doi: 10.1200/JCO.2008.20.0600.
    1. Rule W, Timmerman R, Tong L, Abdulrahman R, Meyer J, Boike T, et al. Phase I dose-escalation study of stereotactic body radiotherapy in patients with hepatic metastases. Ann Surg Oncol. 2011;18(4):1081–1087. doi: 10.1245/s10434-010-1405-5.
    1. Meyer JJ, Foster RD, Lev-Cohain N, Yokoo T, Dong Y, Schwarz RE, et al. A phase I dose-escalation trial of single-fraction stereotactic radiation therapy for liver metastases. Ann Surg Oncol. 2016;23(1):218–224. doi: 10.1245/s10434-015-4579-z.
    1. Davis JN, Medbery C, Sharma S, Perry D, Pablo J, D’Ambrosio DJ, et al. Stereotactic body radiotherapy for early-stage non-small cell lung cancer: clinical outcomes from a National Patient Registry. J Radiat Oncol. 2015;4(1):55–63. doi: 10.1007/s13566-014-0177-0.
    1. Davis JN, Medbery C, Sharma S, Pablo J, Kimsey F, Perry D, et al. Stereotactic body radiotherapy for centrally located early-stage non-small cell lung cancer or lung metastases from the RSSearch(®) patient registry. Radiat Oncol Lond Engl. 2015;10:113. doi: 10.1186/s13014-015-0417-5.
    1. Ricco A, Davis J, Rate W, Yang J, Perry D, Pablo J, et al. Lung metastases treated with stereotactic body radiotherapy: the RSSearch® patient Registry’s experience. Radiat Oncol Lond Engl. 2017;12(1):35. doi: 10.1186/s13014-017-0773-4.
    1. Davis JN, Medbery C, Sharma S, Danish A, Mahadevan A. The RSSearch™ registry: patterns of care and outcomes research on patients treated with stereotactic radiosurgery and stereotactic body radiotherapy. Radiat Oncol Lond Engl. 2013;8:275. doi: 10.1186/1748-717X-8-275.
    1. Katz AW, Carey-Sampson M, Muhs AG, Milano MT, Schell MC, Okunieff P. Hypofractionated stereotactic body radiation therapy (SBRT) for limited hepatic metastases. Int J Radiat Oncol. 2007;67(3):793–798. doi: 10.1016/j.ijrobp.2006.10.025.
    1. Ambrosino G, Polistina F, Costantin G, Francescon P, Guglielmi R, Zanco P, et al. Image-guided robotic stereotactic radiosurgery for unresectable liver metastases: preliminary results. Anticancer Res. 2009;29(8):3381–3384.
    1. Scorsetti M, Arcangeli S, Tozzi A, Comito T, Alongi F, Navarria P, et al. Is stereotactic body radiation therapy an attractive option for unresectable liver metastases? A preliminary report from a phase 2 trial. Int J Radiat Oncol Biol Phys. 2013;86(2):336–342. doi: 10.1016/j.ijrobp.2012.12.021.
    1. Chang DT, Swaminath A, Kozak M, Weintraub J, Koong AC, Kim J, et al. Stereotactic body radiotherapy for colorectal liver metastases: a pooled analysis. Cancer. 2011;117(17):4060–4069. doi: 10.1002/cncr.25997.
    1. Lee MT, Kim JJ, Dinniwell R, Brierley J, Lockwood G, Wong R, et al. Phase I study of individualized stereotactic body radiotherapy of liver metastases. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27(10):1585–1591. doi: 10.1200/JCO.2008.20.0600.
    1. Katsoulakis E, Riaz N, Cannon DM, Goodman K, Spratt DE, Lovelock M, et al. Image-guided radiation therapy for liver tumors: gastrointestinal histology matters. Am J Clin Oncol. 2014;37(6):561–567. doi: 10.1097/COC.0b013e318282a86b.
    1. Klement RJ, Guckenberger M, Alheid H, Allgäuer M, Becker G, Blanck O, et al. Stereotactic body radiotherapy for oligo-metastatic liver disease - influence of pre-treatment chemotherapy and histology on local tumor control. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2017;123(2):227–233. doi: 10.1016/j.radonc.2017.01.013.
    1. Dieterich S, Gibbs IC. The CyberKnife in clinical use: current roles, future expectations. Front Radiat Ther Oncol. 2011;43:181–194. doi: 10.1159/000322423.
    1. Jung J, Song SY, Yoon SM, Kwak J, Yoon K, Choi W, et al. Verification of accuracy of CyberKnife tumor-tracking radiation therapy using patient-specific lung phantoms. Int J Radiat Oncol Biol Phys. 2015;92(4):745–753. doi: 10.1016/j.ijrobp.2015.02.055.
    1. Chan M, Grehn M, Cremers F, Siebert F-A, Wurster S, Huttenlocher S, et al. Dosimetric implications of residual tracking errors during robotic SBRT of liver metastases. Int J Radiat Oncol Biol Phys. 2017;97(4):839–848. doi: 10.1016/j.ijrobp.2016.11.041.
    1. Rossi L, Breedveld S, Aluwini S, Noncoplanar Beam HB. Angle class solutions to replace time-consuming patient-specific beam angle optimization in robotic prostate stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys. 2015;92(4):762–770. doi: 10.1016/j.ijrobp.2015.03.013.
    1. Colvill E, Booth J, Nill S, Fast M, Bedford J, Oelfke U, et al. A dosimetric comparison of real-time adaptive and non-adaptive radiotherapy: a multi-institutional study encompassing robotic, gimbaled, multileaf collimator and couch tracking. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2016;119(1):159–165. doi: 10.1016/j.radonc.2016.03.006.

Source: PubMed

3
購読する