Influence of erythropoietin on cognitive performance during experimental hypoglycemia in patients with type 1 diabetes mellitus: a randomized cross-over trial

Peter Lommer Kristensen, Ulrik Pedersen-Bjergaard, Troels Wesenberg Kjær, Niels Vidiendal Olsen, Flemming Dela, Jens Juul Holst, Jens Faber, Lise Tarnow, Birger Thorsteinsson, Peter Lommer Kristensen, Ulrik Pedersen-Bjergaard, Troels Wesenberg Kjær, Niels Vidiendal Olsen, Flemming Dela, Jens Juul Holst, Jens Faber, Lise Tarnow, Birger Thorsteinsson

Abstract

Introduction: The incidence of severe hypoglycemia in type 1 diabetes has not decreased over the past decades. New treatment modalities minimizing the risk of hypoglycemic episodes and attenuating hypoglycemic cognitive dysfunction are needed. We studied if treatment with the neuroprotective hormone erythropoietin (EPO) enhances cognitive function during hypoglycemia.

Materials and methods: Eleven patients with type 1 diabetes, hypoglycemia unawareness and recurrent severe hypoglycemia completed the study. In a double-blind, randomized, balanced, cross-over study using clamped hypoglycemia they were treated with 40,000 IU of EPO or placebo administered intravenously six days before the two experiments. Cognitive function (primary endpoint), hypoglycemic symptoms, and counter-regulatory hormonal response were recorded.

Results: Compared with placebo, EPO treatment was associated with a significant reduction in errors in the most complex reaction time task (-4.7 (-8.1 to -1.3), p = 0.01) and a less reaction time prolongation (-66 (-117 to -16) msec, p = 0.02). EPO treatment did not change performance in other measures of cognition. Hypoglycemic symptoms, EEG-changes, and counter-regulatory hormone concentrations did not differ between EPO and placebo treatment.

Conclusion: In patients with type 1 diabetes and hypoglycemia unawareness, treatment with EPO is associated with a beneficial effect on cognitive function in a complex reaction time task assessing sustained attention/working memory. Hypoglycemic symptoms and hormonal responses were not changed by EPO treatment.

Trial registration: ClinicalTrials.gov NCT00615368.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. The Consort diagram.
Figure 1. The Consort diagram.

References

    1. Banck-Petersen P, Larsen T, Pedersen-Bjergaard U, Bie-Olsen L, Høi-Hansen T, et al. (2007) Concerns about hypoglycaemia and late complications in patients with insulin-treated diabetes. European Diabetes Nursing 4: 113–118.
    1. Jorgensen HV, Pedersen-Bjergaard U, Rasmussen AK, Borch-Johnsen K (2003) The impact of severe hypoglycemia and impaired awareness of hypoglycemia on relatives of patients with type 1 diabetes. Diabetes Care 26: 1106–1109.
    1. Cryer PE (1999) Hypoglycemia is the limiting factor in the management of diabetes. Diabetes Metab Res Rev 15: 42–46.
    1. Pramming S, Thorsteinsson B, Bendtson I, Binder C (1991) Symptomatic hypoglycaemia in 411 type 1 diabetic patients. Diabet Med 8: 217–222.
    1. ter Braak EW, Appelman AM, van de LM, Stolk RP, van Haeften TW, et al. (2000) Clinical characteristics of type 1 diabetic patients with and without severe hypoglycemia. Diabetes Care 23: 1467–1471.
    1. Pedersen-Bjergaard U, Pramming S, Heller SR, Wallace TM, Rasmussen AK, et al. (2004) Severe hypoglycaemia in 1076 adult patients with type 1 diabetes: influence of risk markers and selection. Diabetes Metab Res Rev 20: 479–486.
    1. UK Hypoglycaemia Study Group (2007) Risk of hypoglycaemia in types 1 and 2 diabetes: effects of treatment modalities and their duration. Diabetologia 50: 1140–1147.
    1. Hasselblatt M, Ehrenreich H, Siren AL (2006) The brain erythropoietin system and its potential for therapeutic exploitation in brain disease. J Neurosurg Anesthesiol 18: 132–138.
    1. Siren AL, Knerlich F, Poser W, Gleiter CH, Bruck W, et al. (2001) Erythropoietin and erythropoietin receptor in human ischemic/hypoxic brain. Acta Neuropathol (Berl) 101: 271–276.
    1. Springborg JB, Sonne B, Frederiksen HJ, Foldager N, Poulsgaard L, et al. (2003) Erythropoietin in the cerebrospinal fluid of patients with aneurysmal subarachnoid haemorrhage originates from the brain. Brain Res 984: 143–148.
    1. Yamaji R, Okada T, Moriya M, Naito M, Tsuruo T, et al. (1996) Brain capillary endothelial cells express two forms of erythropoietin receptor mRNA. Eur J Biochem 239: 494–500.
    1. Xenocostas A, Cheung WK, Farrell F, Zakszewski C, Kelley M, et al. (2005) The pharmacokinetics of erythropoietin in the cerebrospinal fluid after intravenous administration of recombinant human erythropoietin. Eur J Clin Pharmacol 61: 189–195.
    1. Ghosal J, Chakraborty M, Biswas T, Ganguly CK, Datta AG (1987) Effect of erythropoietin on the glucose transport of rat erythrocytes and bone marrow cells. Biochem Med Metab Biol 38: 134–141.
    1. Yamamoto M, Koshimura K, Kawaguchi M, Sohmiya M, Murakami Y, et al. (2000) Stimulating effect of erythropoietin on the release of dopamine and acetylcholine from the rat brain slice. Neurosci Lett 292: 131–133.
    1. Weber A, Maier RF, Hoffmann U, Grips M, Hoppenz M, et al. (2002) Erythropoietin improves synaptic transmission during and following ischemia in rat hippocampal slice cultures. Brain Res 958: 305–311.
    1. Silverstein JM, Musikantow D, Puente EC, phna-Iken D, Bree AJ, et al. (2011) Pharmacologic amelioration of severe hypoglycemia-induced neuronal damage. Neurosci Lett 492: 23–28.
    1. Miskowiak K, Inkster B, O’Sullivan U, Selvaraj S, Goodwin GM, et al. (2008) Differential effects of erythropoietin on neural and cognitive measures of executive function 3 and 7 days post-administration. Exp Brain Res 184: 313–321.
    1. Miskowiak K, Inkster B, Selvaraj S, Wise R, Goodwin GM, et al. (2008) Erythropoietin improves mood and modulates the cognitive and neural processing of emotion 3 days post administration. Neuropsychopharmacology 33: 611–618.
    1. Ehrenreich H, Hinze-Selch D, Stawicki S, Aust C, Knolle-Veentjer S, et al. (2007) Improvement of cognitive functions in chronic schizophrenic patients by recombinant human erythropoietin. Mol Psychiatry 12: 206–220.
    1. Kristensen PL, Hoi-Hansen T, Olsen NV, Pedersen-Bjergaard U, Thorsteinsson B (2009) Erythropoietin during hypoglycaemia in type 1 diabetes: relation to basal renin-angiotensin system activity and cognitive function. Diabetes Res Clin Pract 85: 75–84.
    1. Kristensen PL, Hansen LS, Jespersen MJ, Pedersen-Bjergaard U, Beck-Nielsen H, et al. (2012) Insulin analogues and severe hypoglycaemia in type 1 diabetes. Diabetes Res Clin Pract 96: 17–23.
    1. Pedersen-Bjergaard U, Pramming S, Thorsteinsson B (2003) Recall of severe hypoglycaemia and self-estimated state of awareness in type 1 diabetes. Diabetes Metab Res Rev 19: 232–240.
    1. McCrimmon RJ, Deary IJ, Gold AE, Hepburn DA, MacLeod KM, et al. (2003) Symptoms reported during experimental hypoglycaemia: effect of method of induction of hypoglycaemia and of diabetes per se. Diabet Med 20: 507–509.
    1. Reynolds CR (2002). Comprehensive Trail-Making Test. Austin, Texas: PRO-ED, Inc.
    1. Stroop Test (2006). In:Strauss E, Sherman MS, Spreen O, editors. A compendium of Neuropsychological Tests. Oxford: Oxford University Press. 477–499.
    1. Golden CJ (1975) A group version of the Stroop Color and Word Test. J Pers Assess 39: 386–388.
    1. Hoi-Hansen T, Pedersen-Bjergaard U, Andersen RD, Kristensen PL, Thomsen C, et al. (2009) Cognitive performance, symptoms and counter-regulation during hypoglycaemia in patients with type 1 diabetes and high or low renin-angiotensin system activity. J Renin Angiotensin Aldosterone Syst 10: 216–229.
    1. Pocock SJ, Assmann SE, Enos LE, Kasten LE (2002) Subgroup analysis, covariate adjustment and baseline comparisons in clinical trial reporting: current practice and problems. Stat Med 21: 2917–2930.
    1. Fruehwald-Schultes B, Born J, Kern W, Peters A, Fehm HL (2000) Adaptation of cognitive function to hypoglycemia in healthy men. Diabetes Care 23: 1059–1066.
    1. Miskowiak KW, Favaron E, Hafizi S, Inkster B, Goodwin GM, Cowen PJ, Harmer CJ (2010) Erythropoietin modulates neural and cognitive processing of emotional information in biomarker models of antidepressant drug action in depressed patients. Psychopharmacology 210: 419–28.
    1. Arcasoy MO (2008) The non-haematopoietic biological effects of erythropoietin. Br J Haematol 141: 14–31.
    1. Leist M, Ghezzi P, Grasso G, Bianchi R, Villa P, et al. (2004) Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science 305: 239–242.
    1. Brines M, Patel NS, Villa P, Brines C, Mennini T, et al. (2008) Nonerythropoietic, tissue-protective peptides derived from the tertiary structure of erythropoietin. Proc Natl Acad Sci U S A 105: 10925–10930.

Source: PubMed

3
購読する