Hypothyroidism is Not Associated with Keratoconus Disease: Analysis of 626 Subjects

Zsuzsa Flaskó, Elena Zemova, Timo Eppig, László Módis, Achim Langenbucher, Stefan Wagenpfeil, Berthold Seitz, Nóra Szentmáry, Zsuzsa Flaskó, Elena Zemova, Timo Eppig, László Módis, Achim Langenbucher, Stefan Wagenpfeil, Berthold Seitz, Nóra Szentmáry

Abstract

Purpose: To analyze the association between hypothyroidism and keratoconus, we examined blood thyroid hormone levels and corneal tomographic parameters in healthy subjects and patients with keratoconus.

Methods: We included 626 subjects (304 left eyes, 49%; 431 males, 69%; age 38.4 ± 14.3 y). Patients with keratoconus were from our Homburg Keratoconus Center (HKC) (n = 463); patients with hypothyroidism were from the Department of Internal Medicine of Saarland Medical University, Homburg/Saar, Germany (n = 75); and healthy subjects were from the Department of Ophthalmology of Saarland University Medical Center (n = 88). We included only one randomly selected eye of each subject and the first examination data.

Exclusion criteria: Previous thyroid medication, previous ocular surgery, and patients with suspected keratoconus (topographic keratoconus classification, [TKC]: 0 < 1). Patient eyes were classified (TKC) with dedicated, instrument-based, keratoconus detection software provided with the Pentacam. TKC = 0 was considered "normal," and TKCs ≥ 1 were considered keratoconus. Subjects were also classified as euthyroid or hypothyroid, based on blood thyroid hormone status (i.e., TSH, FT3, and FT4). A multiple logistic linear regression model was constructed to determine the effects of age (covariate), gender, and hypothyroidism (effect sizes) on "TKC-positive" disease.

Results: The significance levels for a constant parameter, sex, thyroid condition, and age were p < 0.0001, p < 0.0001, p < 0.0001, and p=0.003, respectively. The odds ratios for age, sex, and hypothyroidism were 0.98, 3.05, and 3.34, respectively. Male sex and a euthyroid condition had significantly positive, clinically relevant effects, and age had a significantly negative, but clinically irrelevant effect on the estimated TKC index.

Conclusions: Keratoconus appeared to occur more often in patients classified as euthyroid than in patients with hypothyroidism. Thus, hypothyroidism alone could not support the development of keratoconus. Based on these results, it should not be mandatory to screen patients with hypothyroidism for keratoconus or patients with keratoconus for hypothyroidism.

Conflict of interest statement

The authors declare no conflicts of interest related to this study.

Copyright © 2019 Zsuzsa Flaskó et al.

Figures

Figure 1
Figure 1
The disease distribution in different age groups.
Figure 2
Figure 2
Receiver-operating characteristics (ROC) curve for estimating the TKC. A linear estimation equation was used to determine the best threshold for distinguishing between keratoconus and normal eyes with the ROC curve. The area under the ROC curve is 0.74 (arrow). The maximum Youden index is marked with an arrow on the graph. The Youden index is (sensitivity + specificity − 1) 0.422.

References

    1. Rabinowitz Y. S. Keratoconus. Survey of Ophthalmology. 1998;42(4):297–319. doi: 10.1016/s0039-6257(97)00119-7.
    1. Cheung I. M., McGhee C. N., Sherwin T. A new perspective on the pathobiology of keratoconus: interplay of stromal wound healing and reactive species-associated processes. Clinical and Experimental Optometry. 2013;96(2):188–196. doi: 10.1111/cxo.12025.
    1. Goebels S., Eppig T., Wagenpfeil S., Cayless A., Seitz B., Langenbucher A. Staging of keratoconus indices regarding tomography, topography and biomechanical measurements. American Journal of Ophthalmology. 2015;159(4):733–738. doi: 10.1016/j.ajo.2015.01.014.
    1. Tachibana M., Adachi W., Kinoshita S., et al. Androgen-dependent hereditary mouse keratoconus: linkage to an MHC region. Investigative Ophthalmology & Visual Science. 2002;43(1):51–57.
    1. Padmanabhan P., Radhakrishnan A., Natarajan R. Pregnancy-triggered iatrogenic (post-laser in situ keratomileusis) corneal ectasia: a case report. Cornea. 2010;29(5):569–572. doi: 10.1097/ico.0b013e3181bd9f2d.
    1. Fink B. A., Sinnott L. T., Wagner H., Friedman C., Zadnik K., CLEK Study Group The influence of gender and hormone status on the severity and progression of keratoconus. Cornea. 2010;29(1):65–72. doi: 10.1097/ico.0b013e3181ac0518.
    1. Spoerl E., Zubaty V., Terai N., Pillunat L. E., Raiskup F. Influence of high-dose cortisol on the biomechanics of incubated porcine corneal strips. Journal of Refractive Surgery. 2009;25(9):S794–S798. doi: 10.3928/1081597x-20090813-06.
    1. Spoerl E., Zubaty V., Raiskup-Wolf F., Pillunat L. E. Oestrogen-induced changes in biomechanics in the cornea as a possible reason for keratectasia. British Journal of Ophthalmology. 2007;91(11):1547–1550. doi: 10.1136/bjo.2007.124388.
    1. Tyynismaa H., Sistonen P., Tuupanen S., et al. A locus for autosomal dominant keratoconus: linkage to 16q22.3-q23.1 in Finnish families. Investigative Ophthalmology & Visual Science. 2002;43(10):3160–3164.
    1. Wang Y., Rabinowitz Y. S., Rotter J. I., Yang H. Genetic epidemiological study of keratoconus: evidence for major gene determination. American Journal of Medical Genetics. 2000;93(5):403–409. doi: 10.1002/1096-8628(20000828)93:5<403::aid-ajmg11>;2-a.
    1. Udar N., Atilano S. R., Brown D. J., et al. SOD1: a candidate gene for keratoconus. Investigative Opthalmology & Visual Science. 2006;47(8):3345–3351. doi: 10.1167/iovs.05-1500.
    1. Shapiro M. B., France T. D. The ocular features of Down’s syndrome. American Journal of Ophthalmology. 1985;99(6):659–663. doi: 10.1016/s0002-9394(14)76031-3.
    1. Cullen J. F., Butler H. G. Mongolism (Down’s syndrome) and keratoconus. British Journal of Ophthalmology. 1963;47(6):321–330. doi: 10.1136/bjo.47.6.321.
    1. Macsai M., Maguen E., Nucci P. Keratoconus and Turner’s syndrome. Cornea. 1997;16(5):534–536.
    1. Elder M. J. Leber congenital amaurosis and its association with keratoconus and keratoglobus. Journal of Pediatric Ophthalmology and Strabismus. 1994;31(1):38–40.
    1. Pesudovs K. Orbscan mapping in Ehlers-Danlos syndrome. Journal of Cataract & Refractive Surgery. 2004;30(8):1795–1798. doi: 10.1016/j.jcrs.2004.05.002.
    1. Maumenee I. H. The eye in the Marfan syndrome. Transactions of the American Ophthalmological Society. 1981;79:684–733.
    1. Wilson S. E., He Y.-G., Weng J., et al. Epithelial injury induces keratocyte apoptosis: hypothesized role for the interleukin-1 system in the modulation of corneal tissue organization and wound healing. Experimental Eye Research. 1996;62(4):325–338. doi: 10.1006/exer.1996.0038.
    1. Buddi R., Lin B., Atilano S. R., Zorapapel N. C., Kenney M. C., Brown D. J. Evidence of oxidative stress in human corneal diseases. Journal of Histochemistry & Cytochemistry. 2002;50(3):341–351. doi: 10.1177/002215540205000306.
    1. Kim W.-J., Rabinowitz Y. S., Meisler D. M., Wilson S. E. Keratocyte apoptosis associated with keratoconus. Experimental Eye Research. 1999;69(5):475–481. doi: 10.1006/exer.1999.0719.
    1. Bron A. J., Rabinowitz Y. S. Corneal dystrophies and keratoconus. Current Opinion in Ophthalmology. 1996;7(4):71–82. doi: 10.1097/00055735-199608000-00013.
    1. Burgi H., Konig M. P. Endocrine ophthalmopathy. Schweizerische Medizinische Wochenschrift. 1975;105:1101–1110.
    1. Gatzioufas Z., Thanos S. Acute keratoconus induced by hypothyroxinemia during pregnancy. Journal of Endocrinological Investigation. 2008;31(3):262–266. doi: 10.1007/bf03345600.
    1. Gatzioufas Z., Panos G. D., Brugnolli E., Hafezi F. Corneal topographical and biomechanical variations associated with hypothyroidism. Journal of Refractive Surgery. 2014;30(2):78–79. doi: 10.3928/1081597x-20140120-01.
    1. Thanos S., Oellers P., Meyer zu Hörste M., et al. Role of thyroxine in the development of keratoconus. Cornea. 2016;35(10):1338–1346. doi: 10.1097/ico.0000000000000988.
    1. Coulombre A. J., Coulombre J. L. Corneal development: I. corneal transparency. Journal of Cellular and Comparative Physiology. 1958;51(1):1–11. doi: 10.1002/jcp.1030510102.
    1. Coulombre A. J., Coulombre J. L. Corneal development: III. the role of the thyroid in dehydration and the development of transparency. Experimental Eye Research. 1964;3(2):105–114. doi: 10.1016/s0014-4835(64)80024-5.
    1. Conrad A. H., Zhang Y., Walker A. R., et al. Thyroxine affects expression of KSPG-related genes, the carbonic anhydrase II gene, and KS sulfation in the embryonic chicken cornea. Investigative Opthalmology & Visual Science. 2006;47(1):120–132. doi: 10.1167/iovs.05-0806.
    1. Drózdzm M., Kucharz E., Grucka-Mamczar E. Influence of thyroid hormones on collagen content in tissues of guinea pigs. Endokrinologie. 1979;73(1):105–111.
    1. Fisher D. A., Sack J., Oddie T. H., et al. Serum T4, TBG, T3 uptake, T3, reverse T3 and TSH concentrations in children 1 to 15 years of age. The Journal of Clinical Endocrinology & Metabolism. 1977;45(2):191–198. doi: 10.1210/jcem-45-2-191.
    1. Parslow M. E., Oddie T. H., Fisher D. A. Evaluation of serum triiodothyronine and adjusted triiodothyronine (free triiodothyronine index) in pregnancy. Clinical Chemistry. 1977;23(3):490–492.
    1. Suzuki T., Kinoshita Y., Tachibana M., et al. Expression of sex steroid hormone receptors in human cornea. Current Eye Research. 2001;22(1):28–33. doi: 10.1076/ceyr.22.1.28.6980.
    1. Hafezi F., Koller T., Derhartunian V., Seiler T. Pregnancy may trigger late onset of keratectasia after LASIK. Journal of Refractive Surgery. 2012;28(4):242–243. doi: 10.3928/1081597x-20120401-07.
    1. Bilgihan K., Hondur A., Sul S., Ozturk S. Pregnancy-induced progression of keratoconus. Cornea. 2011;30(9):991–994. doi: 10.1097/ico.0b013e3182068adc.
    1. Kahán I. L., Varsányi-Nagy M., Tóth M., Nádrai A. The possible role of tear fluid thyroxine in keratoconus development. Experimental Eye Research. 1990;50(4):339–343. doi: 10.1016/0014-4835(90)90134-g.
    1. King E. F. Keratoconus following thyroidectomy. Transactions of the Ophthalmological Societies of the United Kingdom. 1953;73:31–39.
    1. Bahçeci U. A., Özdek Ş., Pehlivanli Z., Yetkin I., Önol M. Changes in intraocular pressure and corneal and retinal nerve fiber layer thicknesses in hypothyroidism. European Journal of Ophthalmology. 2005;15(5):556–561. doi: 10.1177/112067210501500506.
    1. Mazzotta C., Traversi C., Mellace P., et al. Keratoconus progression in patients with allergy and elevated surface matrix metalloproteinase 9 point-of-care test. Eye & Contact Lens: Science & Clinical Practice. 2018;44:S48–S53. doi: 10.1097/icl.0000000000000432.
    1. Hoogewoud F., Gatzioufas Z., Hafezi F. Transitory topographical variations in keratoconus during pregnancy. Journal of Refractive Surgery. 2013;29(2):144–146. doi: 10.3928/1081597x-20130117-11.
    1. Hafezi F., Iseli H. P. Pregnancy-related exacerbation of iatrogenic keratectasia despite corneal collagen crosslinking. Journal of Cataract & Refractive Surgery. 2008;34(7):1219–1221. doi: 10.1016/j.jcrs.2008.02.036.
    1. Zemova E., Eppig T., Seitz B., et al. Interaction between topographic/tomographic parameters and dry eye disease in keratoconus patients. Current Eye Research. 2014;39(1):1–8. doi: 10.3109/02713683.2013.798667.

Source: PubMed

3
購読する