Identification of potential COVID-19 treatment compounds which inhibit SARS Cov2 prototypic, Delta and Omicron variant infection

Prabhakaran Kumar, Manikannan Mathayan, Sandra P Smieszek, Bartlomiej P Przychodzen, Vuk Koprivica, Gunther Birznieks, Mihael H Polymeropoulos, Bellur S Prabhakar, Prabhakaran Kumar, Manikannan Mathayan, Sandra P Smieszek, Bartlomiej P Przychodzen, Vuk Koprivica, Gunther Birznieks, Mihael H Polymeropoulos, Bellur S Prabhakar

Abstract

Recurrent waves of COVID19 remain a major global health concern. Repurposing either FDA-approved or clinically advanced drug candidates can save time and effort required for validating the safety profile and FDA approval. However, the selection of appropriate screening approaches is key to identifying novel candidate drugs with a higher probability of clinical success. Here, we report a rapid, stratified two-step screening approach using pseudovirus entry inhibition assay followed by an infectious prototypic SARS CoV2 cytotoxic effect inhibition assay in multiple cell lines. Using this approach, we screened a library of FDA-approved and clinical-stage drugs and identified four compounds, apilimod, berbamine, cepharanthine and (S)-crizotinib which potently inhibited SARS CoV2-induced cell death. Importantly, these drugs exerted similar inhibitory effect on the delta and omicron variants although they replicated less efficiently than the prototypic strain. Apilimod is currently under clinical trial (NCT04446377) for COVID19 supporting the validity and robustness of our screening approach.

Keywords: Anti-viral drug repurposing; Delta; Omicron; SARS CoV2.

Published by Elsevier Inc.

Figures

Fig. 1
Fig. 1
Pseudovirus entry inhibition screening of drug library. A-D) 293T, 293T-ACE2, A549-ACE2 and Vero TMPRSS2 cells were transduced with SARS CoV2 pseudotyped virus particles containing luciferase reporter gene and luminescence was measured after 72 h. Bar graph shows respective Relative Light Units (RLUs) from Mock (Blue) without envelope and SARS CoV2 spike pseudotyped virus particle (Red) transduced cells. E) RLU values from 293T-ACE2 cells transduced with serially diluted SARS CoV2 spike pseudotyped virus particles. F–I) Bar graphs show RLU values from pseudovirus entry inhibition assay where 293T ACE2 cells were pre-treated with 1 μM of indicated drugs for 1 h and then transduced with SARS CoV2 spike pseudotyped virus particles. Cathepsin-L inhibitor CAS 108005943 was used as a positive control. J) Bar graph shows summary of percent pseudovirus entry inhibition values for each drug. Values represent Mean ± SEM, n = 3 and two independent experiments.
Fig. 2
Fig. 2
Validation of cell death inhibition assay. A) Cells were infected with serial dilutions of SARS CoV2 (10^-2 to 10^-8) and cell death was quantified by Cell-Titer-Glo cell viability assay and TCID50 for each cell line was determined at 72 h. B) Cells were pre-treated with different concentrations of Remdesivir followed by infection with 10 TCID50 of SARS CoV2 and the effect on cell death inhibition was quantified. C-E) Dose response effect of candidate drugs apilimod, berbamine, cepharanthine and (S)-crizotinib on USA/WA1 SARS CoV2 induced cell death in 293T-ACE2, Vero E6 and Vero-TMPRSS2 cells was analyzed. F) Vero TMPRSS2 cells were infected with 10TCID50 SARS CoV2 and the nucleocapsid positive (NP+) cells were enumerated by flow cytometry 24 h post infection. Numbers in the histograms show the percentage of NP + cells. G) Bar graph shows the % inhibition in NP + cells in the presence of candidate drugs. Values represent Mean ± SEM, n = 3 and two independent experiments.
Fig. 3
Fig. 3
A-B) Representative histograms show the frequency of NP + cells in the Vero-TMPRSS2 (A) and Vero-ACE2-TMPRSS2 (B) cells infected with different doses of the USA-WA1, delta and omicron strains of SARS CoV2. C-D) Graphs show the TCID50 values for each strain of the virus in Vero TMPRSS2 (C) and Vero ACE2-TMPRSS2 cells (D). E-H) Dose response effect of the drugs on delta and omicron variant induced cell death in Vero TMPRSS2 and Vero-ACE2-TMPRSS2 cells. Values represent Mean ± SEM, n = 3 and two independent experiments.

References

    1. Consortium W.S.T. Repurposed antiviral drugs for Covid-19-interim WHO solidarity trial results. N. Engl. J. Med. 2021;384:497–511.
    1. Dai X., Guo G., Zou P., Cui R., Chen W., Chen X., Yin C., He W., Vinothkumar R., Yang F., Zhang X., Liang G. (S)-crizotinib induces apoptosis in human non-small cell lung cancer cells by activating ROS independent of MTH1. J. Exp. Clin. Cancer Res. 2017;36:120.
    1. Dejnirattisai W., Huo J., Zhou D., Zahradnik J., Supasa P., Liu C., Duyvesteyn H.M.E., Ginn H.M., Mentzer A.J., Tuekprakhon A., Nutalai R., Wang B., Dijokaite A., Khan S., Avinoam O., Bahar M., Skelly D., Adele S., Johnson S.A., Amini A., Ritter T., Mason C., Dold C., Pan D., Assadi S., Bellass A., Omo-Dare N., Koeckerling D., Flaxman A., Jenkin D., Aley P.K., Voysey M., Costa Clemens S.A., Naveca F.G., Nascimento V., Nascimento F., Fernandes da Costa C., Resende P.C., Pauvolid-Correa A., Siqueira M.M., Baillie V., Serafin N., Ditse Z., Silva K.D., Madhi S., Nunes M.C., Malik T., Openshaw P.J., Baillie J.K., Semple M.G., Townsend A.R., Huang K.A., Tan T.K., Carroll M.W., Klenerman P., Barnes E., Dunachie S.J., Constantinides B., Webster H., Crook D., Pollard A.J., Lambe T., consortium O., consortium I.C., Paterson N.G., Williams M.A., Hall D.R., Fry E.E., Mongkolsapaya J., Ren J., Schreiber G., Stuart D.I., Screaton G.R. Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. bioRxiv. 2021
    1. Edara V.V., Pinsky B.A., Suthar M.S., Lai L.L., Davis-Gardner M.E., Floyd K., Flowers M.W., Wrammert J., Hussaini L., Ciric C.R., Bechnak S., Stephens K., Graham B.S., Mokhtari E.B., Mudvari P., Boritz E., Creanga A., Pegu A., Derrien-Colemyn A., Henry A.R., Gagne M., Douek D.C., Sahoo M.K., Sibai M., Solis D., Webby R.J., Jeevan T., Fabrizio T.P. Infection and vaccine-induced neutralizing-antibody responses to the SARS-CoV-2 B.1.617 variants. N. Engl. J. Med. 2021;385:664–666.
    1. Elshabrawy H.A., Fan J.L., Haddad C.S., Ratia K., Broder C.C., Caffrey M., Prabhakar B.S. Identification of a broad-spectrum antiviral small molecule against severe acute respiratory syndrome coronavirus and Ebola, Hendra, and Nipah viruses by using a novel high-throughput screening assay. J. Virol. 2014;88:4353–4365.
    1. Gunst J.D., Staerke N.B., Pahus M.H., Kristensen L.H., Bodilsen J., Lohse N., Dalgaard L.S., Bronnum D., Frobert O., Honge B., Johansen I.S., Monrad I., Erikstrup C., Rosendal R., Vilstrup E., Mariager T., Bove D.G., Offersen R., Shakar S., Cajander S., Jorgensen N.P., Sritharan S.S., Breining P., Jespersen S., Mortensen K.L., Jensen M.L., Kolte L., Frattari G.S., Larsen C.S., Storgaard M., Nielsen L.P., Tolstrup M., Saedder E.A., Ostergaard L.J., Ngo H.T.T., Jensen M.H., Hojen J.F., Kjolby M., Sogaard O.S. Efficacy of the TMPRSS2 inhibitor camostat mesilate in patients hospitalized with Covid-19-a double-blind randomized controlled trial. Eclinicalmedicine. 2021;35
    1. Ho T.C., Wang Y.H., Chen Y.L., Tsai W.C., Lee C.H., Chuang K.P., Chen Y.A., Yuan C.H., Ho S.Y., Yang M.H., Tyan Y.C. Chloroquine and hydroxychloroquine: efficacy in the treatment of the COVID-19. Pathogens. 2021;10
    1. Hoffmann M., Kleine-Weber H., Schroeder S., Kruger N., Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N.H., Nitsche A., Muller M.A., Drosten C., Pohlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271. +
    1. Hoffmann M., Mosbauer K., Hofmann-Winkler H., Kaul A., Kleine-Weber H., Kruger N., Gassen N.C., Muller M.A., Drosten C., Pohlmann S. Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2. Nature. 2020;585:588–590.
    1. Hsing L.C., Rudensky A.Y. The lysosomal cysteine proteases in MHC class II antigen presentation. Immunol. Rev. 2005;207:229–241.
    1. Huang L., Yuen T.T., Ye Z., Liu S., Zhang G., Chu H., Yue J. Berbamine inhibits SARS-CoV-2 infection by compromising TRPMLs-mediated endolysosomal trafficking of ACE2. Signal Transduct. Targeted Ther. 2021;6:168.
    1. Huber K.V., Salah E., Radic B., Gridling M., Elkins J.M., Stukalov A., Jemth A.S., Gokturk C., Sanjiv K., Stromberg K., Pham T., Berglund U.W., Colinge J., Bennett K.L., Loizou J.I., Helleday T., Knapp S., Superti-Furga G. Stereospecific targeting of MTH1 by (S)-crizotinib as an anticancer strategy. Nature. 2014;508:222–227.
    1. Hui K.P.Y., Ho J.C.W., Cheung M.C., Ng K.C., Ching R.H.H., Lai K.L., Kam T.T., Gu H., Sit K.Y., Hsin M.K.Y., Au T.W.K., Poon L.L.M., Peiris M., Nicholls J.M., Chan M.C.W. SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo. Nature. 2022;603:715–720.
    1. Kang Y.L., Chou Y.Y., Rothlauf P.W., Liu Z., Soh T.K., Cureton D., Case J.B., Chen R.E., Diamond M.S., Whelan S.P.J., Kirchhausen T. Inhibition of PIKfyve kinase prevents infection by Zaire ebolavirus and SARS-CoV-2. Proc. Natl. Acad. Sci. U. S. A. 2020;117:20803–20813.
    1. Kaye M. SARS-associated coronavirus replication in cell lines. Emerg. Infect. Dis. 2006;12:128–133.
    1. Ksiazek T.G., Erdman D., Goldsmith C.S., Zaki S.R., Peret T., Emery S., Tong S., Urbani C., Comer J.A., Lim W., Rollin P.E., Dowell S.F., Ling A.E., Humphrey C.D., Shieh W.J., Guarner J., Paddock C.D., Rota P., Fields B., DeRisi J., Yang J.Y., Cox N., Hughes J.M., LeDuc J.W., Bellini W.J., Anderson L.J., Group S.W. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 2003;348:1953–1966.
    1. Liu J., Cao R.Y., Xu M.Y., Wang X., Zhang H.Y., Hu H.R., Li Y.F., Hu Z.H., Zhong W., Wang M.L. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 2020;6
    1. Marconi V.C., Ramanan A.V., de Bono S., Kartman C.E., Krishnan V., Liao R., Piruzeli M.L.B., Goldman J.D., Alatorre-Alexander J., Pellegrini R.D., Estrada V., Som M., Cardoso A., Chakladar S., Crowe B., Reis P., Zhang X., Adams D.H., Ely E.W., Grp C.-B.S. Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER) : a randomised, double-blind, parallel-group, placebo- controlled phase 3 trial. Lancet Respir. Med. 2021;9:1407–1418.
    1. Meng B., Abdullahi A., Ferreira I., Goonawardane N., Saito A., Kimura I., Yamasoba D., Gerber P.P., Fatihi S., Rathore S., Zepeda S.K., Papa G., Kemp S.A., Ikeda T., Toyoda M., Tan T.S., Kuramochi J., Mitsunaga S., Ueno T., Shirakawa K., Takaori-Kondo A., Brevini T., Mallery D.L., Charles O.J., Collaboration C.-N.B.C.-., Genotype to Phenotype Japan, C. Ecuador C.C., Bowen J.E., Joshi A., Walls A.C., Jackson L., Martin D., Smith K.G.C., Bradley J., Briggs J.A.G., Choi J., Madissoon E., Meyer K.B., Mlcochova P., Ceron-Gutierrez L., Doffinger R., Teichmann S.A., Fisher A.J., Pizzuto M.S., de Marco A., Corti D., Hosmillo M., Lee J.H., James L.C., Thukral L., Veesler D., Sigal A., Sampaziotis F., Goodfellow I.G., Matheson N.J., Sato K., Gupta R.K. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature. 2022;603:706–714.
    1. Muller C., Hardt M., Schwudke D., Neuman B.W., Pleschka S., Ziebuhr J. Inhibition of Cytosolic phospholipase A2alpha impairs an early step of coronavirus replication in cell culture. J. Virol. 2018;92
    1. Ogando N.S., Dalebout T.J., Zevenhoven-Dobbe J.C., Limpens R., van der Meer Y., Caly L., Druce J., de Vries J.J.C., Kikkert M., Barcena M., Sidorov I., Snijder E.J. SARS-coronavirus-2 replication in Vero E6 cells: replication kinetics, rapid adaptation and cytopathology. J. Gen. Virol. 2020;101:925–940.
    1. Ohashi H., Watashi K., Saso W., Shionoya K., Iwanami S., Hirokawa T., Shirai T., Kanaya S., Ito Y., Kim K.S., Nomura T., Suzuki T., Nishioka K., Ando S., Ejima K., Koizumi Y., Tanaka T., Aoki S., Kuramochi K., Suzuki T., Hashiguchi T., Maenaka K., Matano T., Muramatsu M., Saijo M., Aihara K., Iwami S., Takeda M., McKeating J.A., Wakita T. Potential anti-COVID-19 agents, cepharanthine and nelfinavir, and their usage for combination treatment. iScience. 2021;24:102367.
    1. Pia L., Rowland-Jones S. Omicron entry route. Nat. Rev. Immunol. 2022;22:145. 145.
    1. Planas D., Veyer D., Baidaliuk A., Staropoli I., Guivel-Benhassine F., Rajah M.M., Planchais C., Porrot F., Robillard N., Puech J., Prot M., Gallais F., Gantner P., Velay A., Le Guen J., Kassis-Chikhani N., Edriss D., Belec L., Seve A., Courtellemont L., Pere H., Hocqueloux L., Fafi-Kremer S., Prazuck T., Mouquet H., Bruel T., Simon-Loriere E., Rey F.A., Schwartz O. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature. 2021;596:276–280.
    1. Rajpoot S., Alagumuthu M., Baig M.S. Dual targeting of 3CL(pro) and PL(pro) of SARS-CoV-2: a novel structure-based design approach to treat COVID-19. Curr. Res. Struct. Biol. 2021;3:9–18.
    1. Riva L., Yuan S., Yin X., Martin-Sancho L., Matsunaga N., Pache L., Burgstaller-Muehlbacher S., De Jesus P.D., Teriete P., Hull M.V., Chang M.W., Chan J.F., Cao J., Poon V.K., Herbert K.M., Cheng K., Nguyen T.H., Rubanov A., Pu Y., Nguyen C., Choi A., Rathnasinghe R., Schotsaert M., Miorin L., Dejosez M., Zwaka T.P., Sit K.Y., Martinez-Sobrido L., Liu W.C., White K.M., Chapman M.E., Lendy E.K., Glynne R.J., Albrecht R., Ruppin E., Mesecar A.D., Johnson J.R., Benner C., Sun R., Schultz P.G., Su A.I., Garcia-Sastre A., Chatterjee A.K., Yuen K.Y., Chanda S.K. Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature. 2020;586:113–119.
    1. Rutherford A.C., Traer C., Wassmer T., Pattni K., Bujny M.V., Carlton J.G., Stenmark H., Cullen P.J. The mammalian phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) regulates endosome-to-TGN retrograde transport. J. Cell Sci. 2006;119:3944–3957.
    1. Simmons G., Gosalia D.N., Rennekamp A.J., Reeves J.D., Diamond S.L., Bates P. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. P Natl Acad. Sci. USA. 2005;102:11876–11881.
    1. Syed A.M., Ciling A., Khalid M.M., Sreekumar B., Chen P.Y., Kumar G.R., Silva I., Milbes B., Kojima N., Hess V., Shacreaw M., Lopez L., Brobeck M., Turner F., Spraggon L., Taha T.Y., Tabata T., Chen I.P., Ott M., Doudna J.A. medRxiv; 2022. Omicron Mutations Enhance Infectivity and Reduce Antibody Neutralization of SARS-CoV-2 Virus-like Particles.
    1. Takashita E., Kinoshita N., Yamayoshi S., Sakai-Tagawa Y., Fujisaki S., Ito M., Iwatsuki-Horimoto K., Chiba S., Halfmann P., Nagai H., Saito M., Adachi E., Sullivan D., Pekosz A., Watanabe S., Maeda K., Imai M., Yotsuyanagi H., Mitsuya H., Ohmagari N., Takeda M., Hasegawa H., Kawaoka Y. Efficacy of antibodies and antiviral drugs against Covid-19 omicron variant. N. Engl. J. Med. 2022
    1. Tummino T.A., Rezelj V.V., Fischer B., Fischer A., O'Meara M.J., Monel B., Vallet T., White K.M., Zhang Z., Alon A., Schadt H., O'Donnell H.R., Lyu J., Rosales R., McGovern B.L., Rathnasinghe R., Jangra S., Schotsaert M., Galarneau J.R., Krogan N.J., Urban L., Shokat K.M., Kruse A.C., Garcia-Sastre A., Schwartz O., Moretti F., Vignuzzi M., Pognan F., Shoichet B.K. Drug-induced phospholipidosis confounds drug repurposing for SARS-CoV-2. Science. 2021;373:541–547.
    1. V'Kovski P., Kratzel A., Steiner S., Stalder H., Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat. Rev. Microbiol. 2021;19:155–170.
    1. Wang M.L., Cao R.Y., Zhang L.K., Yang X.L., Liu J., Xu M.Y., Shi Z.L., Hu Z.H., Zhong W., Xiao G.F. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30:269–271.
    1. Yan K., Rawle D.J., Le T.T., Suhrbier A. Simple rapid in vitro screening method for SARS-CoV-2 anti-virals that identifies potential cytomorbidity-associated false positives. Virol. J. 2021;18:123.
    1. Zhang Z.R., Zhang Y.N., Zhang H.Q., Zhang Q.Y., Li N., Li Q., Deng C.L., Zhang B., Li X.D., Ye H.Q. Berbamine hydrochloride potently inhibits SARS-CoV-2 infection by blocking S protein-mediated membrane fusion. PLoS Neglected Trop. Dis. 2022;16
    1. Zhao H.J., Lu L., Peng Z., Chen L.L., Meng X.J., Zhang C.Y., Ip J.D., Chan W.M., Chu A.W.H., Chan W.H., Jin D.Y., Chen H.L., Yuen W.Y., To K.K.W. SARS-CoV-2 Omicron variant shows less efficient replication and fusion activity when compared with Delta variant in TMPRSS2-expressed cells. Emerg. Microb. Infect. 2022;11:277–283.
    1. Zhao M.M., Yang W.L., Yang F.Y., Zhang L., Huang W.J., Hou W., Fan C.F., Jin R.H., Feng Y.M., Wang Y.C., Yang J.K. Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development. Signal Transduct Tar. 2021;6
    1. Zhu Y.K., Feng F., Hu G.W., Wang Y.Y., Yu Y., Zhu Y.F., Xu W., Cai X., Sun Z.P., Han W.D., Ye R., Qu D., Ding Q., Huang X.X., Chen H.J., Xu W., Xie Y.H., Cai Q.L., Yuan Z.H., Zhang R. A genome-wide CRISPR screen identifies host factors that regulate SARS-CoV-2 entry. Nat. Commun. 2021;12

Source: PubMed

3
購読する