Cortical activity during sensorial tactile stimulation in healthy adults through Vojta therapy. A randomized pilot controlled trial

Ismael Sanz-Esteban, Roberto Cano-de-la-Cuerda, Ana San-Martín-Gómez, Carmen Jiménez-Antona, Esther Monge-Pereira, Cecilia Estrada-Barranco, José Ignacio Serrano, Ismael Sanz-Esteban, Roberto Cano-de-la-Cuerda, Ana San-Martín-Gómez, Carmen Jiménez-Antona, Esther Monge-Pereira, Cecilia Estrada-Barranco, José Ignacio Serrano

Abstract

Background: Brain's is stimulated by Vojta Therapy through selected body areas activating stored innate motor programs which are exported as coordinate movement and muscle contractions to trunk and limbs. The aim of this pilot study is to know the responses at cortical level to a specific tactile input, assessed by electroencephalography (EEG), compared to a sham stimulation, in healthy subjects.

Methods: A randomized-controlled trial was conducted. Participants were randomly distributed into two groups: a non-specific tactile input-group (non-STI-group) (n = 20) and a Vojta specific tactile input-group (V-STI-group) (n = 20). The non-STI-group was stimulated in a non specific area (quadriceps distal area) and V-STI-group was stimulated in a specific area (intercostal space, at the mammillary line between the 7th and 8th ribs) according to the Vojta therapy. Recording was performed with EEG for 10 min considering a first minute of rest, 8 min during the stimulus and 1 min after the stimulus. EEG activity was recorded from 32 positions with active Ag/AgCl scalp electrodes following the 10-20 system. The continuous EEG signal was split into consecutive segments of one minute.

Results: The V-STI-group showed statistically significant differences in the theta, low alpha and high alpha bands, bilaterally in the supplementary motor (SMA) and premotor (PMA) areas (BA6 and BA8), superior parietal cortex (BA5, BA7) and the posterior cingulate cortex (BA23, BA31). For the V-STI-group, all frequency bands presented an initial bilateral activation of the superior and medial SMA (BA6) during the first minute. This activation was maintained until the fourth minute. During the fourth minute, the activation decreased in the three frequency bands. From the fifth minute, the activation in the superior and medial SMA rose again in the three frequency bands CONCLUSIONS: Our findings highlight that the specific stimulation area at intercostal space, on the mammillary line between 7 and 8th ribs according to Vojta therapy differentially increased bilateral activation in SMA (BA6) and Pre-SMA (BA8), BA5, BA7, BA23 and BA31 in the theta, low and high alpha bands in healthy subjects. These results could indicate the activation of innate locomotor circuits during stimulation of the pectoral area according to the Vojta therapy. Trial registration Retrospectively registered. This randomized controlled trial has been registered at ClinicalTrials.gov Identifier: NCT04317950 (March 23, 2020).

Keywords: Brain activity; Cortical activation; Electroencephalography; Reflex locomotion; Tactile stimulation; Vojta therapy.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Fig. 1
Fig. 1
CONSORT flow diagram
Fig. 2
Fig. 2
Colored t-values of voxels at different frequency bands that presented statistically significant differences between the first resting minute and the 8-min stimulation period for the two groups of study (top). The arrows on the top right point to the only colored parts in the sham stimulation group
Fig. 3
Fig. 3
Colored t-values of voxels at different frequency bands that presented statistically significant differences between the first resting minute and last resting minute for the V-STI-group
Fig. 4
Fig. 4
Standardized source power differences with respect to the first resting minute in consecutive minutes of reflex locomotion stimulation at theta band (4–7 Hz) for the V-STI-group. Implicated Brodmann areas are sketched over the cortex template on the right, according to the LORETA-KEY software
Fig. 5
Fig. 5
Standardized source power differences with respect to the first resting minute in consecutive minutes of reflex locomotion stimulation at low alpha band (7–10 Hz) for the V-STI-group. Implicated Brodmann areas are sketched over the cortex template on the right, according to the LORETA-KEY software
Fig. 6
Fig. 6
Standardized source power differences with respect to the first resting minute in consecutive minutes of reflex locomotion stimulation at high alpha band (10–13 Hz) for the V-STI-group. Implicated Brodmann areas are sketched over the cortex template on the right, according to the LORETA-KEY software

References

    1. Juarez-Albuixech ML, Redondo-González O, Tello-Diaz I, Collado-Vazquez S, Jiménez AC. Vojta Therapy versus transcutaneous electrical nerve stimulation forlumbosciatica syndrome: a quasi-experimental pilot study. J Bodywork Mov Therap. 2020;24:39–46. doi: 10.1016/j.jbmt.2019.05.015.
    1. Gajewska E, Huber J, Kulczyk A, Lipiec J, Sobieska M. An attempt to explain the Vojta therapy mechanism of action using the surface polyelectromyography in healthy subjects: a pilot study. J Bodyw Mov Ther. 2018;22(2):287–292. doi: 10.1016/j.jbmt.2017.07.002.
    1. Perez Gorricho AM, Jiménez Antona C, Luna Oliva L, Collado Vázquez S. Terapia de la Locomoción Refleja del doctor Vojta. En: Cano de la Cuerda R. Neurorrehabilitación. Métodos específicos de valoración y tratamiento. Madrid: Editorial Médica Panamericana; 2012. pp. 323–29.
    1. Belda-Lois JM, Mena-del Horno S, Bermejo-Bosch I, Moreno JC, Pons JL, Farina D, Iosa M, Molinari M, Tamburella F, Ramos A, Caria A, Solis-Escalante T, Brunner C, Rea M. Rehabilitation of gait after stroke: a review towards a top-down approach. J Neuroeng Rehabil. 2011;8:66. doi: 10.1186/1743-0003-8-66.
    1. Vojta V. The basic elements of treatment according to Vojta. Management of the motor disorders of children with cerebral pals. Suffolk: Lavenham Press Ltd; 1984.
    1. Vojta V. Early diagnosis and therapy of cerebral motor disorders in childhood. A. Postural reflexes in developmental kinesiology Pathologic reactions. Z Orthop Ihre Grenzgeb. 1972;110:458–466.
    1. Vojta V. Early diagnosis and therapy of cerebral movement disorders in childhood. C. Reflexogenous locomotion–reflex creeping and réflex turning. The kinesiologic content and connection with the tonic neck reflexes. Z Orthop Ihre Grenzgeb. 1973;111:268–291.
    1. Bauer H, Appaji G, Mundt D. Vojta neurophysiologic therapy. Indian J Pediatr. 1992;59:37–51. doi: 10.1007/BF02760897.
    1. Ha SY, Sung YH. Effects of Vojta method on trunk stability in healthy individuals. J Exerc Rehabil. 2016;12(6):542–547. doi: 10.12965/jer.1632804.402.
    1. Sanz-Esteban I, Calvo-Lobo C, Ríos-Lago M, Álvarez-Linera J, Muñoz-García D, Rodríguez-Sanz D. Mapping the human brain during a specific Vojta's tactile input: the ipsilateral putamen's role. Medicine (Baltimore) 2018;97(13):253. doi: 10.1097/MD.0000000000010253.
    1. Hok P, Opavský J, Kutín M, Tüdös Z, Kaňovský P, Hluštík P. Modulation of the sensorimotor system by sustained manual pressure stimulation. Neuroscience. 2017;348:11–22. doi: 10.1016/j.neuroscience.2017.02.005.
    1. Hok P, Opavský J, Labounek R, Kutín M, Šlachtová M, Tüdös Z, Kaňovský P, Hluštík P. Differential Effects of Sustained Manual Pressure Stimulation According to Site of Action. Front Neurosci. 2019;13:722. doi: 10.3389/fnins.2019.00722.
    1. Chang MC, Ahn SH, Cho YW, Son SM, Kwon YH, Lee MY, et al. The comparison of cortical activation patterns by active exercise, proprioceptive input, and touch stimulation in the human brain: a functional MRI study. NeuroRehabilitation. 2009;25:87–92. doi: 10.3233/NRE-2009-0502.
    1. Vojta V. Early diagnosis and therapy of cerebral movement disorders in childhood. C. Reflexogenous locomotion–reflex creeping and reflex turning. The kinesiologic content and connection with the tonic neck reflexes. Z Orthop Ihre Grenzgeb. 1973;111:268–291.
    1. Ibáñez J, Monge E, Molina F, Serrano J, Del Castillo MD, Cuesta A, et al. Low latency estimation of motor intentions to assist reaching movements along multiple sessions in chronic stroke patients: a feasibility study. Front Neurosci. 2017;11:126.
    1. Mrachacz-Kersting N, Kristensen SR, Niazi IK, Farina D. Precise temporal association between cortical potentials evoked by motor imagination and afference induces cortical plasticity. J Physiol. 2012;590(7):1669–1682. doi: 10.1113/jphysiol.2011.222851.
    1. Niazi IK, Mrachacz-Kersting N, Jiang N, Dremstrup K, Farina D. Peripheral electrical stimulation triggered by self-paced detection of motor intention enhances motor evoked potentials. IEEE Trans Neural Syst Rehabil Eng. 2012;20(4):595–604. doi: 10.1109/TNSRE.2012.2194309.
    1. Schulz KF, Altman DG, Moher D. CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c332. doi: 10.1136/bmj.c332.
    1. Hagura N, Oouchida Y, Aramaki Y, Okada T, Matsumura M, Sadato N, et al. Visuokinesthetic perception of hand movement is mediated by cerebrocerebellar interaction between the left cerebellum and right parietal cortex. Cereb Corte. 2009;19(1):176–186. doi: 10.1093/cercor/bhn068.
    1. Ríos-Lago M, Alonso R, Periáñez J, Paúl N, Oliva P, Álvarez-Linera J. Tensor de difusión por resonancia magnética y velocidad de procesamiento: estudio de la sustancia blanca en pacientes con traumatismo craneoencefálico. Trauma Fund Mapfre. 2008;19(2):102–112.
    1. Grodd W, Hülsmann E, Lotze M, Wildgruber D, Erb M. Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp. 2001;13(2):55–73. doi: 10.1002/hbm.1025.
    1. Melero H, Ríos-Lago M, Peña-Melián A, Álvarez-Linera J. Achromatic synesthesias—a functional magnetic resonance imaging study. Neuroimage. 2014;98:416–424. doi: 10.1016/j.neuroimage.2014.05.019.
    1. Fermin AS, Yoshida T, Yoshimoto J, Ito M, Tanaka SC, Doya K. Model-based action planning involves cortico-cerebellar and basal ganglia networks. Sci Rep. 2016;6:31378. doi: 10.1038/srep31378.
    1. Gooijers J, Beets IA, Albouy G, Beeckmans K, Michiels K, Sunaert S, et al. Movement preparation and execution: differential functional activation patterns after traumatic brain injury. Brain. 2016;139(9):2469–2485. doi: 10.1093/brain/aww177.
    1. Chung YG, Han SW, Kim H, Chung S, Park J, Wallraven C, et al. Intra-and inter-hemispheric effective connectivity in the human somatosensory cortex during pressure stimulation. BMC Neurosci. 2014;15(1):43. doi: 10.1186/1471-2202-15-43.
    1. Chung YG, Han SW, Kim H, Chung S, Park J, Wallraven C, et al. Adaptation of cortical activity to sustained pressure stimulation on the fingertip. BMC Neurosci. 2015;16(1):71. doi: 10.1186/s12868-015-0207-x.
    1. El VV. principio Vojta. Barcelona: Springer; 1995.
    1. Vojta V, Schweitzer E. El descubrimiento de la motricidad ideal. Madrid: Ediciones Morata; 2011.
    1. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134(1):9–21. doi: 10.1016/j.jneumeth.2003.10.009.
    1. Chang C, Hsu S, Pion-Tonachini L, Jung T. Evaluation of Artifact Subspace Reconstruction for Automatic Artifact Components Removal in Multi-channel EEG Recordings. IEEE Trans Biomed Eng. 2019;67(4):1114–1121. doi: 10.1109/TBME.2019.2930186.
    1. Winkler I, Brandl S, Horn F, Waldburger E, Allefeld C, Tangermann M. Robust artifactual independent component classification for BCI practitioners. J Neural Eng. 2014;11(3):035013. doi: 10.1088/1741-2560/11/3/035013.
    1. Pascual-Marqui RD. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol. 2002;24:5–12.
    1. Helwig NE. Statistical nonparametric mapping: Multivariate permutation tests for location, correlation, and regression problems in neuroimaging. WIREs Comput Stat. 2019;11(2):e1457. doi: 10.1002/wics.1457.
    1. Passingham RE, Bengtsson SL, Lau HC. Medial frontal cortex: from self-generated action to reflection on one’s own performance. Trends Cogn Sci. 2009;2010(14):16–21.
    1. Malouin F, Richards CL, Jackson PL, Dumas F, Doyon J. Brain activations during motor imagery of locomotor-related tasks: a PET study. Hum Brain Mapp. 2003;19(1):47–62. doi: 10.1002/hbm.10103.
    1. Picard N, Strick PL. Imaging the premotor areas. Curr Opin Neurobiol. 2001;11:663–672. doi: 10.1016/S0959-4388(01)00266-5.
    1. Nachev P, Kennard C, Husain M. Functional role of the supplementary andpre-supplementary motor areas. Nat Rev Neurosci. 2008;9:856–869. doi: 10.1038/nrn2478.
    1. Tanji J. New concepts of the supplementary motor area. Curr Opin Neurobiol. 1996;6:782–787. doi: 10.1016/S0959-4388(96)80028-6.
    1. Cona G, Semenza C. Motor area as key structure for domain-generalsequence processing: a unified account. Neurosci Biobehav Rev. 2017;72:28–42. doi: 10.1016/j.neubiorev.2016.10.033.
    1. Akkal D, Dum RP. Strick PL Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output. J Neurosci. 2007;27:10659–10673. doi: 10.1523/JNEUROSCI.3134-07.2007.
    1. Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1983;9:357–381. doi: 10.1146/annurev.ne.09.030186.002041.
    1. Ruan J, Bludau S, Palomero-Gallagher N, Caspers S, Mohlberg H, Eickhoff SB, Seitz RJ. Cytoarchitecture, prob-ability maps, and functions of the human supplementary and pre-supplementary motor areas. Brain Struct Funct. 2018;223(9):4169–4186. doi: 10.1007/s00429-018-1738-6.
    1. Naito E, Morita T, Amemiya K. Body representations in thehuman brain revealed by kinesthetic illusions and their essentialcontributions to motor control and corporeal awareness. NeurosciRes. 2016;104:16–30.
    1. Lehericy S, Benali H, Van de Moortele PF, Pelegrini-Issac M, Waechter T, Ugurbil K, et al. Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proc Natl Acad Sci USA. 2005;102(35):12566–12571. doi: 10.1073/pnas.0502762102.
    1. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–434. doi: 10.1146/annurev.neuro.31.060407.125606.
    1. Naito E, Matsumoto R, Hagura N, Oouchida Y, Tomimoto H, Hanakawa T. Importance of precentral motor regions inhuman kinesthesia: a single case study. Neurocase. 2010;17(2):133–147. doi: 10.1080/13554794.2010.498428.
    1. Naito E, Scheperjans F, Eickhoff SB, Amunts K, Roland PE, Zilles K, Ehrsson HH. Human superior parietal lobule is involved in somatic perception of bimanual interaction with an external object. J Neurophysiol. 2008;99:695–703. doi: 10.1152/jn.00529.2007.
    1. Whitlock JR. Posterior parietal cortex. Curr Biol. 2017;27:691–695. doi: 10.1016/j.cub.2017.06.007.
    1. Balser N, Lorey B, Pilgramm S, et al. The influence of expertise on brain activation of the action observation network during anticipation of tennis and volleyball serves. Front Hum Neurosci. 2014;8:568. doi: 10.3389/fnhum.2014.00568.
    1. Smith DM. Neurophysiology of action anticipation in athletes: a systematic review. Neurosci Biobehav Rev. 2015;60:115–120. doi: 10.1016/j.neubiorev.2015.11.007.
    1. Vogt C, Vogt O. Design of topical brain research and its promotion by brain construction and its anomalies. J Hirnforschung. 1954;1:1–46.
    1. Foerster O. Motorized fields and tracks. 6. Berlin: Sonderdruck aus Handbuch der Neurologie; 1936.
    1. Kleist K. Gehirnpathologie : vornehmlich auf Grund der Kriegserfahrungen. Leipzig: Barth; 1934.
    1. Wright KP, Badia P, Wauquier A. Topographical and temporal patterns of brain activity during the transition from wakefulness to sleep. Sleep. 1995;18(10):880–889. doi: 10.1093/sleep/18.10.880.
    1. De Gennaro L, Ferrara M, Curcio G, Cristiani R. Antero-posterior EEG changes during the wakefulness-sleep transition. Clin Neurophysiol. 2001;112(10):1901–1911. doi: 10.1016/S1388-2457(01)00649-6.
    1. Li Y, Tang X, Xu Z, Liu W, Li J. Temporal correlation between two channels EEG of bipolar lead in the head midline is associated with sleep-wake stages. Australas Phys Eng Sci. 2016;39(1):147–155. doi: 10.1007/s13246-015-0409-7.
    1. Song J, Davey C, Poulsen C, Luu P, Turovets S, Anderson E, et al. EEG source localization: sensor density and head surface coverage. J Neurosci Methods. 2015;256:9–21. doi: 10.1016/j.jneumeth.2015.08.015.

Source: PubMed

3
購読する