Markers of endothelial and epithelial pulmonary injury in mechanically ventilated COVID-19 ICU patients

Savino Spadaro, Alberto Fogagnolo, Gianluca Campo, Ottavio Zucchetti, Marco Verri, Irene Ottaviani, Tanushree Tunstall, Salvatore Grasso, Valentina Scaramuzzo, Francesco Murgolo, Elisabetta Marangoni, Francesco Vieceli Dalla Sega, Francesca Fortini, Rita Pavasini, Paola Rizzo, Roberto Ferrari, Alberto Papi, Carlo Alberto Volta, Marco Contoli, Savino Spadaro, Alberto Fogagnolo, Gianluca Campo, Ottavio Zucchetti, Marco Verri, Irene Ottaviani, Tanushree Tunstall, Salvatore Grasso, Valentina Scaramuzzo, Francesco Murgolo, Elisabetta Marangoni, Francesco Vieceli Dalla Sega, Francesca Fortini, Rita Pavasini, Paola Rizzo, Roberto Ferrari, Alberto Papi, Carlo Alberto Volta, Marco Contoli

Abstract

Background: Biomarkers can be used to detect the presence of endothelial and/or alveolar epithelial injuries in case of ARDS. Angiopoietin-2 (Ang-2), soluble intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion protein-1 (VCAM-1), P-selectin and E-selectin are biomarkers of endothelial injury, whereas the receptor for advanced glycation end-products (RAGE) reflects alveolar epithelial injury. The aims of this study were to evaluate whether the plasma concentration of the above-mentioned biomarkers was different 1) in survivors and non-survivors of COVID-19-related ARDS and 2) in COVID-19-related and classical ARDS.

Methods: This prospective study was performed in two COVID-19-dedicated Intensive Care Units (ICU) and one non-COVID-19 ICU at Ferrara University Hospital. A cohort of 31 mechanically ventilated patients with COVID-19 ARDS and a cohort of 11 patients with classical ARDS were enrolled. Ang-2, ICAM-1, VCAM-1, P-selectin, E-selectin and RAGE were determined with a bead-based multiplex immunoassay at three time points: inclusion in the study (T1), after 7 ± 2 days (T2) and 14 ± 2 days (T3). The primary outcome was to evaluate the plasma trend of the biomarker levels in survivors and non-survivors. The secondary outcome was to evaluate the differences in respiratory mechanics variables and gas exchanges between survivors and non-survivors. Furthermore, we compared the plasma levels of the biomarkers at T1 in patients with COVID-19-related ARDS and classical ARDS.

Results: In COVID-19-related ARDS, the plasma levels of Ang-2 and ICAM-1 at T1 were statistically higher in non-survivors than survivors, (p = 0.04 and p = 0.03, respectively), whereas those of P-selectin, E-selectin and RAGE did not differ. Ang-2 and ICAM-1 at T1 were predictors of mortality (AUROC 0.650 and 0.717, respectively). At T1, RAGE and P-selectin levels were higher in classical ARDS than in COVID-19-related ARDS. Ang-2, ICAM-1 and E-selectin were lower in classical ARDS than in COVID-19-related ARDS (all p < 0.001).

Conclusions: COVID-19 ARDS is characterized by an early pulmonary endothelial injury, as detected by Ang-2 and ICAM-1. COVID-19 ARDS and classical ARDS exhibited a different expression of biomarkers, suggesting different pathological pathways. Trial registration NCT04343053 , Date of registration: April 13, 2020.

Keywords: Acute respiratory distress syndrome; Angiopoietin-2; Biomarkers; COVID-19; Intercellular adhesion molecule-1; Receptor for advanced glycation end-products; Selectin; Vascular cell adhesion protein 1.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Box-and-whisker plot for comparison of the biomarkers in survivors (n = 20) and non-survivors COVID-19 (n = 11) patients at the inclusion of the study
Fig. 2
Fig. 2
Density distribution of six mediators; RAGE, ANG-2, ICAM-1, VCAM-1, P-Selectin, E-Selectin measured in serum samples collected at timepoint 1. The distribution is colored according to patient outcome, where red relates to patients who died, while blue denotes patients who recovered (survivors, n = 20). The horizontal axis represents the Log10 levels of mediators measured in pg/mL for RAGE and ANG-2 and in ng/mL for ICAM-1, VCAM-1, P-Selectin and E-Selectin. The vertical axis corresponds to the respective mediators. Figure generated using R statistical software, version 4.0.2

References

    1. Dequin P, Heming N, Meziani F, et al. Effect of hydrocortisone on 21-day mortality or respiratory support among critically ill patients with COVID-19: a randomized clinical trial. JAMA. 2020;324(13):1298–1306. doi: 10.1001/jama.2020.16761.
    1. Gamberini, L., Tonetti, T., Spadaro, S. et al. Factors influencing liberation from mechanical ventilation in coronavirus disease 2019: multicenter observational study in fifteen Italian ICUs. j intensive care 8, 80 (2020).
    1. Grasselli G, Greco M, Zanella A, et al. Risk factors associated with mortality among patients with COVID-19 in intensive care units in Lombardy, Italy. JAMA Intern Med. 2020;180(10):1345–1355. doi: 10.1001/jamainternmed.2020.3539.
    1. Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, Vanstapel A, Werlein C, Stark H, Tzankov A, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020;383(2):120–128. doi: 10.1056/NEJMoa2015432.
    1. Carsana L, Sonzogni A, Nasr A, Rossi RS, Pellegrinelli A, Zerbi P, et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. Lancet Infect Dis. 2020;20(10):1135–1140. doi: 10.1016/S1473-3099(20)30434-5.
    1. Calfee CS, Ware LB, Eisner MD, Parsons PE, Thompson BT, Wickersham N, Matthay MA. Plasma receptor for advanced glycation end-products and clinical outcomes in acute lung injury. Thorax. 2008;63:1083–1089. doi: 10.1136/thx.2008.095588.
    1. Calfee CS, Gallagher D, Abbott J, et al. Plasma angiopoietin-2 in clinical acute lung injury: prognostic and pathogenetic significance. Crit Care Med. 2012;40:1731–1737. doi: 10.1097/CCM.0b013e3182451c87.
    1. Calfee CS, Eisner MD, Parsons PE, Thompson BT, Conner ER, Jr, Matthay MA, Ware LB. Soluble intercellular adhesion molecule-1 and clinical outcomes in patients with acute lung injury. Intensive Care Med. 2009;35:248–257. doi: 10.1007/s00134-008-1235-0.
    1. Spadaro S, Park M, Turrini C, et al. Biomarkers for Acute Respiratory Distress syndrome and prospects for personalised medicine. J Inflamm. 2019;16:1. doi: 10.1186/s12950-018-0202-y.
    1. Grasselli G, Tonetti T, Protti A, Langer T, Girardis M, Bellani G, et al. Pathophysiology of COVID-19-associated acute respiratory distress syndrome: a multicentre prospective observational study. Lancet Respir Med. 2020;8(12):1201–1208. doi: 10.1016/S2213-2600(20)30370-2.
    1. Gattinoni L, Chiumello D, Rossi S. COVID-19 pneumonia: ARDS or not? Crit Care. 2020;24:154. doi: 10.1186/s13054-020-02880-z.
    1. Pan C, Chen L, Lu C, Zhang W, Xia JA, Sklar MC, Du B, Brochard L, Qiu H. Lung recruitability in COVID-19-associated acute respiratory distress syndrome: a single-center observational study. Am J Respir Crit Care Med. 2020;201(10):1294–1297. doi: 10.1164/rccm.202003-0527LE.
    1. Grasso S, Mirabella L, Murgolo F, Di Mussi R, Pisani L, Dalfino L, Spadaro S, Rauseo M, Lamanna A, Cinnella G. Effects of positive end-expiratory pressure in "high compliance" severe acute respiratory syndrome coronavirus 2 acute respiratory distress syndrome. Crit Care Med. 2020;48(12):e1332–e1336. doi: 10.1097/CCM.0000000000004640.
    1. Bonny V, Janiak V, Spadaro S, Pinna A, Demoule A, Dres M. Effect of PEEP decremental on respiratory mechanics, gasses exchanges, pulmonary regional ventilation, and hemodynamics in patients with SARS-Cov-2-associated acute respiratory distress syndrome. Crit Care. 2020: 6;24(1):596.
    1. Ferrando C, Suarez-Sipmann F, Mellado-Artigas R, Hernández M, Gea A, Arruti E, Aldecoa C, et al. Clinical features, ventilatory management, and outcome of ARDS caused by COVID-19 are similar to other causes of ARDS. Intensive Care Med. 2020;46(12):2200–2211. doi: 10.1007/s00134-020-06192-2.
    1. Alhazzani W, Møller MH, Arabi YM, et al. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19) Intensive Care Med. 2020;46(5):854–887. doi: 10.1007/s00134-020-06022-5.
    1. Robba C, Battaglini D, Pelosi P, Rocco PRM. Multiple organ dysfunction in SARS-CoV-2: MODS-CoV-2. Expert Rev Respir Med. 2020;14(9):865–868. doi: 10.1080/17476348.2020.1778470.
    1. Bhandari V, Choo-Wing R, Lee CG, Zhu Z, Nedrelow JH, Chupp GL, Zhang X, Matthay MA, Ware LB, Homer RJ, et al. Hyperoxia causes angiopoietin 2-mediated acute lung injury and necrotic cell death. Nat Med. 2006;12:1286–1293. doi: 10.1038/nm1494.
    1. Parikh SM, Mammoto T, Schultz A, Yuan HT, Christiani D, Karumanchi SA, Sukhatme VP. Excess circulating angiopoietin-2 may contribute to pulmonary vascular leak in sepsis in humans. PLoS Med. 2006;3(3):e46. doi: 10.1371/journal.pmed.0030046.
    1. Schmal H, Czermak BJ, Lentsch AB, Bless NM, Beck-Schimmer B, Friedl HP, Ward PA. Soluble ICAM-1 activates lung macrophages and enhances lung injury. J Immunol. 1998 1;161(7):3685–93.
    1. Zhang L, Yan X, Fan Q, et al. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J Thromb Haemost. 2020;18:1324–1329. doi: 10.1111/jth.14859.
    1. Lippi G, Favaloro EJ. D-dimer is associated with severity of coronavirus disease 2019: a pooled analysis. Thromb Haemost. 2020;120(5):876–878. doi: 10.1055/s-0040-1709650.
    1. Spagnolo P, Balestro E, Aliberti S, Cocconcelli E, Biondini D, Casa GD, Sverzellati N, Maher TM. Pulmonary fibrosis secondary to COVID-19: A call to arms? Lancet Respir Med. 2020;8(8):750–752. doi: 10.1016/S2213-2600(20)30222-8.
    1. Englert JM, Hanford LE, Kaminski N, Tobolewski JM, Tan RJ, Fattman CL, Ramsgaard L, Richards TJ, Loutaev I, Nawroth PP, Kasper M, Bierhaus A, Oury TD. A role for the receptor for advanced glycation end products in idiopathic pulmonary fibrosis. Am J Pathol. 2008;172(3):583–591. doi: 10.2353/ajpath.2008.070569.
    1. Smith DJ, Yerkovich ST, Towers MA, Carroll ML, Thomas R, Upham JW. Reduced soluble receptor for advanced glycation end-products in COPD. Eur Respir J. 2011;37(3):516–522. doi: 10.1183/09031936.00029310.
    1. Takahashi T, Kobayashi S, Fujino N, et al. Increased circulating endothelial microparticles in COPD patients: a potential biomarker for COPD exacerbation susceptibility. Thorax. 2012;67(12)
    1. Del Sorbo L, Goffi A, Tomlinson G, Pettenuzzo T, Facchin F, Vendramin A, et al. Effect of driving pressure change during extracorporeal membrane oxygenation in adults with acute respiratory distress syndrome: a randomized crossover physiologic study. Crit Care Med. 2020;48(12):1771–1778. doi: 10.1097/CCM.0000000000004637.
    1. Lagier D, Velly LJ, Guinard B, Bruder N, Guidon C, Vidal Melo MF, Alessi MC. Perioperative open-lung approach, regional ventilation, and lung injury in cardiac surgery. Anesthesiology. 2020;133(5):1029–1045. doi: 10.1097/ALN.0000000000003539.
    1. Uchida T, Shirasawa M, Ware LB, Kojima K, Hata Y, Makita K, et al. Receptor for advanced glycation end-products is a marker of type I cell injury in acute lung injury. Am J Respir Crit Care Med. 2006;173(9):1008–1015. doi: 10.1164/rccm.200509-1477OC.
    1. Jabaudon M, Berthelin P, Pranal T, Roszyk L, Godet T, Faure JS, et al. Receptor for advanced glycation end-products and ARDS prediction: a multicentre observational study. Sci Rep. 2018;8(1):2603. doi: 10.1038/s41598-018-20994-x.

Source: PubMed

3
購読する