Identifying predictive features of Clostridium difficile infection recurrence before, during, and after primary antibiotic treatment

Sepideh Pakpour, Amit Bhanvadia, Roger Zhu, Abhimanyu Amarnani, Sean M Gibbons, Thomas Gurry, Eric J Alm, Laura A Martello, Sepideh Pakpour, Amit Bhanvadia, Roger Zhu, Abhimanyu Amarnani, Sean M Gibbons, Thomas Gurry, Eric J Alm, Laura A Martello

Abstract

Background: Colonization by the pathogen Clostridium difficile often occurs in the background of a disrupted microbial community. Identifying specific organisms conferring resistance to invasion by C. difficile is desirable because diagnostic and therapeutic strategies based on the human microbiota have the potential to provide more precision to the management and treatment of Clostridium difficile infection (CDI) and its recurrence.

Methods: We conducted a longitudinal study of adult patients diagnosed with their first CDI. We investigated the dynamics of the gut microbiota during antibiotic treatment, and we used microbial or demographic features at the time of diagnosis, or after treatment, to predict CDI recurrence. To check the validity of the predictions, a meta-analysis using a previously published dataset was performed.

Results: We observed that patients' microbiota "before" antibiotic treatment was predictive of disease relapse, but surprisingly, post-antibiotic microbial community is indistinguishable between patients that recur or not. At the individual OTU level, we identified Veillonella dispar as a candidate organism for preventing CDI recurrence; however, we did not detect a corresponding signal in the conducted meta-analysis.

Conclusion: Although in our patient population, a candidate organism was identified for negatively predicting CDI recurrence, results suggest the need for larger cohort studies that include patients with diverse demographic characteristics to generalize species that robustly confer colonization resistance against C. difficile and accurately predict disease relapse.

Conflict of interest statement

Ethics approval and consent to participate

Written informed consent was obtained from participants at enrollment. This study was approved by the Institutional Review Board (IRB) at State University of New York Downstate Medical Center and the Massachusetts Institute of Technology.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Hierarchically clustered heatmaps showing weighted UniFrac distances (β-diversity) between patient samples prior to antibiotic treatment (a), following antibiotic treatment (b), prior to discharge from hospital (c), and following discharge from hospital (d). Light purple indicates samples that are similar to one another, while dark purple shows highly dissimilar samples. The colored bars next to each row indicate disease severity (healthy, moderate CDI, and severe CDI). Colored bars above columns indicate CDI recurrence
Fig. 2
Fig. 2
Boxplots show distributions of Shannon’s diversities (α-diversity) for patients that did or did not show CDI recurrence across multiple time points (pre- and post-treatment and pre- and post-discharge). The only time point when there was a significant difference in Shannon’s diversity between recurrent and non-recurrent patients was pre-treatment
Fig. 3
Fig. 3
Principal Coordinate Analysis (PCoA) plots showing β-diversity differences between recurrent and non-recurrent patient samples at the pre-treatment (a), post-treatment (b), pre-discharge (c), and post-discharge (d) time points. The only time point when there was a significant difference in community structure (β-diversity) between recurrent and non-recurrent patients was pre-treatment
Fig. 4
Fig. 4
Relative abundances of bacterial phyla in recurrent vs. non-recurrent patients across the different sampling time points
Fig. 5
Fig. 5
Bar plots show the relative abundance of Veillonella dispar OTU (predictive of CDI recurrence in our random forest model) in recurrent vs. non-recurrent patients across the different sampling time points. A significant difference in relative abundance of Veilonella dispar was observed between recurrent (n = 10) and non-recurrent (n = 21) patients (Mann-Whitney U test, adjusted p value = 0.026) at the pre-treatment time. All the p values were adjusted using the FDR correction

References

    1. Kuijper EJ, Coignard B, Tull P, ESCMID Study Group for Clostridium difficile. European Centre for Disease Prevention and Control Emergence of Clostridium difficile-associated disease in North America and Europe. Clin Microbiol Infect. 2006;12:2–18. doi: 10.1111/j.1469-0691.2006.01580.x.
    1. Banaei N, Anikst V, Schroeder LF. Burden of Clostridium difficile infection in the United States. N Engl J Med. 2015;372:2368–2369. doi: 10.1056/NEJMc1505190.
    1. Gravel D, Miller M, Simor A, Taylor G, Gardam M, McGeer A, Hutchinson J, Moore D, Kelly S, Boyd D, et al. Health care-associated Clostridium difficile infection in adults admitted to acute care hospitals in Canada: a Canadian nosocomial infection surveillance program study. Clin Infect Dis. 2009;48:568–576. doi: 10.1086/596703.
    1. Cheng JW, Xiao M, Kudinha T, Xu ZP, Hou X, Sun LY, Zhang L, Fan X, Kong FR, Xu YC. The first two Clostridium difficile ribotype 027/st1 isolates identified in Beijing, China—an emerging problem or a neglected threat? Sci Rep. 2016;6:1–8.
    1. Jones AM, Kuijper EJ, Wilcox MH. Clostridium difficile: a European perspective. J Infect. 2013;66:115–128. doi: 10.1016/j.jinf.2012.10.019.
    1. Kola A, Wiuff C, Akerlund T, van Benthem BH, Coignard B, Lyytikainen O, Weitzel-Kage D, Suetens C, Wilcox MH, Kuijper EJ, et al. Survey of Clostridium difficile infection surveillance systems in Europe, 2011. Eur Secur. 2016;21:5–12.
    1. Kelly CP, LaMont JT. Clostridium difficile—more difficult than ever. N Engl J Med. 2008;359
    1. Dallal RM, Harbrecht BG, Boujoukas AJ, Sirio CA, Farkas LM, Lee KK, Simmons RL. Fulminant Clostridium difficile: an underappreciated and increasing cause of death and complications. Ann Surg. 2002;235:363–372. doi: 10.1097/00000658-200203000-00008.
    1. Forster AJ, Taljaard M, Oake N, Wilson K, Roth V, van Walraven C. The effect of hospital-acquired infection with Clostridium difficile on length of stay in hospital. Can Med Assoc J. 2012;184:37–42. doi: 10.1503/cmaj.110543.
    1. Khanna S, Gupta A, Baddour LM, Pardi DS. Epidemiology, outcomes, and predictors of mortality in hospitalized adults with Clostridium difficile infection. Intern Emerg Med. 2016;11:657–665. doi: 10.1007/s11739-015-1366-6.
    1. Khanna S, Pardi DS. The growing incidence and severity of Clostridium difficile infection in inpatient and outpatient settings. Expert Review of Gastroenterology & Hepatology. 2010;4:409–416. doi: 10.1586/egh.10.48.
    1. Dos Santos-Schaller O, Boisset S, Seigneurin A, Epaulard O. Recurrence and death after Clostridium difficile infection: gender-dependant influence of proton pump inhibitor therapy. Spring. 2016;5:1–5.
    1. Kwok CS, Arthur AK, Anibueze CI, Singh S, Cavallazzi R, Loke YK. Risk of Clostridium difficile infection with acid suppressing drugs and antibiotics: meta-analysis. Am J Gastroenterol. 2012;107:1011–1019. doi: 10.1038/ajg.2012.108.
    1. Khanna S, Pardi DS. Clostridium difficile infection: new insights into management. Mayo Clin Proc. 2012;87:1106–1117. doi: 10.1016/j.mayocp.2012.07.016.
    1. Khanna S, Pardi DS. Clostridium difficile infection: management strategies for a difficult disease. Ther Adv Gastroenterol. 2014;7:72–86. doi: 10.1177/1756283X13508519.
    1. Vardakas KZ, Polyzos KA, Patouni K, Rafailidis PI, Samonis G, Falagas ME. Treatment failure and recurrence of Clostridium difficile infection following treatment with vancomycin or metronidazole: a systematic review of the evidence. Int J Antimicrob Agents. 2012;40:1–8. doi: 10.1016/j.ijantimicag.2012.01.004.
    1. McDonald LC, Coignard B, Dubberke E, Song XY, Horan T, Kutty PK, Ad Hoc Clostridium Difficile S Recommendations for surveillance of Clostridium difficile associated disease. Infect Control Hosp Epidemiol. 2007;28:140–145. doi: 10.1086/511798.
    1. Shivashankar R, Khanna S, Kammer PP, Harmsen WS, Zinsmeister AR, Baddour LM, Pardi DS. Clinical factors associated with development of severe-complicated Clostridium difficile infection. Clin Gastroenterol Hepatol. 2013;11:1466–1471. doi: 10.1016/j.cgh.2013.04.050.
    1. Zhang FM, Luo WS, Shi Y, Fan ZN, Ji GZ. Should we standardize the 1,700-year-old fecal microbiota transplantation? Am J Gastroenterol. 2012;107:1755–5.
    1. Guo B, Harstall C, Louie T, van Zanten SV, Dieleman LA. Systematic review: faecal transplantation for the treatment of Clostridium difficile-associated disease. Aliment Pharmacol Ther. 2012;35:865–875. doi: 10.1111/j.1365-2036.2012.05033.x.
    1. Theriot CM, Koenigsknecht MJ, Carlson PE, Hatton GE, Nelson AM, Li B, Huffnagle GB, Li JZ, Young VB. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat Commun. 2014;5:1–10.
    1. Khanna S, Montassier E, Schmidt B, Patel R, Knights D, Pardi DS, Kashyap PC. Gut microbiome predictors of treatment response and recurrence in primary Clostridium difficile infection. Aliment Pharmacol Ther. 2016;44:715–727. doi: 10.1111/apt.13750.
    1. Antharam VC, Li EC, Ishmael A, Sharma A, Mai V, Rand KH, Wang GP. Intestinal dysbiosis and depletion of butyrogenic bacteria in Clostridium difficile infection and nosocomial diarrhea. J Clin Microbiol. 2013;51:2884–2892. doi: 10.1128/JCM.00845-13.
    1. Chang JY, Antonopoulos DA, Kalra A, Tonelli A, Khalife WT, Schmidt TM, Young VB. Decreased diversity of the fecal microbiome in recurrent Clostridium difficile-associated diarrhea. J Infect Dis. 2008;197:435–438. doi: 10.1086/525047.
    1. Schubert AM, Rogers MAM, Ring C, Mogle J, Petrosino JP, Young VB, Aronoff DM, Schloss PD. Microbiome data distinguish patients with Clostridium difficile infection and non-C. difficile-associated diarrhea from healthy controls. MBio. 2014;5:1–9.
    1. Allegretti JR, Kearney S, Li N, Bogart E, Bullock K, Gerber GK, Bry L, Clish CB, Alm E, Korzenik JR. Recurrent Clostridium difficile infection associates with distinct bile acid and microbiome profiles. Aliment Pharmacol Ther. 2016;43:1142–1153. doi: 10.1111/apt.13616.
    1. Seekatz AM, Young VB. Clostridium difficile and the microbiota. J Clin Investig. 2014;124:4182–4189. doi: 10.1172/JCI72336.
    1. Antharam VC, McEwen DC, Garrett TJ, Dossey AT, Li EC, Kozlov AN, Mesbah Z, Wang GP. An integrated metabolomic and microbiome analysis identified specific gut microbiota associated with fecal cholesterol and coprostanol in clostridium difficile infection. PLoS One. 2016;11:1–23.
    1. Gujja D, Friedenberg FK. Predictors of serious complications due to Clostridium difficile infection. Aliment Pharmacol Ther. 2009;29:635–642. doi: 10.1111/j.1365-2036.2008.03914.x.
    1. McEllistrem MC, Carman RJ, Gerding DN, Genheimer CW, Zheng L. A hospital outbreak of Clostridium difficile disease associated with isolates carrying binary toxin genes. Clin Infect Dis. 2005;40:265–272. doi: 10.1086/427113.
    1. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–336. doi: 10.1038/nmeth.f.303.
    1. Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–98.
    1. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–2461.
    1. McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012;6:610–618. doi: 10.1038/ismej.2011.139.
    1. Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics. 2010;26:266–267. doi: 10.1093/bioinformatics/btp636.
    1. Price MN, Dehal PS, Arkin AP. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5
    1. Wilson KH. The microecology of Clostridium difficile. Clin Infect Dis. 1993;16:S214–S218. doi: 10.1093/clinids/16.Supplement_4.S214.
    1. Sorg JA, Sonenshein AL. Bile salts and glycine as cogerminants for Clostridium difficile spores. J Bacteriol. 2008;190:2505–2512. doi: 10.1128/JB.01765-07.
    1. Buffie CG, Bucci V, Stein RR, McKenney PT, Ling LL, Gobourne A, No D, Liu H, Kinnebrew M, Viale A, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature. 2015;517:205–U207. doi: 10.1038/nature13828.
    1. Vanderwaaij D. Colonization resistance of the digestive tract—mechanism and clinical consequences. Nahrung/Food. 1987;31:507–517. doi: 10.1002/food.19870310551.
    1. Van der Waaij D, Berghuis-de Vries JM, Lekkerkerk-van der Wees JEC. Colonization resistance of the digestive tract in conventional and antibiotic-treated mice. J Hyg. 1971;69:405–411. doi: 10.1017/S0022172400021653.
    1. Wilson M. Microbial inhabitants of humans: their ecology and role in health and disease. New York: Cambridge University Press; 2005.
    1. Yap IKS, Li JV, Saric J, Martin FP, Davies H, Wang YL, Wilson ID, Nicholson JK, Utzinger J, Marchesi JR, Holmes E. Metabonomic and microbiological analysis of the dynamic effect of vancomycin-induced gut microbiota modification in the mouse. J Proteome Res. 2008;7:3718–3728. doi: 10.1021/pr700864x.
    1. Wlodarska M, Willing B, Keeney KM, Menendez A, Bergstrom KS, Gill N, Russell SL, Vallance BA, Finlay BB. Antibiotic treatment alters the colonic mucus layer and predisposes the host to exacerbated Citrobacter rodentium-induced colitis. Infect Immun. 2011;79:1536–1545. doi: 10.1128/IAI.01104-10.
    1. Ghosh S, Dai C, Brown K, Rajendiran E, Makarenko S, Baker J, Ma C, Halder S, Montero M, Ionescu VA, et al. Colonic microbiota alters host susceptibility to infectious colitis by modulating inflammation, redox status, and ion transporter gene expression. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2011;301:G39–G49. doi: 10.1152/ajpgi.00509.2010.
    1. Johansson MEV, Jakobsson HE, Holmen-Larsson J, Schutte A, Ermund A, Rodriguez-Pineiro AM, Arike L, Wising C, Svensson F, Backhed F, Hansson GC. Normalization of host intestinal mucus layers requires long-term microbial colonization. Cell Host Microbe. 2015;18:582–592. doi: 10.1016/j.chom.2015.10.007.
    1. Fischbach MA, Segre JA. Signaling in host-associated microbial communities. Cell. 2016;164:1288–1300. doi: 10.1016/j.cell.2016.02.037.
    1. Bien J, Palagani V, Bozko P. The intestinal microbiota dysbiosis and Clostridium difficile infection: is there a relationship with inflammatory bowel disease? Ther Adv Gastroenterol. 2013;6:53–68. doi: 10.1177/1756283X12454590.
    1. Reeves AE, Koenigsknecht MJ, Bergin IL, Young VB. Suppression of clostridium difficile in the gastrointestinal tracts of germfree mice inoculated with a murine isolate from the family lachnospiraceae. Infect Immun. 2012;80:3786–3794. doi: 10.1128/IAI.00647-12.
    1. Cook SI, Sellin JH. Review article: short chain fatty acids in health and disease. Aliment Pharmacol Ther. 1998;12:499–507. doi: 10.1046/j.1365-2036.1998.00337.x.
    1. Wong JMW, de Souza R, Kendall CWC, Emam A, Jenkins DJA. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol. 2006;40:235–243. doi: 10.1097/00004836-200603000-00015.

Source: PubMed

3
購読する