Bifunctional anti-PD-L1/TGF-βRII agent SHR-1701 in advanced solid tumors: a dose-escalation, dose-expansion, and clinical-expansion phase 1 trial

Dan Liu, Jun Zhou, Yongsheng Wang, Mingjun Li, Haiping Jiang, Yunpeng Liu, Xianli Yin, Minghua Ge, Xiaojun Xiang, Jieer Ying, Jian Huang, Yan-Qiao Zhang, Ying Cheng, Zhigang Huang, Xianglin Yuan, Weiqing Han, Dong Yan, Xinshuai Wang, Pan Liu, Linna Wang, Xiaojing Zhang, Suxia Luo, Tianshu Liu, Lin Shen, Dan Liu, Jun Zhou, Yongsheng Wang, Mingjun Li, Haiping Jiang, Yunpeng Liu, Xianli Yin, Minghua Ge, Xiaojun Xiang, Jieer Ying, Jian Huang, Yan-Qiao Zhang, Ying Cheng, Zhigang Huang, Xianglin Yuan, Weiqing Han, Dong Yan, Xinshuai Wang, Pan Liu, Linna Wang, Xiaojing Zhang, Suxia Luo, Tianshu Liu, Lin Shen

Abstract

Background: Dual inhibition of PD-1/PD-L1 and TGF-β pathways is a rational therapeutic strategy for malignancies. SHR-1701 is a new bifunctional fusion protein composed of a monoclonal antibody against PD-L1 fused with the extracellular domain of TGF-β receptor II. This first-in-human trial aimed to assess SHR-1701 in pretreated advanced solid tumors and find the population who could benefit from SHR-1701.

Methods: This was a dose-escalation, dose-expansion, and clinical-expansion phase 1 study. Dose escalation was initiated by accelerated titration (1 mg/kg q3w; intravenous infusion) and then switched to a 3+3 scheme (3, 10, 20, and 30 mg/kg q3w and 30 mg/kg q2w), followed by dose expansion at 10, 20, and 30 mg/kg q3w and 30 mg/kg q2w. The primary endpoints of the dose-escalation and dose-expansion parts were the maximum tolerated dose and recommended phase 2 dose. In the clinical-expansion part, selected tumors were enrolled to receive SHR-1701 at the recommended dose, with a primary endpoint of confirmed objective response rate (ORR).

Results: In total, 171 patients were enrolled (dose-escalation: n=17; dose-expansion, n=33; clinical-expansion, n=121). In the dose-escalation part, no dose-limiting toxicity was observed, and the maximum tolerated dose was not reached. SHR-1701 showed a linear dose-exposure relationship and the highest ORR at 30 mg/kg every 3 weeks, without obviously aggravated toxicities across doses in the dose-escalation and dose-expansion parts. Combined, 30 mg/kg every 3 weeks was determined as the recommended phase 2 dose. In the clinical-expansion part, SHR-1701 showed the most favorable efficacy in the gastric cancer cohort, with an ORR of 20.0% (7/35; 95% CI, 8.4-36.9) and a 12-month overall survival rate of 54.5% (95% CI, 29.5-73.9). Grade ≥3 treatment-related adverse events occurred in 37 of 171 patients (22%), mainly including increased gamma-glutamyltransferase (4%), increased aspartate aminotransferase (3%), anemia (3%), hyponatremia (3%), and rash (2%). Generally, patients with PD-L1 CPS ≥1 or pSMAD2 histochemical score ≥235 had numerically higher ORR.

Conclusions: SHR-1701 showed an acceptable safety profile and encouraging antitumor activity in pretreated advanced solid tumors, especially in gastric cancer, establishing the foundation for further exploration.

Trial registration: ClinicalTrials.gov , NCT03710265.

Keywords: Immunotherapy; PD-L1; SHR-1701; TGF-β; Tumor.

Conflict of interest statement

PL, LW, and XZ are employees of Jiangsu Hengrui Pharmaceuticals. The other authors declare no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Pharmacokinetic profile and pharmacodynamic activity. A Semi-logarithm mean serum concentration–time profiles of SHR-1701. Error bars represent standard deviation. B PD-1 target occupancy following SHR-1701 treatment. There was a sharp decrease in the patient in the 1 mg/kg every 3 weeks group on C5D1 before administration, which might be caused by delayed treatment (interval between C4D1 and C5D1, 27 days). The patient withdrew from the study after C5D1. In the 10 mg/kg every 3 weeks group, PD-L1 target occupancy of 1 patient decreased to 25% on C5D1, but reached saturated level before administration on C9D1. All the remaining patients had a sustained and saturated PD-L1 target occupancy throughout the study. C TGF-β1 concentrations following SHR-1701 treatment. The free TGF-β1 level in the patient in the 1 mg/kg every 3 weeks group sharply increased on C5D1 before administration. In addition to treatment delay, low dose level might be the reason. PD-L1, programmed death ligand 1; TGF-β1, transforming growth factor-β 1; EOT, end of treatment; EOS, end of study
Fig. 2
Fig. 2
Tumor responses in select tumors at the recommended dose (30 mg/kg every 3 weeks). A Best percentage change from baseline in target lesion size. B Tumor responses per RECIST v1.1 over time

References

    1. Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med. 2017;377:2500–2501. doi: 10.1056/NEJMc1713444.
    1. Nowicki TS, Hu-Lieskovan S, Ribas A. Mechanisms of resistance to PD-1 and PD-L1 blockade. Cancer J. 2018;24:47–53. doi: 10.1097/PPO.0000000000000303.
    1. Akhurst RJ. Targeting TGF-beta signaling for therapeutic gain. Cold Spring Harb Perspect Biol. 2017;9:a022301. doi: 10.1101/cshperspect.a022301.
    1. Batlle E, Massague J. Transforming growth factor-beta signaling in immunity and cancer. Immunity. 2019;50:924–940. doi: 10.1016/j.immuni.2019.03.024.
    1. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al. TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554:544–548. doi: 10.1038/nature25501.
    1. Kim BG, Malek E, Choi SH, Ignatz-Hoover JJ, Driscoll JJ. Novel therapies emerging in oncology to target the TGF-beta pathway. J Hematol Oncol. 2021;14:55. doi: 10.1186/s13045-021-01053-x.
    1. Huang CY, Chung CL, Hu TH, Chen JJ, Liu PF, Chen CL. Recent progress in TGF-beta inhibitors for cancer therapy. Biomed Pharmacother. 2021;134:111046. doi: 10.1016/j.biopha.2020.111046.
    1. Strauss J, Heery CR, Schlom J, Madan RA, Cao L, Kang Z, et al. Phase I trial of M7824 (MSB0011359C), a bifunctional fusion protein targeting PD-L1 and TGFbeta, in advanced solid tumors. Clin Cancer Res. 2018;24:1287–1295. doi: 10.1158/1078-0432.CCR-17-2653.
    1. Cammareri P, Rose AM, Vincent DF, Wang J, Nagano A, Libertini S, et al. Inactivation of TGFbeta receptors in stem cells drives cutaneous squamous cell carcinoma. Nat Commun. 2016;7:12493. doi: 10.1038/ncomms12493.
    1. Rose AM, Sansom OJ, Inman GJ. Loss of TGF-beta signaling drives cSCC from skin stem cells - more evidence. Cell Cycle. 2017;16:386–387. doi: 10.1080/15384101.2016.1259892.
    1. Lacouture ME, Morris JC, Lawrence DP, Tan AR, Olencki TE, Shapiro GI, et al. Cutaneous keratoacanthomas/squamous cell carcinomas associated with neutralization of transforming growth factor beta by the monoclonal antibody fresolimumab (GC1008) Cancer Immunol Immunother. 2015;64:437–446. doi: 10.1007/s00262-015-1653-0.
    1. Gulley J, Lacouture M, Spira A, Mata HV, Yoo C, Cho B, et al. Adverse event management during treatment with bintrafusp alfa, a bifunctional fusion protein targeting TGF-β and PD-L1: treatment guidelines based on experience in clinical trials. Ann Oncol. 2021;32:S1181–S1182. doi: 10.1016/j.annonc.2021.08.1661.
    1. Claeson M, Pandeya N, Dusingize JC, Thompson BS, Green AC, Neale RE, et al. Assessment of incidence rate and risk factors for keratoacanthoma among residents of Queensland, Australia. JAMA Dermatol. 2020;156:1324–1332. doi: 10.1001/jamadermatol.2020.4097.
    1. Gulley J, Lacouture M, Spira A, Mata HV, Yoo C, Cho B, et al. 1689P Adverse event management during treatment with bintrafusp alfa, a bifunctional fusion protein targeting TGF-β and PD-L1: treatment guidelines based on experience in clinical trials. Ann Oncol. 2021;32:S1181–S1182. doi: 10.1016/j.annonc.2021.08.1661.
    1. Green AC, Olsen CM. Cutaneous squamous cell carcinoma: an epidemiological review. Br J Dermatol. 2017;177:373–381. doi: 10.1111/bjd.15324.
    1. Feng J, Tang D, Wang J, Zhou Q, Peng J, Lou H, et al. SHR-1701, a bifunctional fusion protein targeting PD-L1 and TGF-β, for recurrent or metastatic cervical cancer: a clinical expansion cohort of phase 1 study. Clin Cancer Res. 2022. 10.1158/1078-0432.CCR-22-0346.
    1. Bertolino P, Deckers M, Lebrin F, ten Dijke P. Transforming growth factor-beta signal transduction in angiogenesis and vascular disorders. Chest. 2005;128:585S–590S. doi: 10.1378/chest.128.6_suppl.585S.
    1. Mitra MS, Lancaster K, Adedeji AO, Palanisamy GS, Dave RA, Zhong F, et al. A potent pan-TGFbeta neutralizing monoclonal antibody elicits cardiovascular toxicity in mice and cynomolgus monkeys. Toxicol Sci. 2020;175:24–34. doi: 10.1093/toxsci/kfaa024.
    1. Kang YK, Bang YJ, Kondo S, Chung HC, Muro K, Dussault I, et al. Safety and tolerability of bintrafusp alfa, a bifunctional fusion protein targeting TGFbeta and PD-L1, in Asian patients with pretreated recurrent or refractory gastric cancer. Clin Cancer Res. 2020;26:3202–3210. doi: 10.1158/1078-0432.CCR-19-3806.
    1. Fuchs CS, Doi T, Jang RW, Muro K, Satoh T, Machado M, et al. Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: phase 2 clinical KEYNOTE-059 trial. JAMA Oncol. 2018;4:e180013. doi: 10.1001/jamaoncol.2018.0013.
    1. Ford HE, Marshall A, Bridgewater JA, Janowitz T, Coxon FY, Wadsley J, et al. Docetaxel versus active symptom control for refractory oesophagogastric adenocarcinoma (COUGAR-02): an open-label, phase 3 randomised controlled trial. Lancet Oncol. 2014;15:78–86. doi: 10.1016/S1470-2045(13)70549-7.
    1. Xu RH, Zhang Y, Pan H, Feng J, Zhang T, Liu T, et al. Efficacy and safety of weekly paclitaxel with or without ramucirumab as second-line therapy for the treatment of advanced gastric or gastroesophageal junction adenocarcinoma (RAINBOW-Asia): a randomised, multicentre, double-blind, phase 3 trial. Lancet Gastroenterol Hepatol. 2021;6:1015–1024. doi: 10.1016/S2468-1253(21)00313-7.
    1. Hironaka S, Ueda S, Yasui H, Nishina T, Tsuda M, Tsumura T, et al. Randomized, open-label, phase III study comparing irinotecan with paclitaxel in patients with advanced gastric cancer without severe peritoneal metastasis after failure of prior combination chemotherapy using fluoropyrimidine plus platinum: WJOG 4007 trial. J Clin Oncol. 2013;31:4438–4444. doi: 10.1200/JCO.2012.48.5805.
    1. Fuchs CS, Tomasek J, Yong CJ, Dumitru F, Passalacqua R, Goswami C, et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet. 2014;383:31–39. doi: 10.1016/S0140-6736(13)61719-5.
    1. Li J, Qin S, Xu J, Guo W, Xiong J, Bai Y, et al. Apatinib for chemotherapy-refractory advanced metastatic gastric cancer: results from a randomized, placebo-controlled, parallel-arm, phase II trial. J Clin Oncol. 2013;31:3219–3225. doi: 10.1200/JCO.2013.48.8585.
    1. Kang YK, Boku N, Satoh T, Ryu MH, Chao Y, Kato K, et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;390:2461–2471. doi: 10.1016/S0140-6736(17)31827-5.
    1. Burtness B, Harrington KJ, Greil R, Soulieres D, Tahara M, de Castro G, Jr, et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet. 2019;394:1915–1928. doi: 10.1016/S0140-6736(19)32591-7.
    1. Ferris RL, Blumenschein G, Jr, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375:1856–1867. doi: 10.1056/NEJMoa1602252.
    1. Cohen EEW, Soulieres D, Le Tourneau C, Dinis J, Licitra L, Ahn MJ, et al. Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study. Lancet. 2019;393:156–167. doi: 10.1016/S0140-6736(18)31999-8.
    1. Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373:1803–1813. doi: 10.1056/NEJMoa1510665.
    1. Sheng X, Chen H, Hu B, Yao X, Liu Z, Yao X, et al. Safety, efficacy, and biomarker analysis of toripalimab in patients with previously treated advanced urothelial carcinoma: results from a multicenter phase II trial POLARIS-03. Clin Cancer Res. 2021;28:489–97. doi: 10.1158/1078-0432.CCR-21-2210.
    1. Bellmunt J, de Wit R, Vaughn DJ, Fradet Y, Lee JL, Fong L, et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med. 2017;376:1015–1026. doi: 10.1056/NEJMoa1613683.
    1. Sharma P, Retz M, Siefker-Radtke A, Baron A, Necchi A, Bedke J, et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 2017;18:312–322. doi: 10.1016/S1470-2045(17)30065-7.
    1. Patel MR, Ellerton J, Infante JR, Agrawal M, Gordon M, Aljumaily R, et al. Avelumab in metastatic urothelial carcinoma after platinum failure (JAVELIN Solid Tumor): pooled results from two expansion cohorts of an open-label, phase 1 trial. Lancet Oncol. 2018;19:51–64. doi: 10.1016/S1470-2045(17)30900-2.
    1. Strauss J, Gatti-Mays ME, Cho BC, Hill A, Salas S, McClay E, et al. Bintrafusp alfa, a bifunctional fusion protein targeting TGF-beta and PD-L1, in patients with human papillomavirus-associated malignancies. J Immunother Cancer. 2020;8:e001395. doi: 10.1136/jitc-2020-001395.
    1. David CJ, Huang YH, Chen M, Su J, Zou Y, Bardeesy N, et al. TGF-beta tumor suppression through a lethal EMT. Cell. 2016;164:1015–1030. doi: 10.1016/j.cell.2016.01.009.
    1. David CJ, Massague J. Contextual determinants of TGFbeta action in development, immunity and cancer. Nat Rev Mol Cell Biol. 2018;19:419–435. doi: 10.1038/s41580-018-0007-0.

Source: PubMed

3
購読する