Modulation of long-term potentiation-like cortical plasticity in the healthy brain with low frequency-pulsed electromagnetic fields

Enrico Premi, Alberto Benussi, Antonio La Gatta, Stefano Visconti, Angelo Costa, Nicola Gilberti, Valentina Cantoni, Alessandro Padovani, Barbara Borroni, Mauro Magoni, Enrico Premi, Alberto Benussi, Antonio La Gatta, Stefano Visconti, Angelo Costa, Nicola Gilberti, Valentina Cantoni, Alessandro Padovani, Barbara Borroni, Mauro Magoni

Abstract

Background: Non-depolarizing magnetic fields, like low frequency-pulsed electromagnetic fields (LF-PEMFs) have shown the ability to modulate living structures, principally by influencing synaptic activity and ion channels on cellular membranes. Recently, the CTU Mega 20 device was presented as a molecular accelerator, using energy up to 200 J and providing high-power (2 Tesla) pulsating fields with a water-repulsive (diamagnetic) action and tissue biostimulation. We tested the hypothesis that LF-PEMFs could modulate long-term corticospinal excitability in healthy brains by applying CTU Mega 20®. Ten healthy subjects without known neurological and/or psychiatric diseases entered the study. A randomized double-blind sham-controlled crossover design was employed, recording TMS parameters (amplitude variation of the motor evoked potential as index of cortical excitability perturbations of the motor system) before (pre) and after (post + 0, + 15, + 30 min) a single CTU Mega 20 session on the corresponding primary right-hand motor area, using a real (magnetic field = 2 Tesla; intensity = 90 J; impulse frequency = 7 Hz; duration = 15 min) or sham device. A two-way repeated measures ANOVA with TIME (pre, post + 0, + 15, + 30 min) and TREATMENT (real vs. sham stimulation) as within-subjects factor was applied.

Results: A significant TIME × TREATMENT interaction was found (p < 0.001). Post hoc comparisons showed a significant effect of TIME, with significant differences at + 0, + 15 and + 30 min compared to baseline after real stimulation (all p < 0.05) but not after sham stimulation (all p < 0.05) and significant effects of TREATMENT, with significant differences at + 0, + 15 and + 30 min for real stimulation compared to sham stimulation (all p < 0.005). No significant depolarizing effects were detected throughout the (real) stimulation.

Conclusions: Our proof-of-concept study in healthy subjects supports the idea that non-ionizing LF-PEMFs induced by the CTU Mega 20 diamagnetic acceleration system could represent a new approach for brain neuromodulation. Further studies to optimize protocol parameters for different neurological and psychiatric conditions are warranted. Trial Registration The present work has been retrospectively registered as clinical trial on ClinicalTrials.gov NCT03537469 and publicly released on May 24, 2018.

Keywords: Diamagnetism; Long-term potentiation-like cortical plasticity; Low frequency-pulsed electromagnetic fields; Neuroplasticity.

Figures

Fig. 1
Fig. 1
CTU Mega 20 device. The original equipment used in the study, directly provided by PERISO SA (http://www.periso.ch/)
Fig. 2
Fig. 2
Corticospinal excitability after real and sham stimulation. Real and sham stimulation effects on corticospinal excitability, as measured by change in 1 mV MEP amplitude at various time points, in the real (blue line) and sham (red line) stimulation groups. Error bars represent standard errors. *p < 0.05 versus real stimulation. °p < 0.05 versus baseline (T0). MEP motor evoked potential, mV millivolt, min minutes

References

    1. Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J. Induction of plasticity in the human motor cortex by paired associative stimulation. Brain. 2000;123(Pt 3):572–584. doi: 10.1093/brain/123.3.572.
    1. Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005;45(2):201–206. doi: 10.1016/j.neuron.2004.12.033.
    1. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(Pt 3):633–639. doi: 10.1111/j.1469-7793.2000.t01-1-00633.x.
    1. Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, Di Lazzaro V, Ferreri F, Fitzgerald PB, George MS, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol. 2015;126(6):1071–1107. doi: 10.1016/j.clinph.2015.02.001.
    1. Benussi A, Cosseddu M, Filareto I, Dell’Era V, Archetti S, Sofia Cotelli M, Micheli A, Padovani A, Borroni B. Impaired long-term potentiation-like cortical plasticity in presymptomatic genetic frontotemporal dementia. Ann Neurol. 2016;80(3):472–476. doi: 10.1002/ana.24731.
    1. Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Mazzone P, Insola A, Tonali PA, Rothwell JC. The physiological basis of transcranial motor cortex stimulation in conscious humans. Clin Neurophysiol. 2004;115(2):255–266. doi: 10.1016/j.clinph.2003.10.009.
    1. Hallett M. Transcranial magnetic stimulation and the human brain. Nature. 2000;406(6792):147–150. doi: 10.1038/35018000.
    1. Rosen AD. Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cell Biochem Biophys. 2003;39(2):163–173. doi: 10.1385/CBB:39:2:163.
    1. Coots A, Shi R, Rosen AD. Effect of a 0.5-T static magnetic field on conduction in guinea pig spinal cord. J Neurol Sci. 2004;222(1–2):55–57. doi: 10.1016/j.jns.2004.04.010.
    1. Oliviero A, Mordillo-Mateos L, Arias P, Panyavin I, Foffani G, Aguilar J. Transcranial static magnetic field stimulation of the human motor cortex. J Physiol. 2011;589(Pt 20):4949–4958. doi: 10.1113/jphysiol.2011.211953.
    1. Urnukhsaikhan E, Mishig-Ochir T, Kim SC, Park JK, Seo YK. Neuroprotective effect of low frequency-pulsed electromagnetic fields in ischemic stroke. Appl Biochem Biotechnol. 2017;181(4):1360–1371. doi: 10.1007/s12010-016-2289-z.
    1. Izzo MNL, Coscia V, La Gatta A, Mariani F, Gasbarro V. The role of diamagnetic pump (CTU Mega 18) in the physical treatment of limbs lymphoedema. A clinical study. Eur J Lymphol. 2010;21(61):24–29.
    1. Juutilainen J. Developmental effects of electromagnetic fields. Bioelectromagnetics. 2005;Suppl 7:S107–115.
    1. Seo TB, Kim TW, Shin MS, Ji ES, Cho HS, Lee JM, Kim TW, Kim CJ. Aerobic exercise alleviates ischemia-induced memory impairment by enhancing cell proliferation and suppressing neuronal apoptosis in hippocampus. Int Neurourol J. 2014;18(4):187–197. doi: 10.5213/inj.2014.18.4.187.
    1. Ceccarelli G, Bloise N, Mantelli M, Gastaldi G, Fassina L, De Angelis MG, Ferrari D, Imbriani M, Visai L. A comparative analysis of the in vitro effects of pulsed electromagnetic field treatment on osteogenic differentiation of two different mesenchymal cell lineages. Int Neurourol J. 2013;2(4):283–294.
    1. Maaroufi K, Save E, Poucet B, Sakly M, Abdelmelek H, Had-Aissouni L. Oxidative stress and prevention of the adaptive response to chronic iron overload in the brain of young adult rats exposed to a 150 kilohertz electromagnetic field. Neuroscience. 2011;186:39–47. doi: 10.1016/j.neuroscience.2011.04.003.
    1. Levin M. Large-scale biophysics: ion flows and regeneration. Trends Cell Biol. 2007;17(6):261–270. doi: 10.1016/j.tcb.2007.04.007.
    1. Pesce M, Patruno A, Speranza L, Reale M. Extremely low frequency electromagnetic field and wound healing: implication of cytokines as biological mediators. Eur Cytokine Netw. 2013;24(1):1–10.
    1. Kang KS, Hong JM, Kang JA, Rhie JW, Jeong YH, Cho DW. Regulation of osteogenic differentiation of human adipose-derived stem cells by controlling electromagnetic field conditions. Exp Mol Med. 2013;45:e6. doi: 10.1038/emm.2013.11.
    1. Martiny K, Lunde M, Bech P. Transcranial low voltage pulsed electromagnetic fields in patients with treatment-resistant depression. Biol Psychiatry. 2010;68(2):163–169. doi: 10.1016/j.biopsych.2010.02.017.
    1. Rohan ML, Yamamoto RT, Ravichandran CT, Cayetano KR, Morales OG, Olson DP, Vitaliano G, Paul SM, Cohen BM. Rapid mood-elevating effects of low field magnetic stimulation in depression. Biol Psychiatry. 2014;76(3):186–193. doi: 10.1016/j.biopsych.2013.10.024.
    1. Straaso B, Lauritzen L, Lunde M, Vinberg M, Lindberg L, Larsen ER, Dissing S, Bech P. Dose-remission of pulsating electromagnetic fields as augmentation in therapy-resistant depression: a randomized, double-blind controlled study. Acta Neuropsychiatr. 2014;26(5):272–279. doi: 10.1017/neu.2014.5.
    1. Volkow ND, Tomasi D, Wang GJ, Fowler JS, Telang F, Wang R, Alexoff D, Logan J, Wong C, Pradhan K, et al. Effects of low-field magnetic stimulation on brain glucose metabolism. Neuroimage. 2010;51(2):623–628. doi: 10.1016/j.neuroimage.2010.02.015.
    1. Bassett CA. Fundamental and practical aspects of therapeutic uses of pulsed electromagnetic fields (PEMFs) Crit Rev Biomed Eng. 1989;17(5):451–529.
    1. Luben RA. Effects of low-energy electromagnetic fields (pulsed and DC) on membrane signal transduction processes in biological systems. Health Phys. 1991;61(1):15–28. doi: 10.1097/00004032-199107000-00002.
    1. Patino O, Grana D, Bolgiani A, Prezzavento G, Mino J, Merlo A, Benaim F. Pulsed electromagnetic fields in experimental cutaneous wound healing in rats. J Burn Care Rehabil. 1996;17(6 Pt 1):528–531.
    1. Benussi A, Cotelli MS, Cosseddu M, Bertasi V, Turla M, Salsano E, Dardis A, Padovani A, Borroni B. Preliminary results on long-term potentiation-like cortical plasticity and cholinergic dysfunction after miglustat treatment in niemann-pick disease type C. In: JIMD Report 2017.
    1. Fiorio M, Emadi Andani M, Marotta A, Classen J, Tinazzi M. Placebo-induced changes in excitatory and inhibitory corticospinal circuits during motor performance. J Neurosci. 2014;34(11):3993–4005. doi: 10.1523/JNEUROSCI.3931-13.2014.
    1. Rivadulla C, Foffani G, Oliviero A. Magnetic field strength and reproducibility of neodymium magnets useful for transcranial static magnetic field stimulation of the human cortex. Neuromodulation. 2014;17(5):438–441. doi: 10.1111/ner.12125.
    1. Lu XW, Du L, Kou L, Song N, Zhang YJ, Wu MK, Shen JF. Effects of moderate static magnetic fields on the voltage-gated sodium and calcium channel currents in trigeminal ganglion neurons. Electromagn Biol Med. 2015;34(4):285–292. doi: 10.3109/15368378.2014.906448.
    1. Ye SR, Yang JW, Chen CM. Effect of static magnetic fields on the amplitude of action potential in the lateral giant neuron of crayfish. Int J Radiat Biol. 2004;80(10):699–708. doi: 10.1080/09553000400017424.
    1. Rohan M, Parow A, Stoll AL, Demopulos C, Friedman S, Dager S, Hennen J, Cohen BM, Renshaw PF. Low-field magnetic stimulation in bipolar depression using an MRI-based stimulator. Am J Psychiatry. 2004;161(1):93–98. doi: 10.1176/appi.ajp.161.1.93.
    1. Capone F, Dileone M, Profice P, Pilato F, Musumeci G, Minicuci G, Ranieri F, Cadossi R, Setti S, Tonali PA, et al. Does exposure to extremely low frequency magnetic fields produce functional changes in human brain? J Neural Transm (Vienna) 2009;116(3):257–265. doi: 10.1007/s00702-009-0184-2.

Source: PubMed

3
購読する