Prediction of long-term memory scores in MCI based on resting-state fMRI

Djalel-Eddine Meskaldji, Maria Giulia Preti, Thomas Aw Bolton, Marie-Louise Montandon, Cristelle Rodriguez, Stephan Morgenthaler, Panteleimon Giannakopoulos, Sven Haller, Dimitri Van De Ville, Djalel-Eddine Meskaldji, Maria Giulia Preti, Thomas Aw Bolton, Marie-Louise Montandon, Cristelle Rodriguez, Stephan Morgenthaler, Panteleimon Giannakopoulos, Sven Haller, Dimitri Van De Ville

Abstract

Resting-state functional MRI (rs-fMRI) opens a window on large-scale organization of brain function. However, establishing relationships between resting-state brain activity and cognitive or clinical scores is still a difficult task, in particular in terms of prediction as would be meaningful for clinical applications such as early diagnosis of Alzheimer's disease. In this work, we employed partial least square regression under cross-validation scheme to predict episodic memory performance from functional connectivity (FC) patterns in a set of fifty-five MCI subjects for whom rs-fMRI acquisition and neuropsychological evaluation was carried out. We show that a newly introduced FC measure capturing the moments of anti-correlation between brain areas, discordance, contains key information to predict long-term memory scores in MCI patients, and performs better than standard measures of correlation to do so. Our results highlighted that stronger discordance within default mode network (DMN) areas, as well as across DMN, attentional and limbic networks, favor episodic memory performance in MCI.

Keywords: Cross-validation partial least square regression; Extreme value modeling; Functional brain connectivity; Long term memory; Medial temporal lobe; Mild cognitive impairment.

Figures

Fig. 1
Fig. 1
Illustration of the concepts used in the definition of accordance and discordance FC estimator. The figure shows two normalized time-courses. Only parts above the positive threshold (red parts) and below the negative threshold (blue parts) are considered as significant activations and deactivations, respectively. The overlapping of activation parts represents co-activation, and the overlapping of deactivation parts represents co-deactivation. These parts contribute in computing accordance value. The overlapping of activation parts of one time-course with deactivation parts of the second time-course (purple) contributes in computing discordance values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 2
Fig. 2
Processing pipeline to derive prediction models and evaluate their performances.
Fig. 3
Fig. 3
Mean connectivity matrices (across subjects) corresponding to the Pearson correlation, accordance and discordance measures, respectively.
Fig. 4
Fig. 4
Predicted vs measured memory scores corresponding to different measures (Pearson correlation, accordance and discordance). Predicted values are obtained by performing LOO PLSR models, in which co-variables are the connectivity values. We also report the correlation between predicted and measured values for each model.
Fig. 5
Fig. 5
T-statistic maps corresponding to the coefficients of the PLSR models for the different measures (Pearson correlation, accordance and discordance).
Fig. 6
Fig. 6
Significant connections obtained by thresholding p-values (at level 0.005) corresponding to the coefficients of the discordance based model. The connection color represents the sign of the coefficient corresponding to each connection in the PLSR model (orange for positive coefficients and blue for negative coefficients). The node size is proportional to the node degree in the absolute t-map. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

References

    1. Adam S., Van der Linden M., Ivanoiu A., Juillerat A.C., Béchet S., Salmon E. Optimization of encoding specificity for the diagnosis of early ad: the ri-48 task. J. Clin. Exp. Neuropsychol. 2007;29(5):477–487.
    1. Agosta F., Pievani M., Geroldi C., Copetti M., Frisoni G.B., Filippi M. Resting state fMRI in Alzheimer's disease: beyond the default mode network. Neurobiol. Aging. 2012;33(8):1564–1578.
    1. Alario F.X., Chainay H., Lehericy S., Cohen L. The role of the supplementary motor area (SMA) in word production. Brain Res. 2006;1076(1):129–143.
    1. Aleman-Gomez Y., Melie-García L., Valdés-Hernandez P. 12th Annual Meeting of the Organization for Human Brain Mapping. vol. 27. 2006. IBASPM: toolbox for automatic parcellation of brain structures.
    1. Allen E.A., Damaraju E., Plis S.M., Erhardt E.B., Eichele T., Calhoun V.D. Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex. 2014 Bhs352.
    1. Andrews-Hanna J.R. The brain's default network and its adaptive role in internal mentation. Neuroscientist. 2012;18(3):251–270.
    1. Andrews-Hanna J.R., Snyder A.Z., Vincent J.L., Lustig C., Head D., Raichle M.E., Buckner R.L. Disruption of large-scale brain systems in advanced aging. Neuron. 2007;56(5):924–935.
    1. Bai F., Shi Y., Yuan Y., Wang Y., Yue C., Teng Y., Wu D., Zhang Z., Jia J., Zhang Z. Altered self-referential network in resting-state amnestic type mild cognitive impairment. Cortex. 2012;48(5):604–613.
    1. Bai F., Watson D.R., Yu H., Shi Y., Yuan Y., Zhang Z. Abnormal resting-state functional connectivity of posterior cingulate cortex in amnestic type mild cognitive impairment. Brain Res. 2009;1302:167–174.
    1. Bai F., Zhang Z., Yu H., Shi Y., Yuan Y., Zhu W., Zhang X., Qian Y. Default-mode network activity distinguishes amnestic type mild cognitive impairment from healthy aging: a combined structural and resting-state functional MRI study. Neurosci. Lett. 2008;438(1):111–115.
    1. Barberger-Gateau P., Commenges D., Gagnon M., Letenneur L., Sauvel C., Dartigues J.F. Instrumental activities of daily living as a screening tool for cognitive impairment and dementia in elderly community dwellers. J. Am. Geriatr. Soc. 1992;40(11):1129–1134.
    1. Binnewijzend M.A., Schoonheim M.M., Sanz-Arigita E., Wink A.M., van der Flier W.M., Tolboom N., Adriaanse S.M., Damoiseaux J.S., Scheltens P., van Berckel B.N. Resting-state fMRI changes in Alzheimer's disease and mild cognitive impairment. Neurobiol. Aging. 2012;33(9):2018–2028.
    1. Brier M.R., Thomas J.B., Snyder A.Z., Benzinger T.L., Zhang D., Raichle M.E., Holtzman D.M., Morris J.C., Ances B.M. Loss of intranetwork and internetwork resting state functional connections with Alzheimer's disease progression. J. Nurs. 2012;32(26):8890–8899.
    1. Bullmore E., Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009;10(3):186–198.
    1. Cai S., Huang L., Zou J., Jing L., Zhai B., Ji G., von Deneen K.M., Ren J., Ren A., Initiative A.D.N. Changes in thalamic connectivity in the early and late stages of amnestic mild cognitive impairment: a resting-state functional magnetic resonance study from ADNI. PloS one. 2015;10(2)
    1. Cardebat D., Doyon B., Puel M., Goulet P., Joanette Y. Formal and semantic lexical evocation in normal subjects. Performance and dynamics of production as a function of sex, age and educational level. Acta Neurol. Belg. 1989;90(4):207–217.
    1. Chao-Gan Y., Yu-Feng Z. DPARSF: a Matlab toolbox for “pipeline” data analysis of resting-state fMRI. Front. Syst. Neurosci. 2010:4.
    1. Chen G., Ward B.D., Xie C., Li W., Wu Z., Jones J.L., Franczak M., Antuono P., Li S.J. Classification of Alzheimer disease, mild cognitive impairment, and normal cognitive status with large-scale network analysis based on resting-state functional mr imaging. Radiology. 2011;259(1):213–221.
    1. Cramer R.D., Patterson D.E., Bunce J.D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 1988;110(18):5959–5967.
    1. Dickerson B.C., Sperling R.A. Functional abnormalities of the medial temporal lobe memory system in mild cognitive impairment and Alzheimer's disease: insights from functional MRI studies. Neuropsychologia. 2008;46(6):1624–1635.
    1. Folstein M.F., Folstein S.E., McHugh P.R. “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975;12(3):189–198.
    1. Fornito A., Zalesky A., Breakspear M. Graph analysis of the human connectome: promise, progress, and pitfalls. Neuroimage. 2013;80(0):426–444. Mapping the Connectome.
    1. Fox M.D., Greicius M. Clinical applications of resting state functional connectivity. Front. Syst. Neurosci. 2010:4.
    1. Fox M.D., Raichle M.E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurol. 2007;8(9):700–711.
    1. Friston K.J., Holmes A.P., Worsley K.J., Poline J.-P., Frith C.D., Frackowiak R.S.J. Statistical parametric maps in functional imaging: a general linear approach. Hum. Brain Mapp. 1995;2(4):189–210.
    1. He J., Carmichael O., Fletcher E., Singh B., Iosif A.M., Martinez O., Reed B., Yonelinas A., DeCarli C. Influence of functional connectivity and structural MRI measures on episodic memory. Neurobiol. Aging. 2012;33(11):2612–2620.
    1. Hlinka J., Palus̆ M., Vejmelka M., Mantini D., Corbetta M. Functional connectivity in resting-state fMRI: is linear correlation sufficient? Neuroimage. 2011;54(3):2218–2225.
    1. Hoaglin D.C., Mosteller F., Tukey J.W. vol. 3. Wiley; New York: 1983. Understanding Robust and Exploratory Data Analysis.
    1. Hughes C.P., Berg L., Danziger W.L., Coben L.A., Martin R.L. A new clinical scale for the staging of dementia. Br. J. Psychiatry. 1982;140(6):566–572.
    1. Jin M., Pelak V.S., Cordes D. Aberrant default mode network in subjects with amnestic mild cognitive impairment using resting-state functional MRI. Magn. Reson. Imaging. 2012;30(1):48–61.
    1. Kaplan E.F., Goodglass H. Lea & Febiger; Philadelphia: W. S., 1983. The Boston Naming Test.
    1. Karahanoğlu F.I., Van De Ville D. Transient brain activity disentangles fMRI resting-state dynamics in terms of spatially and temporally overlapping networks. Nat. Commun. 2015:6.
    1. Lachenbruch P.A., Mickey M.R. Estimation of error rates in discriminant analysis. Technometrics. 1968;10(1):1–11.
    1. Leonardi N., Richiardi J., Gschwind M., Simioni S., Annoni J.M., Schluep M., Vuilleumier P., Van De Ville D. Principal components of functional connectivity: a new approach to study dynamic brain connectivity during rest. Neuroimage. 2013;83:937–950.
    1. Li K. Review on methods for functional brain connectivity detection using fMRI. Comp. Medical Img. Graph. 2009;33:131–139.
    1. Liang P., Wang Z., Yang Y., Jia X., Li K. Functional disconnection and compensation in mild cognitive impairment: evidence from DLPFC connectivity using resting-state fMRI. PloS one. 2011;6(7):e22153.
    1. Liu Z., Zhang Y., Yan H., Bai L., Dai R., Wei W., Zhong C., Xue T., Wang H., Feng Y. Altered topological patterns of brain networks in mild cognitive impairment and Alzheimer's disease: a resting-state fMRI study. Psychiatry Res. Neuroimaging. 2012;202(2):118–125.
    1. Martens H., Martens M. Modified jack-knife estimation of parameter uncertainty in bilinear modelling by partial least squares regression (PLSR) Food Qual. Prefer. 2000;11(1):5–16.
    1. McIntosh A., Bookstein F., Haxby J.V., Grady C., Meskaldji D.-E., Fischi-Gomez E., Griffa A., Hagmann P., Morgenthaler S., Thiran J.-P. Spatial pattern analysis of functional brain images using partial least squares. Neuroimage. 1996;3(3):143–157.
    1. Meskaldji D.-E., Fischi-Gomez, E.and Griffa, A. Hagmann P., Morgenthaler S., Thiran J.-P. Comparing connectomes across subjects and populations at different scales. Neuroimage. 2013;80(0):416–425. Mapping the Connectome.
    1. Meskaldji D.-E., Morgenthaler S., Van De Ville D. Traitement Du Signal, GRETSI. 2015. Functional brain connectivity evaluated by an effective and more sufficient estimator based on extreme events.
    1. Meskaldji D.-E., Morgenthaler S., Van De Ville D. Proceedings of the Twelfth IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI’15) 2015. New measures of brain functional connectivity by temporal analysis of extreme events; pp. 26–29.
    1. Meskaldji D.-E., Morgenthaler S., Van De Ville D. SPIE Optical Engineering+ Applications. International Society for Optics and Photonics; 2015. Statistical methods for comparing brain connectomes at different scales; p. 95971L.
    1. Meskaldji D.-E., Preti M.G., Bolton T., Montandon M.-L., Rodriguez C., Morgenthaler S., Giannakopoulos P., Haller S., Van De Ville D. Proceedings of the Thirteenth IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI’16) 2016. Predicting individual scores from resting state fMRI using partial least square regression; pp. 1311–1314.
    1. Meskaldji D.-E., Vasung L., Romascano D., Thiran J.-P., Hagmann P., Morgenthaler S., Ville D.V.D. Improved statistical evaluation of group differences in connectomes by screening-filtering strategy with application to study maturation of brain connections between childhood and adolescence. Neuroimage. 2015;108(0):251–264.
    1. Mevel K., Landeau B., Fouquet M., La Joie R., Villain N., Mézenge F., Perrotin A., Eustache F., Desgranges B., Chételat G. Age effect on the default mode network, inner thoughts, and cognitive abilities. Neurobiol. Aging. 2013;34(4):1292–1301.
    1. Mevik B.H., Cederkvist H.R. Mean squared error of prediction (MSEP) estimates for principal component regression (PCR) and partial least squares regression (PLSR) J. Chemometr. 2004;18(9):422–429.
    1. Mevik B.H., Wehrens R. The PLS package: principal component and partial least squares regression in R. J. Stat. Softw. 2007;18(2):1–24.
    1. Millis S.R., Malina A.C., Bowers D.A., Ricker J.H. Confirmatory factor analysis of the Wechsler Memory Scale-III. J. Clin. Exp. Neuropsychol. 1999;21(1):87–93.
    1. Nguyen D.V., Rocke D.M. Tumor classification by partial least squares using microarray gene expression data. Bioinformatics. 2002;18(1):39–50.
    1. Onoda K., Ishihara M., Yamaguchi S. Decreased functional connectivity by aging is associated with cognitive decline. J. Cogn. Neurosci. 2012;24(11):2186–2198.
    1. Petersen R.C. Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 2004;256(3):183–194.
    1. Qi Z., Wu X., Wang Z., Zhang N., Dong H., Yao L., Li K. Impairment and compensation coexist in amnestic MCI default mode network. Neuroimage. 2010;50(1):48–55.
    1. Reitan R. Validity of the trail making test as an indicator of organic brain damage. Percept. Mot. Skills. 1958;8:271–276.
    1. Richiardi J., Eryilmaz H., Schwartz S., Vuilleumier P., Van De Ville D. Decoding brain states from fMRI connectivity graphs. Neuroimage. 2011;56(2):616–626.
    1. Richiardi J., Eryilmaz H., Schwartz S., Vuilleumier P., Van De Ville D. Decoding brain states from fMRI connectivity graphs. Neuroimage. 2011;56(2):616–626.
    1. Richiardi J., Gschwind M., Simioni S., Annoni J.M., Greco B., Hagmann P., Schluep M., Vuilleumier P., Van De Ville D. Classifying minimally disabled multiple sclerosis patients from resting state functional connectivity. Neuroimage. 2012;62(3):2021–2033.
    1. Richiardi J., Monsch A.U., Haas T., Barkhof F., Van de Ville D., Radü E.W., Kressig R.W., Haller S. Altered cerebrovascular reactivity velocity in mild cognitive impairment and Alzheimer's disease. Neurobiol. Aging. 2015;36(1):33–41.
    1. Sherman S.M. The thalamus is more than just a relay. Curr. Opin. Neurobiol. 2007;17(4):417–422.
    1. Sherman S.M. Thalamus plays a central role in ongoing cortical functioning. Nat. Neurosci. 2016;16(4):533–541.
    1. Smith S.M., Vidaurre D., Beckmann C.F., Glasser M.F., Jenkinson M., Miller K.L., Nichols T.E., Robinson E.C., Salimi-Khorshidi G., Woolrich M.W., Barch D.M., Ugurbil K., Essen D.C.V. Functional connectomics from resting-state fMRI. Trends Cogn. Sci. 2013;17(12):666–682.
    1. Sorg C., Riedl V., M”uhlau, M. Calhoun V.D., Eichele T., L”aer, L. Drzezga A., F”orstl, H. Kurz A., Zimmer C. Selective changes of resting-state networks in individuals at risk for Alzheimer's disease. Proc. Natl. Acad. Sci. 2007;104(47):18760–18765.
    1. Sporns O. MIT Press; Cambridge: 2011. Networks of the Brain.
    1. Tagliazucchi E., Balenzuela P., Fraiman D., Chialvo D.R. Criticality in large-scale brain fMRI dynamics unveiled by a novel point process analysis. Front. Physiol. 2012;3:15.
    1. Terry D.P., Sabatinelli D., Puente A.N., Lazar N.A., Miller L.S. A meta-analysis of fmri activation differences during episodic memory in Alzheimer's disease and mild cognitive impairment. J. Neuroimaging. 2015
    1. Tibshirani R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Methodol. 1996;58(1):267–288.
    1. Touroutoglou A., Andreano J.M., Barrett L.F., Dickerson B.C. Brain network connectivity- behavioral relationships exhibit trait-like properties: evidence from hippocampal connectivity and memory. Hippocampus. 2015
    1. Tzourio-Mazoyer N., Landeau B., Papathanassiou D., Crivello F., Etard O., Delcroix N., Mazoyer B., Joliot M. Automated anatomical labeling of activations in {SPM} using a macroscopic anatomical parcellation of the {MNI}{MRI} single-subject brain. Neuroimage. 2002;15(1):273–289.
    1. Van der Linden M., Adam S. Groupe de Boeck; 2004. L’épreuve De Rappel Libre/Rappel Indicé à 16 Items (RL/RI - 16), in L’é Valuation Des Troubles De La MéMoire: PréSentation De Quatre Tests De MéMoire éPisodique (Avec Leur éTalonnage)
    1. Wang L., LaViolette P., O’Keefe K., Putcha D., Bakkour A., Van Dijk K.R., Pihlajamäki M., Dickerson B.C., Sperling R.A. Intrinsic connectivity between the hippocampus and posteromedial cortex predicts memory performance in cognitively intact older individuals. Neuroimage. 2010;51(2):910–917.
    1. Wang L., Negreira A., LaViolette P., Bakkour A., Sperling R.A., Dickerson B.C. Intrinsic interhemispheric hippocampal functional connectivity predicts individual differences in memory performance ability. Hippocampus. 2010;20(3):345–351.
    1. Wang Z., Jia X., Liang P., Qi Z., Yang Y., Zhou W., Li K. Changes in thalamus connectivity in mild cognitive impairment: evidence from resting state fMRI. Eur. J. Radiol. 2012;81(2):277–285.
    1. Wang Z., Liang P., Jia X., Jin G., Song H., Han Y., Lu J., Li K. The baseline and longitudinal changes of PCC connectivity in mild cognitive impairment: a combined structure and resting-state fMRI study. PloS one. 2012;7(5):e36838.
    1. Wang Z., Liang P., Jia X., Qi Z., Yu L., Yang Y., Zhou W., Lu J., Li K. Baseline and longitudinal patterns of hippocampal connectivity in mild cognitive impairment: evidence from resting state fMRI. J. Neurol. Sci. 2011;309(1):79–85.
    1. Wee C.Y., Yang S., Yap P.T., Shen D., Initiative A.D.N. Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification. Brain Imaging Behav. 2015:1–15.
    1. Wee C.Y., Yap P.T., Denny K., Browndyke J.N., Potter G.G., Welsh-Bohmer K.A., Wang L., Shen D. Resting-state multi-spectrum functional connectivity networks for identification of MCI patients. PloS one. 2012;7(5):e37828.
    1. Welsh K.A., Butters N., Mohs R.C., Beekly D., Edland S., Fillenbaum G., Heyman A. The consortium to establish a registry for Alzheimer's disease (CERAD). Part V. A normative study of the neuropsychological battery. Neurology. 1994;44(4):609.
    1. Xia M., Wang J., He Y. Brainnet viewer: a network visualization tool for human brain connectomics. PLoS ONE. 2013;8(7):e68910.
    1. Yamashita M., Kawato M., Imamizu H. Predicting learning plateau of working memory from whole-brain intrinsic network connectivity patterns. Sci. Report. 2015:5.
    1. Yao Z., Zhang Y., Lin L., Zhou Y., Xu C., Jiang T. Abnormal cortical networks in mild cognitive impairment and Alzheimer's disease. PLoS Comput Biol 6 (11) 2010;e1001006
    1. Yeo B.T., Krienen F.M., Sepulcre J., Sabuncu M.R., Lashkari D., Hollinshead M., Roffman J.L., Smoller J.W., Zöllei L., Polimeni J.R. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurol. 2011;106(3):1125–1165.
    1. Yi L., Wang J., Jia L., Zhao Z., Lu J., Li K., Jia J., He Y., Jiang C., Han Y. 2012. Structural and functional changes in subcortical vascular mild cognitive impairment: a combined voxel-based morphometry and resting-state fMRI study.
    1. Yue C., Wu D., Bai F., Shi Y., Yu H., Xie C., Zhang Z. State-based functional connectivity changes associate with cognitive decline in amnestic mild cognitive impairment subjects. Behav. Brain Res. 2015;288:94–102.
    1. Zhang X., Hu B., Ma X., Xu L. Resting-state whole-brain functional connectivity networks for MCI classification using l2-regularized logistic regression. IEEE Trans. NanoBiosci. 2015;14(2):237–247.
    1. Zhang Z., Liu Y., Jiang T., Zhou B., An N., Dai H., Wang P., Niu Y., Wang L., Zhang X. Altered spontaneous activity in Alzheimer's disease and mild cognitive impairment revealed by regional homogeneity. Neuroimage. 2012;59(2):1429–1440.
    1. Zhang Z., Zheng H., Liang K., Wang H., Kong S., Hu J., Wu F., Sun G. Functional degeneration in dorsal and ventral attention systems in amnestic mild cognitive impairment and Alzheimer's disease: an fMRI study. Neurosci. Lett. 2015;585:160–165.
    1. Zigmond A.S., Snaith R.P. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67(6):361–370.

Source: PubMed

3
購読する